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Abstract

In a closed 2-cell embedding of a graph each face is homeomorphic to an open disk and is
bounded by a cycle in the graph. The Orientable Strong Embedding Conjecture says that every
2-connected graph has a closed 2-cell embedding in some orientable surface. This implies both
the Cycle Double Cover Conjecture and the Strong Embedding Conjecture. In this paper we
prove that every 2-connected projective-planar cubic graph has a closed 2-cell embedding in
some orientable surface. The three main ingredients of the proof are (1) a surgical method
to convert nonorientable embeddings into orientable embeddings; (2) a reduction for 4-cycles
for orientable closed 2-cell embeddings, or orientable cycle double covers, of cubic graphs; and
(3) a structural result for projective-planar embeddings of cubic graphs. We deduce that every
2-edge-connected projective-planar graph (not necessarily cubic) has an orientable cycle double
cover.

1 Introduction

In this paper all graphs are finite and may have multiple edges but no loops. A graph is simple if it
has no multiple edges. A pseudograph may have multiple edges and loops. By a surface we mean a
connected compact 2-manifold without boundary. The nonorientable surface of genus k is denoted
Nk. By an open or closed disk in a surface we mean a subset of the surface homeomorphic to such
a subset of R2.

A closed 2-cell embedding of a graph is an embedding such that every face is an open disk
bounded by a cycle (no repeated vertices) in the graph. A graph must be 2-connected to have a
closed 2-cell embedding. The Strong Embedding Conjecture due to Haggard [4] says that every 2-
connected graph has a closed 2-cell embedding in some surface. The even stronger Orientable Strong
Embedding Conjecture [7] says that every 2-connected graph has a closed 2-cell embedding in some
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orientable surface. The facial walks of every closed 2-cell embedding form a cycle double cover , a
set of cycles in the graph such that each edge is contained in exactly two of these cycles. Therefore,
both embedding conjectures imply the well-known Cycle Double Cover Conjecture, which says that
every 2-edge-connected graph has a cycle double cover,

Every spherical embedding of a 2-connected planar graph is an orientable closed 2-cell embedding.
For cubic graphs (but not in general) we can go from a cycle double cover back to a closed 2-cell
embedding; thus, cubic graphs with cycle double covers (see for example [1, 3, 5]) have closed 2-cell
embeddings. Some special classes of graphs are known to have minimum genus embeddings with all
faces bounded by cycles; these are closed 2-cell embeddings. For example, the complete graph Kn

has embeddings with all faces bounded by 3-cycles in a nonorientable surface if n ≡ 0, 1, 3 or 4 mod
6, and in an orientable surface if n ≡ 0, 3, 4 or 7 mod 12 (see [12]). The complete bipartite graph
Km,n has embeddings with all faces bounded by 4-cycles in a nonorientable surface if mn is even,
and in an orientable surface if (m− 2)(n− 2) is divisible by 4 [10, 11]. However, in general not many
graphs are known to have closed 2-cell embeddings.

Even though the Orientable Strong Embedding Conjecture is very strong, the study of orientable
closed 2-cell embeddings seems to be promising. One approach is to try to prove the following:

Conjecture 1.1 (Robertson and Zha [personal communication]). If a 2-connected graph has a
nonorientable closed 2-cell embedding then it has an orientable closed 2-cell embedding.

While this conjecture appears weaker than the Orientable Strong Embedding Conjecture, it is actu-
ally equivalent to it, via a result in [15] based on techniques of Little and Ringeisen [8]. This result
says that if a graph G has an orientable closed 2-cell embedding, and e is a new edge, then G + e
has a closed 2-cell embedding in some surface, which may or may not be orientable.

This paper is a first step towards verifying Conjecture 1.1. Our goal is to develop techniques
to turn nonorientable closed 2-cell embeddings into orientable closed 2-cell embeddings. Using
techniques of this kind, we show that the Orientable Strong Embedding Conjecture is true for
projective-planar cubic graphs. The following is the main result of this paper.

Theorem 1.2. Every 2-connected projective-planar cubic graph has a closed 2-cell embedding in
some orientable surface.

A standard construction then provides a result for general 2-edge-connected projective-planar
graphs. Given such an embedded graphG, we may construct a 2-edge-connected (hence 2-connected)
cubic projective-planar graph H by expanding each vertex v of degree dv ≥ 4 to a contractible cycle
of length dv. By Theorem 1.2, H has an orientable closed 2-cell embedding, whose oriented faces
give a compatibly oriented (each edge occurs once in each direction) cycle double cover C of H .
Contracting the new cycles to recover G, C becomes a compatibly oriented cycle double cover C′ of
G. (C′ may not correspond to a surface embedding of G, but that does not matter.) Some cycles
of C may become oriented eulerian subgraphs, rather than cycles, of C′, but those can always be
decomposed into oriented cycles, preserving the compatible orientation. This proves the following.

Corollary 1.3. Every 2-edge-connected projective-planar graph has an orientable cycle double cover.

In Section 2 we introduce some notation. In Section 3 we develop surgeries that convert nonori-
entable surfaces into orientable surfaces, and use them to prove a special case of our main result. In
Section 4 we describe some reductions for our problem. In Section 5 we arrive at our main result by
proving a structural result which shows that either the special case from Section 3 occurs, or some
kind of reduction applies.

2 Definitions and notation

Let Ψ denote an embedding of a graph G in a surface Σ. We usually identify the graph and the
point-set of its image under the embedding. If S ⊆ Σ, then S denotes the closure of S in Σ. A face
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is a component of Σ−G. The boundary of the face f is denoted by ∂f . Each component of ∂f is
traced out by a closed walk in G, which we call a facial boundary component walk of f . A k-cycle
face is a face with exactly one boundary component, which is a k-cycle.

An embedding in which every face is an open disk (2-cell) is an open 2-cell embedding; then each
face has a single boundary component walk, called the facial walk . If every facial walk of an open
2-cell embedding is in fact a cycle, we have a closed 2-cell embedding. If Σ is not the sphere, then
the representativity of any embedding Ψ is defined to be ρ(Ψ) = min{|Γ∩G| : Γ is a noncontractible
simple closed curve in Σ}. We say Ψ is k-representative if ρ(Ψ) ≥ k. Robertson and Vitray [14]
showed that Ψ is open 2-cell exactly when G is connected and Ψ is 1-representative, and closed 2-cell
exactly when G is 2-connected and Ψ is 2-representative.

Suppose C is a cycle with a given orientation, and u and v are two vertices on C. Denote by uCv
the path on C from u to v in the given direction. If we have a graph embedded on an orientable
surface, then all cycles may be oriented in a consistent clockwise direction, and we assume this
orientation unless otherwise specified. If P is a path, uPv is defined to be the subpath from u to v
along P .

We say two sets (usually faces) f and g touch if ∂f ∩ ∂g 6= ∅; we say they touch k times if
∂f ∩ ∂g has k components. A sequence of sets f0, f1, f2, . . . , fn is an f0fn-face chain of length n if
for 1 ≤ i ≤ n− 1 each fi is a distinct face of Ψ and for 0 ≤ i < j ≤ n, fi and fj touch when j = i+1
and do not touch otherwise. The sets f0 and fn may be faces of Ψ, but need not be; in this paper
they are usually paths. If R ⊆ Σ and fi ⊆ R for 1 ≤ i ≤ n− 1, we say the face chain goes through
R.

A cyclic sequence of distinct faces (f1, f2, . . . , fn) is called a face ring of length n if (i) n = 2,
and f1 and f2 touch at least twice, or (ii) n ≥ 3 and the sets ∂fi ∩ ∂fj , i 6= j, are pairwise disjoint,
nonempty when j = i− 1 or i+ 1, and empty otherwise (subscripts interpreted modulo n). We will
use face rings only in closed 2-cell embeddings, so we do not need to consider situations in which
a face ‘touches itself’, i.e., face rings of length 1. A face ring is elementary if (i) n = 2 and the
two faces touch exactly twice, or (ii) n ≥ 3 and any two faces touch at most once. A face ring is

noncontractible if R =
⋃n−1

i=0
fi contains a noncontractible simple closed curve.

The following observations will be useful for showing that face rings are elementary.

Observation 2.1. If Ψ is an embedding of a 3-connected graph, and two faces are contained in
some open disk, then the faces touch at most once.

Observation 2.2. If Ψ is a 3-representative embedding of a 3-connected graph then any two faces
touch at most once.

3 Converting nonorientable surfaces to orientable surfaces

It is not hard to turn an orientable embedding into a nonorientable embedding, by adding a cross-
cap in an arbitrary location. On the other hand, it is not easy in general to construct an orientable
embedding from an existing nonorientable embedding of a graph. The authors of [2, 13] developed
some surgeries which turn embeddings on the projective plane and on the Klein bottle into orientable
embeddings. However, the resulting orientable embeddings are not necessarily closed 2-cell embed-
dings. In this section we develop some surgeries to convert nonorientable embeddings into orientable
embeddings. We show that under certain conditions this can be applied to convert a closed 2-cell
projective-planar embedding into a closed 2-cell orientable embedding.

Our overall strategy will be as follows. Suppose G is embedded in a nonorientable surface Σ1,
obtainable by inserting a set X of crosscaps in an orientable surface Σ0. We insert an additional set
X ′ of crosscaps to get an embedding of G on a nonorientable surface Σ2, in which all facial boundary
component walks are cycles. Then we embed in Σ2 a pseudograph H disjoint from G, such that
cutting along H destroys all the crosscaps in X ∪ X ′. Capping any holes due to cutting we obtain
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an embedding of G on an orientable surface Σ3, in which all facial boundary component walks are
still cycles. Removing any faces that are not open disks, and capping again, we finish with a closed
2-cell embedding of G in an orientable surface Σ4.

We first define some concepts related to crosscaps, next discuss insertion of crosscaps, then
examine cutting to remove nonorientability, and finally apply these ideas to certain projective-planar
embeddings.

We regard a crosscap in a 2-manifold (with or without boundary) as just a one-sided simple
closed curve in the interior of the manifold (rather than the usual definition, where a crosscap is a
neighborhood of such a curve, homeomorphic to a Möbius strip). To add a crosscap to a 2-manifold
we remove a point or a set homeomorphic to a closed disk not intersecting the boundary, locally
close the result by adding a boundary component homeomorphic to a circle, then identify antipodal
points of this circle to obtain a one-sided simple closed curve. If we removed a point p or closed
disk ∆, we call this inserting a crosscap at p or ∆. If p is an interior point of an edge e of an
embedded graph, we call this inserting a crosscap on e. In figures we represent a crosscap by a circle
(representing the added boundary component) with an X inside it. To recover the original 2-manifold
(up to homeomorphism) we may collapse the crosscap by identifying all its points into a single point
(the result is homeomorphic to what we obtain by cutting out a Möbius-strip neighborhood of the
crosscap and capping the resulting hole with a disk).

We define the following surgeries for inserting crosscaps. These, or closely related operations,
have been used in earlier papers such as [15], and generalize ideas used by Haggard [4].

Operation 3.1 (Inserting crosscaps between faces or along a face ring).

(a) Let f1 and f2 be two distinct face occurrences at a vertex v. (They may be different occurrences
of the same face.) Then f1 and f2 partition the edges incident with v into two intervals, I1
and I2. Choose a closed disk ∆ close to v such that all edges of I1 cross it once, and no edges
of I2 intersect it. Add a crosscap at ∆, re-embedding the parts of the edges of I1 between ∆
and v so that their order around v is reversed. We call this inserting a crosscap between f1 and
f2 near v. It does not matter whether we insert the crosscap across I1 or I2: using the other
one just amounts to pulling v through the crosscap, which does not change the embedding. If
one of I1 or I2 is a single edge, then this is equivalent to inserting a crosscap on that edge.

(b) If f1 and f2 are distinct faces and ∂f1 ∩ ∂f2 is a path P (possibly a single vertex) then the
effect of inserting a crosscap between f1 and f2 at any vertex of P , or on any edge of P , is the
same, so we just talk about inserting a crosscap between f1 and f2.

(c) Suppose F = (f1, f2, . . . , fm) is an elementary face ring of length m ≥ 3. Interpreting sub-
scripts modulo m, insert a crosscap between fi and fi+1 for 1 ≤ i ≤ m. We call this inserting
crosscaps along F . (This can also be defined for elementary face rings of length 2, or for
suitable face chains, although we do not need this here.)

While the above definition allows us some freedom in exactly how we place the crosscaps, in
practice it may be convenient to make a definite choice about the location of the crosscaps, to help
in tracing boundary component walks in the new embedding.

Now we introduce our cutting operation. Our approach is fairly general, although we will need
only a special case of it for our projective-planar results.

We first need to examine what happens if we cut through an individual crosscap on a surface.
Suppose ∆ is a neighborhood of a crosscap X , which we think of as a circle X̃ with antipodal points
identified. There is a consistent local orientation ω on ∆−X . Cut along a curve Γ which crosses X
at a single point p. If antipodal points of X̃ were not identified, we would cut ∆ into two pieces ∆1

and ∆2. Because we do identify antipodal points, ∆1 and ∆2 remain joined along the cut crosscap
X∗, a line segment joining two copies of p. ∆1 and ∆2 are joined with a twist so we now have a
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Figure 1: Cutting a crosscap

local orientation ω∗ everywhere in the neighborhood of the cut crosscap X∗, including on X∗ itself,
which reverses relative to ω when we cross X∗. See Figure 1: at left is a planned cut; in the middle
the cut crosscap is shown as two copies of the line segment X∗ that are to be identified; and at right
we see the result of the identification.

As mentioned earlier, we consider a nonorientable surface built up by adding crosscaps to an
orientable surface; we then cut through a pseudograph H intersecting those crosscaps to remove the
nonorientability.

Lemma 3.2. Suppose Φ is a 2-face-colorable embedding of a pseudograph H on an orientable surface
Σ. Suppose we choose a finite set of points P so that each point of P is an interior point of an edge
of H. If we insert a crosscap Xp at every p ∈ P , cut the resulting surface along all edges of H, and
use disks to cap the boundary components of the resulting 2-manifold with boundary, the result is a
finite union of pairwise disjoint orientable surfaces.

Proof. It suffices to show that the 2-manifold with boundary Σ∗ obtained by cutting along H is
orientable; then by capping we obtain a union of orientable surfaces.

Consider a fixed global orientation ω (local choice of clockwise direction) for Σ. When we add the
crosscaps, ω gives a consistent local orientation on a neighborhood of each crosscap Xp, excluding
Xp itself. Let C0 and C1 be the two color classes of faces of Φ. Define an orientation ω∗ on Σ∗ that
is equal to ω on each face in C0 and opposite to ω on each face in C1. When we pass between two
faces of Φ in Σ∗, we pass between a face in C0 and a face in C1 via a cut crosscap. As previously
discussed, crossing the cut crosscap X∗

p reverses the orientation, in agreement with ω∗. Therefore
ω∗ provides a consistent global orientation for Σ∗.

In Lemma 3.2, H need not be connected. Also, we may allow H to contain free loops, edges
incident with no vertex, which map to simple closed curves in an embedding; we can always insert
vertices to turn these into ordinary loops.

Instead of starting with the pseudograph H and inserting the crosscaps, we may start with the
crosscaps and add H . Therefore, the following is equivalent to Lemma 3.2.

Operation 3.3. Suppose Σ′ is a nonorientable surface containing disjoint crosscaps X1, X2, . . .,
Xk. Suppose Φ

′ is an embedding on Σ′ of a pseudograph H , such that each Xi contains exactly one
point of H , an interior point of an edge that crosses Xi. Suppose that when we collapse every Xi,
1 ≤ i ≤ k, we get a 2-face-colorable embedding of H in an orientable surface Σ. Then if we cut Σ′

along all edges of H and use disks to cap the boundary components of the resulting 2-manifold with
boundary, the result, Σ′′, is a finite union of pairwise disjoint orientable surfaces.

In Operation 3.3, the condition that each crosscap Xi be crossed by exactly one edge of H ,
implying that the pseudograph after collapsing every Xi is still H , is important. If this is not the
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Figure 2: Orienting using an elementary face ring of odd length

case, then the embedding obtained by cutting along H may not be orientable, even if collapsing the
crosscaps yields a 2-face-colorable orientable embedding of some graph. For example, suppose we
add four crosscaps X1, X2, X3, X4 to a sphere to get Σ′ = N4, and take H to consist of two disjoint
loops Γ1 and Γ2, where Γ1 and Γ2 both cross X1 and X2, X3 is crossed only by Γ1 and X4 is crossed
only by Γ2. When we collapse the crosscaps we get a 2-face-colorable embedding of a graph on a
sphere, but if we cut Σ′ along Γ1 and Γ2 the result is not orientable.

With some extra conditions it is possible to allow more than one edge of H to cross a crosscap
Xi, but we will not pursue the details here.

The pseudograph H in Operation 3.3 indicates where to cut. The graph we wish to embed is a
different graph, G. We assume that G also has an embedding Ψ′ in Σ′, disjoint from the embedding
Φ′ of H . Note that G may cross some or all of the crosscaps Xi and still be disjoint from H ; there
may be several edges of G crossing each crosscap, and an edge of G may cross several crosscaps. In
this context vertex-splitting in H preserving 2-face-colorability allows us to assume, if we wish, that
H is a union of vertex-disjoint cycles or free loops.

If G is connected, then when we cut along H and cap, we get an embedding Ψ′′ of G in an
orientable surface, one of the connected components of Σ′′. We do not disturb the order of the edges
around any of the vertices of G, so Ψ′′ has the same set of facial boundary component walks as Ψ′,
although the faces may not be open disks.

Now we combine Operations 3.1 and 3.3 to prove an easy case of Theorem 1.2, which applies to
graphs with arbitrary vertex degrees, not just cubic graphs.

Theorem 3.4. Let Ψ be a closed 2-cell embedding of a 2-connected graph G in the projective plane.
Suppose Ψ contains a noncontractible elementary face ring F = (f1, f2, . . . , fl) which has odd length
l ≥ 3. Then G has a closed 2-cell embedding in some orientable surface.

Proof. Represent the projective plane in the standard way as a disk with antipodal boundary points
identified; the boundary represents a crosscap added to the sphere, which we call the outer crosscap
X0. By homotopic shifting we may ensure that the closure of exactly one face of F intersects X0,
and X0 cuts that face into exactly two nonempty pieces. See Figure 2.
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Insert crosscaps X1, X2, . . ., Xl along F as in Operation 3.1(c), to obtain a new embedding Ψ′

of G in Nl+1. All faces of F turn into a new face g in Ψ′ whose boundary has two components g1
and g2. All other facial walks in Ψ remain unchanged in Ψ′. Because faces in F are disjoint except
that consecutive faces intersect in a single component, each of g1 and g2 is a cycle. Thus, all facial
boundary component walks of Ψ′ are cycles.

By following F , we may construct a simple closed curve H that passes through each face of F
and each inserted crosscap exactly once, and is disjoint from G. H crosses each of the l+1 crosscaps
X0, X1, . . ., Xl. If we consider H as an embedded pseudograph with one vertex (any point of

H −
⋃l

i=0
Xi) and one loop, then collapsing all crosscaps leaves H as a simple closed curve in the

sphere, which is a 2-face-colorable embedding of H in an orientable surface. Therefore, by Operation
3.3, cutting along H and capping yields an orientable surface, in which G is embedded with all facial
boundary components cycles. Removing any faces that are not open disks and capping any resulting
holes with disks, we obtain a closed 2-cell embedding of G in an orientable surface, as required.

Theorem 3.4 does not work with elementary face rings of even length because then we get a face
with a single boundary component that self-intersects, instead of two components g1 and g2.

In terms of our original strategy, here Σ0 is the sphere, X = {X0}, Σ1 is the projective plane,
X ′ = {X1, X2, . . . , Xl}, Σ2 is Nl+1, and Σ3 and Σ4 are the orientable surfaces in the last two
sentences of the proof.

The proof of Theorem 3.4 uses only a very simple version of our strategy, and there is an
alternative way to obtain the final embedding in this proof, namely the surgery of Fiedler et al. [2,
Lemma A]. However, we have examples of noncubic 2-connected projective-planar graphs where we
can find orientable closed 2-cell embeddings using more complicated applications of Operations 3.1
and 3.3. Also, our approach continues the development of a coherent set of tools for constructing
closed 2-cell embeddings, begun in papers such as [15].

4 Reductions

In this section we describe reductions that allow us to restrict our attention to a smaller class of
projective-planar cubic graphs. Most of these reductions are standard, but the reduction we give
for 4-cycles is new. We state our results in a general setting and then apply them to projective-
planar cubic graphs. We also prove a technical result which will be used to deal with certain ‘planar
4-edge-cuts’.

Let C2 be the class of 2-connected cubic graphs, and let G be a subclass of C2 closed under taking
minors in C2 (i.e., if G1 ∈ G and G2 ∈ C2 is a minor of G1, then G2 ∈ G also). In constructing
orientable closed 2-cell embeddings for graphs in G, standard reductions used for cycle double covers
(see [7, pp. 4–5]) can be applied to deal with any 2-edge-cut, or nontrivial 3-edge-cut (a 3-edge-cut
that is not just the edges incident with a single vertex). Since we can exclude 2-edge-cuts, we can
also exclude multiple edges. A 2-connected cubic graph with no 2-edge-cuts or nontrivial 3-edge-cuts
is said to be cyclically-4-edge-connected , so we may state the following.

Lemma 4.1. Given G as above, an element G of G having no orientable closed 2-cell embedding
(i.e., no orientable cycle double cover) and, subject to that, fewest edges is simple and cyclically
4-edge-connected.

Since G has no nontrivial 3-edge-cuts, and since K4 has an orientable embedding, it follows that
G as in Lemma 4.1 has no triangles (3-cycles). For the Cycle Double Cover Conjecture there are
also reductions to exclude 4-cycles and in fact cycles of length up to 11, due to Goddyn [3] (see also
[16, pp. 155–158]) and Huck [6]. However, these reductions do not work if we add the condition of
orientability. Here we show that there is at least a 4-cycle reduction for the Orientable Cycle Double
Cover Conjecture.
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Lemma 4.2. Given G as above, an element G of G having no orientable closed 2-cell embedding
(i.e., no orientable cycle double cover) and, subject to that, fewest edges has no 4-cycle.

Proof. By Lemma 4.1 G is simple, cyclically-4-edge-connected, and has no triangles. Since K3,3 has
a toroidal closed 2-cell embedding (in which there are three faces, all hamilton cycles), we know that
|V (G)| ≥ 8.

Assume that G contains a 4-cycle C = (v1v2v3v4). Since G has no triangles, each vi has a
neighbour ui /∈ V (C). Since |V (G)| ≥ 8, cyclic-4-edge-connectivity implies that u1, u2, u3 and u4

are distinct, and moreover that G′ = (G − V (C)) ∪ {u1u2, u3u4} is 2-connected. Hence G′ ∈ G, so
since G′ has fewer edges than G it has an orientable closed 2-cell embedding Ψ′. Suppose the faces
of Ψ′ containing u1u2 are f1 and f2, where ∂f1 traversed clockwise uses directed edge u2u1, and
∂f2 uses u1u2. Suppose the faces containing u3u4 are g1 and g2, where ∂g1 uses directed edge u3u4

when traversed clockwise, and ∂g2 uses u4u3. In Ψ′ subdivide u1u2 to obtain the path u1v1v2u2,
and u3u4 to obtain the path u3v3v4u4.

If f1 = g2 we may add the edges v1v4 and v2v3 inside f1 to obtain an orientable closed 2-cell
embedding of G. A similar argument applies if f2 = g1. Thus, f1 6= g2 and f2 6= g1.

If in addition f1 6= g1 then we add a handle from f1 to g1 and add edges v1v4, v2v3 along the
handle, to obtain an orientable embedding of G. In the new embedding the faces f1 and g1 are
replaced by f ′

1 and g′1, where ∂f
′

1 = (∂f1 − v2v1)∪ v2v3v4v1 and ∂g′1 = (∂g1− v3v4)∪ v3v2v1v4. Now
∂f ′

1 is a cycle because f1 6= g2, and ∂g′1 is a cycle because g1 6= f2, so this is an orientable closed
2-cell embedding of G. Therefore, f1 = g1, and similarly f2 = g2.

Since f1 = g1 and f2 = g2 we may add the edge v1v4 inside f1 and add the edge v2v3 inside f2,
to obtain an orientable closed 2-cell embedding of G.

Since G has an orientable closed 2-cell embedding in all cases, our assumption was false, and G
has no 4-cycle, as required.

We may apply our results when G is the class of projective-planar cubic graphs.

Corollary 4.3. Let G be a 2-connected projective-planar cubic graph that has fewest edges subject
to having no orientable closed 2-cell embedding. Then G is simple, cyclically-4-edge-connected, and
has no 3- or 4-cycles.

Now we introduce the technical result for dealing with certain ‘planar 4-edge-cuts.’ It is easier
to prove it first in a dual form, for near-triangulations. A near-triangulation is a graph embedded
in the plane so that every face is a triangle, except possibly for the outer face, which is a cycle. A
separating cycle in an embedded graph is a cycle whose removal disconnects the surface into two
components, each of which contains at least one vertex of the graph.

If G is a connected graph embedded in the plane, ∂G represents its outer walk. An interior
vertex of G is a vertex not on ∂G. An interior path in G is a path none of whose internal vertices lie
on ∂G (although one or both ends may lie on ∂G). If C = (v1v2v3 . . . vk) is a cycle of G, then IG(C)
or IG(v1v2v3 . . . vk) represents the embedded subgraph of G on and inside C. If G is understood we
just write I(C) or I(v1v2v3 . . . vk).

NG(v) represents the set of neighbors of vertex v in G, and NG[v] represents NG(v) ∪ {v}. If H
is a subgraph of G, then a chord of H is an edge that is not in H but whose two ends are in H . If x
is a cutvertex of H , then a chord of H is x-jumping if its ends lie in different components of H − x.

Observation 4.4. In a near-triangulation, a minimal cutset separating two given nonadjacent ver-
tices induces either a chordless separating cycle, or a chordless interior path with ends on the outer
cycle.

Observation 4.5. Suppose G is a near-triangulation with outer cycle ∂G and x, y are vertices of
∂G with xy /∈ E(∂G). Then either G has an interior xy-path, or ∂G− y has an x-jumping chord.
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Figure 3: Example with only even paths, and structure for the proof of Proposition 4.6

Proposition 4.6. Let G be a simple graph (no loops or multiple edges) embedded in the plane so
that all faces are triangles except the outer face, which is a 4-cycle (v1v2v3v4) in that clockwise order;
there is at least one interior vertex; and there are no separating triangles.

(i) Then there is a chordless interior v1v3-path in G.

(ii) Moreover, if all chordless interior v1v3-paths in G have length of the same parity (all even, or
all odd), then G has an interior vertex of degree 4.

Nontrivial examples as in (ii) above do occur. At left in Figure 3 is an example where all chordless
interior v1v3-paths have even length; it has several interior vertices of degree 4.

Proof. For (i), v2v4 /∈ E(G) because there are no separating triangles, and hence by Observation 4.5
there is an interior v1v3-path. A shortest such path is chordless.

We prove (ii) by contradiction. Assume it does not hold, and G is a counterexample with fewest
vertices. So, all interior v1v3-paths have length of the same parity, but there is no interior vertex of
degree 4. If |V (G)| = 5, G is a wheel with central vertex of degree 4, so we must have |V (G)| ≥ 6.
Since G is a counterexample and there are no separating triangles, every interior vertex has degree
at least 5. Since there are no separating triangles, v1v3, v2v4 /∈ E(G).

Claim 1. If C = (t1t2t3t4) is a separating 4-cycle then there are chordless interior t1t3-paths in I(C)
whose lengths have different parities.

Proof of Claim. If not, then by minimality of G there is an interior vertex of I(C) of degree 4 in
I(C). But this is also an interior vertex of G of degree 4 in G, a contradiction.

Claim 2. There is no interior vertex adjacent to both v1 and v3, or both v2 and v4.

Proof of Claim. Suppose there is an interior vertex v with vv1, vv3 ∈ E(G). Since |V (G)| ≥ 6,
at least one of the subgraphs I(v1v2v3v) or I(v1vv3v4) has an interior vertex. But this subgraph
contradicts Claim 1.

If there is an interior vertex v adjacent to both v2 and v4 then at least one of G′ = I(v1v2vv4)
and G′′ = I(vv2v3v4) has an interior vertex; without loss of generality assume it is G′. There is a
chordless interior vv3-path Q′′ in G′′, by (i) if G′′ has an interior vertex, and because v2v4 /∈ E(G)
so that vv3 ∈ E(G) if G′′ has no interior vertex. For every chordless interior v1v-path Q′ in G′,
Q′ ∪ Q′′ is a chordless interior v1v3-path in G, so all such paths Q′ have length of the same parity,
contradicting Claim 1.
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Let the neighbors of v1 in anticlockwise order be v4 = u0, u1, u2, . . . , uk, uk+1 = v2. By Claim 2,
k ≥ 2. As all interior faces are triangles and there are no separating triangles, U = u0u1u2 . . . ukuk+1

is a chordless path in G. By Claim 2, no vertex of U − {u0, uk+1} is adjacent to v3.

Claim 3. Every 4-cycle containing v1 is ∂G, or has the form (v1ui+2ui+1ui), or has the form
(v1ui+1xui) where x is an interior vertex of I(U ∪ v2v3v4).

Proof of Claim. Every 4-cycle containing v1 has the form C = (v1ujxui) with i < j. If i = 0 and
j = k + 1 then by Claim 2, C is ∂G. So, without loss of generality, we may assume that j ≤ k.
Then, also by Claim 2, x 6= v3. If x is on U then since U is chordless, C must be (v1ui+2ui+1ui), as
specified. So we may assume that x is an interior vertex of I(U ∪ v2v3v4). If j = i+ 1 then C is as
specified, so suppose j ≥ i + 2. Let G′ = I(C) and G′′ = I(u0u1 . . . uixujuj+1 . . . uk+1v3). Since U
is chordless, Observation 4.5 implies that G′′ has an interior xv3-path. Let Q

′′ be a shortest, hence
chordless, such path. For any chordless interior v1x-path Q′ in G′, Q′ ∪ Q′′ is a chordless interior
v1v3-path in G, so all such paths Q′ have length of the same parity. Since G′ has an interior vertex,
ui+1, this contradicts Claim 1.

The following are immediate consequences of Claim 3.

Claim 4. There is no interior vertex x not adjacent to v1 but adjacent to ui and uj with |j − i| ≥ 2.

Claim 5. There is no separating 4-cycle in G of the form (v1v2xy) or (v1xyv4), or (by symmetry)
(v3v2xy) or (v3xyv4).

Since u1 has degree at least 5, there exist w1, w2 so that the neighbors of u1 in clockwise order
are v4 = u0, v1, u2, w2, w1, . . .. Since U is chordless, neither w1 nor w2 is on U , and by Claim 2,
neither w1 nor w2 is v3. There are triangular faces (u1u2w2) and (u1w2w1). Since there are no
separating triangles, u0w2, w1u2 /∈ E(G). By Claim 5, w2v3 /∈ E(G). See the right side of Figure 3.

Let U ′ = u0u1w1w2u2u3 . . . uk+1, and let H = I(U ′ ∪ v2v3v4). Since U is chordless, since
u0w2 /∈ E(G), and since u1u2 and u1w2 are edges of G but not H , U ′ has no w1-jumping chord in
H .

Claim 6. There is an interior w1v3-path in H avoiding all neighbors (in G) of v1, u1, u2 and w2,
except w1 itself.

Proof of Claim. Let S = (V (U)∪NH [u1]∪NH [u2]∪NH [w2])−{w1}. Since u1v3, w2v3, u2v3 /∈ E(G),
we know that v3 /∈ S. It suffices to show that there is a w1v3-path in H − S.

Let S1 = (NH [u1] − {w1}), and S2 = (NH [w2] − {w1}) ∪ NH [u2] ∪ {u4, u5, . . . , uk+1}. Then
S = S1 ∪ S2. Suppose x ∈ S1 ∩ S2. Since U ′ has no w1-jumping chord in H , x /∈ V (U ′) and hence
x ∈ NH(u1) ∩ (NH(w2) ∪NH(u2)). But then either (u1w2x) or (u1u2x) is a separating triangle in
G, a contradiction. Hence S1 ∩ S2 = ∅.

Assume there is no w1v3-path in H−S. Then there is a minimal cutset contained in S separating
w1 and v3 in H , which by Observation 4.4 induces a chordless path R starting on u0u1 and ending
on w2u2u3 . . . uk+1. Since U ′ has no w1-jumping chord in H , there are no vertices of S2 on u0u1,
and no vertices of S1 on w2u2u3 . . . uk+1. Hence, the first vertex of R belongs to S1 and the last to
S2. Let x1 denote the last vertex of R that belongs to S1, and x2 its immediate successor, which
must belong to S2. Since U ′ has no w1-jumping chord in H , we cannot have both x1, x2 ∈ V (U ′).

Suppose x1 ∈ V (U ′), so x1 = u0 or u1. Then x2 ∈ S2−V (U ′) = (NH(w2)∪NH(u2))−V (U ′). If
x1 = u1 then x2 ∈ S1 ∩ S2, a contradiction. If x1 = u0 and x2 ∈ N(u2) then (v1u2x2u0) contradicts
Claim 4. Thus, x1 = u0 and x2 ∈ N(w2). Since U ′ has no w1-jumping chord in H , by Observation
4.5 there is an interior x2v3-path in I(u0x2w2u2u3 . . . uk+1v3). Let Q

′′ be a shortest, hence chordless,
such path. Since I(u0u1w2x2) has an interior vertex w1, by Claim 1 it has interior u1x2-paths Q′

1

and Q′

2 whose lengths have different parities. But then v1u1 ∪ Q′

1 ∪ Q′′ and v1u1 ∪ Q′

2 ∪ Q′′ are
chordless interior v1v3-paths whose lengths have different parities, a contradiction.

Therefore, x1 ∈ S1 − V (U ′) = N(u1)− V (U ′). We consider three possibilities for x2. Cases (2)
and (3) are shown at right in Figure 3.
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(1) Suppose that x2 ∈ V (U ′), so that x2 is a vertex of w2u2u3 . . . uk+1. Since x1u1 ∈ E(G), we
either get a separating triangle in G if x2 = w2 or u2, or violate Claim 4 if x2 = ui, 3 ≤ i ≤ k + 1.

(2) Suppose that x2 ∈ NH(w2) − V (U ′). Let U ′′ = u0u1x1x2w2u2u3 . . . uk+1 and let J = I(U ′′ ∪
v2v3v4). If x1 is adjacent to a vertex z of w2u2u3 . . . uk+1 we get a separating triangle if z = w2 or
u2, or violate Claim 4 otherwise. Also, u1w2, u1u2 /∈ E(J), and U ′ has no w1-jumping chord in H .
Therefore, U ′′ has no x2-jumping chord in J .

If there is an interior x2v3-path in J that avoids NJ [u1], then we may take Q′′ to be a shortest,
hence chordless, such path. Then for any chordless interior u1x2-path Q′ in G′ = I(u1w2x2x1),
v1u1 ∪Q′ ∪ Q′′ is a chordless interior v1v3-path in G, so all such paths Q′ have length of the same
parity. Since G′ has an interior vertex, w1, this contradicts Claim 1.

Therefore, S′ = (V (U ′′) ∪ NJ [u1]) − {x2} separates x2 and v3 in J . Let S′

1 = NJ [u1] and
S′

2 = {w2, u2, u3, . . . , uk+1}, so that S′ = S′

1 ∪ S′

2. Because U ′′ has no x2-jumping chord in J ,
S′

1 ∩ S′

2 = ∅. Applying Observation 4.4 to a minimal cutset contained in S′ separating x2 and v3,
which induces a chordless path R′ which starts on a vertex of S′

1 ∩ V (U ′′) and ends on a vertex of
S′

2, we see that R′ has an edge y1y2 with y1 ∈ S′

1, y2 ∈ S′

2. Since U ′′ has no x2-jumping chord in J ,
we cannot have both y1, y2 ∈ V (U ′′), so y1 ∈ NJ(u1)− V (U ′′). But then if y2 = w2 or u2 we have a
separating triangle (u1y2y1), and otherwise y1 violates Claim 4.

(3) Suppose that x2 ∈ NH(u2)− V (U ′). After modifying U ′′ to be u0u1x1x2u2u3 . . . uk+1, G
′ to be

I(u1u2x2x1), and S′

2 to be {u2, u3, . . . , uk+1}, the proof is almost identical to (2) above.

So our assumption was incorrect, and there is a w1v3-path in H − S.

Let Q be a w1v3-path as in Claim 6 that is as short as possible; then Q is chordless. As Q
contains no neighbor of v1, u1, u2 or w2 except w1, the paths v1u1w1 ∪ Q and v1u2w2w1 ∪ Q are
chordless interior v1v3-paths whose lengths have different parities, giving the final contradiction that
proves (ii).

Corollary 4.7. Let G be a cyclically-4-edge-connected cubic graph embedded in a surface, and let
C be a cycle of G with a fixed orientation bounding a closed disk D in the surface. Suppose that
precisely four edges touch C from outside of D, at vertices u1, u2, u3, u4 in that order around C,
and let Bi = uiCui+1 (taking u5 = u1). If all B1B3-face chains through D have length of the same
parity, then there is a 4-cycle face contained in D.

Proof. Let H be the intersection graph of the sets B1, B2, B3, B4 and the closures of all faces inside
D, and for each i let gi denote the face outside D intersecting D along Bi. Essentially H is a
subgraph of the dual of G, but we replace each face gi by Bi = gi ∩ D to make sure that there
are four distinct vertices representing g1, g2, g3 and g4, even if some of these faces are actually
the same. Since G is cubic, H is a near-triangulation, with outer 4-cycle (B1B2B3B4). Since G is
cyclically-4-edge-connected, H is simple and has no separating triangles. Apply Proposition 4.6 (ii)
to H .

5 Main theorem

We are now ready to prove our main theorem. The main step is a structural result, Theorem 5.2.

Lemma 5.1. Suppose Ψ is a projective-planar embedding of a 3-connected cubic graph, with ρ(Ψ) =
m ≥ 2. Then for any noncontractible simple closed curve Γ with |Γ∩G| = m, the faces traversed by
Γ, in their order along Γ, form a noncontractible elementary face ring.

Proof. Label the faces along Γ as f1, f2, . . ., fm. Interpreting subscripts modulo m, clearly fi and
fi+1 touch for each i. If fi touches fj for some j 6= i−1, i or i+1, then we can find a noncontractible
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closed curve intersecting G in fewer points than Γ, a contradiction. Thus, we have a noncontractible
face ring.

If m ≥ 3 then the face ring is elementary by Observation 2.2, so assume that m = 2. If ∂f1∩∂f2
has three or more components, then we can find a contractible simple closed curve lying in f1 ∪ f2
cutting G at exactly two vertices that form a cutset in G, contradicting 3-connectivity. Thus, the
face ring is elementary.

Theorem 5.2. If G is a cyclically-4-edge-connected cubic graph with a 2-representative embedding
Ψ in the projective plane, then the embedding has a 4-cycle face or a noncontractible elementary face
ring of odd length or both.

Proof. Assume for a contradiction that G has neither a 4-cycle face nor a noncontractible elementary
face ring of odd length. By Lemma 5.1, Ψ has a noncontractible elementary face ring of length ρ(Ψ),
so ρ(Ψ) = 2n for some n ≥ 1. Let this face ring be F = (f1, f2, . . . , f2n). Subscripts i for fi are to
be interpreted modulo 2n.

Since G is cubic and 3-connected, if n = 1 then each component of ∂f1 ∩ ∂f2 is a single edge.
Similarly, if n ≥ 2 then each ∂fi ∩ ∂fi+1 has one component which is a single edge. Therefore,
F =

⋃2n

i=1
fi is a closed Möbius strip bounded by a cycle L. L contains distinct vertices v1, v2, . . . , v4n

in that order such that ∂fi−1 ∩ ∂fi is the edge viv2n+i. Let Li = viLvi+1 (subscripts modulo 4n),
so that the boundary of fi is Li∪L2n+i ∪{viv2n+1, vi+1v2n+i+1}. Subscripts i for vi, Li and related
objects are to be interpreted modulo 4n. Removing the interior of F from the projective plane leaves
a closed disk D, which is the union of the closures of the faces not in F , and which contains all
vertices of G. We assume that L goes around D clockwise, and all cycles contained in D will also
be oriented clockwise.

Suppose ρ(Ψ) = 2, so that n = 1. Every L1L3-face chain throughD extends to an noncontractible
elementary face ring using Observation 2.1, and is therefore of even length. But then by Corollary
4.7 there is a 4-cycle face contained in D, contradicting the fact that G has no 4-cycles.

Thus, ρ(Ψ) ≥ 4, so that n ≥ 2. By Observation 2.2, every face ring is elementary. Thus, every
noncontractible face ring has even length. For each i, 1 ≤ i ≤ 4n, let Di be the set of faces in D
whose closures intersect Li, and D =

⋃4n

i=1
Di. If i, j ∈ {1, 2, . . . , 4n}, let d(i, j) denote the distance

between i and j in the cyclic sequence (1, 2, . . . , 4n).
We proceed by proving a sequence of claims. Note that we implicitly use the fact that ρ ≥ 4. In

particular, all face rings we contruct are valid if ρ ≥ 4.

Claim 1. Since G is cubic and 3-connected and since ρ ≥ 3, for any two faces f and g, ∂f ∩ ∂g is
either empty or a single edge.

Claim 2. If d(i, j) ≥ 3 then Di ∩ Dj = ∅.

Proof of Claim. Suppose not. Without loss of generality we may assume that i = 1 and 4 ≤ j ≤ 2n+1.
Let g ∈ Di ∩ Dj . We may construct a noncontractible simple closed curve Γ passing through
f1, g, fj, fj+1, . . . , f2n+1 = f1 and intersecting G at 2n+ 3− j < 2n = ρ points, a contradiction.

Claim 3. For every d ∈ D, ∂d ∩L has exactly one component, which is a subpath of L with at least
one edge.

Proof of Claim. Any component of ∂d ∩ L cannot be a single vertex because G has no vertices of
degree 4 or more, so it is a subpath of L with at least one edge.

Suppose ∂d ∩ L has two distinct components, C1 and C2. Suppose C1 intersects Li and C2

intersects Lj where we choose i and j so that d(i, j) is as small as possible. By Claim 2, d(i, j) ≤ 2.
If i = j then G has a 2-edge-cut, and if d(i, j) = 1 then G has a nontrivial 3-edge-cut, contradicting
the fact that G is cyclically-4-edge-connected.

Suppose that d(i, j) = 2. Without loss of generality assume that i = 1 and j = 3. Using Claim
1, suppose that C1 ∩L1 = ∂d ∩ ∂f1 is the edge x1y1 where x1, y1 occur on that order along L1, and
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C2∩L3 = ∂d∩∂f3 is the edge y2x2 where y2, x2 occur in that order along L3. Since G is cubic, x1 6=
v1, y1 6= v2, y2 6= v3 and x2 6= v4. Let D

′ be the closed disk bounded by the cycle y1(∂d)y2 ∪ y1Ly2.
Let B1 = y1Lv2 and B3 = v3Ly2. Then for every B1B3-face chain (B1, g1, g2, . . . , gk−1, B3) of
length k through D′, we have a noncontractible face ring (f1, g1, g2, . . . , gk−1, f3, f4, . . . , f2n), which
must have even length, so that k is always even. Therefore, by Corollary 4.7 there is a 4-cycle face
contained in D′, contradicting the fact that G has no 4-cycles.

By Claim 3, the elements of D can be cyclically ordered along L according to their intersection
with L. Within each Di we may linear order the elements of Di along Li as di,1, di,2, . . . , di,ni

, where
di,1 contains vi and di,ni

contains vi+1. By Claim 1, ni is the length of Li. Possibly ni = 1. Note
that di,ni

= di+1,1. The following is immediate.

Claim 4. If 1 < j < ni and i 6= k then di,j and fk do not touch.

Claim 5. We do not have ni = ni+1 = 1 for any i.

Proof of Claim. If ni = ni+1 = 1 then di−1,ni−1
= di,1 = di+1,1 = di+2,1, violating Claim 2.

Claim 6. Since G has no nontrivial 3-edge-cut, if j ≤ k − 2 then di,j and di,k do not touch.

Claim 7. If j < ni and k > 1 then di,j and di+1,k do not touch.

Proof of Claim. Without loss of generality assume that i = 1. Suppose that j < n1, k > 1, and
d1,j and d2,k touch. Let m be the largest m so that d2,n2

= dm,1; by Claim 5, m = 3 or 4. Let
∂d1,j ∩L = x1Ly1 and ∂d2,k ∩L = y2Lx2. Then y1 and y2 are internal vertices of L1 and L2, respec-
tively. Let y3 be the first vertex of ∂d2,k encountered when travelling clockwise along ∂d1,j from y1.
Let D′ be the closed disk bounded by the cycle y1(∂d1,j)y3∪y3(∂d2,k)y2∪y1Ly2. Let B1 = y1Lv2 and
B3 = y3(∂d2,k)y2. Then for every B1B3-face chain (B1, g1, g2, . . . , gl−1, B3) of length l through D′,
by Claims 4 and 6 we have a noncontractible face ring (f1, g1, g2, . . . , gl−1, d2,k, d2,k+1, . . . , d2,n2

=
dm,1, fm, fm+1, . . . , f2n), which must have even length, so that l always has the same parity. There-
fore, by Corollary 4.7 there is a 4-cycle face contained in D′, contradicting the fact that G has no
4-cycles.

Claim 8. If d(i, j) ≥ 4 then no face in Di touches a face in Dj .

Proof of Claim. This is similar to the proof of Claim 2.

Claim 9. If ni−1 > 1 and ni+1 > 1 then ni is odd. Equivalently, if ni is even then ni−1 = 1 or
ni+1 = 1.

Proof of Claim. Without loss of generality assume that i = 2. If n1 > 1 and n3 > 1 then, by Claims
4 and 6, (f1, d1,n1

= d2,1, d2,2, d2,3, . . . , d2,n2
= d3,1, f3, f4, . . . , f2n) is a noncontractible face ring,

which must have even length, so that n2 must be odd.

Claim 10. If ni−1 > 1 and ni+1 = 1, or ni−1 = 1 and ni+1 > 1, then ni is even.

Proof of Claim. Without loss of generality assume that i = 2, where n1 > 1 and n3 = 1. By
Claim 5, n4 > 1. Thus, and by Claims 4 and 6, (f1, d1,n1

= d2,1, d2,2, d2,3, . . . , d2,n2
= d3,1 =

d4,1, f4, f5, . . . , f2n) is a noncontractible face ring, which must have even length, so that n2 must be
even.

Claim 11. If ni−1 = ni+1 = 1 then ni is odd and ni ≥ 3.

Proof of Claim. Without loss of generality assume that i = 3, and n2 = n4 = 1. By Claim 5, n1 > 1
and n5 > 1. Thus, and by Claims 4 and 6, (f1, d1,n1

= d2,1 = d3,1, d3,2, d3,3, . . . , d3,n3
= d4,1 =

d5,1, f5, f6, . . . , f2n) is a noncontractible face ring, which must have even length, so that n3 must be
odd. By Claim 5, n3 ≥ 3.

Claim 12. If ni is even then either ni−1 = ni+2 = 1 and ni+1 is even, or ni+1 = ni−2 = 1 and ni−1

is even.
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Proof of Claim. Without loss of generality assume that i = 3. By Claim 9, n2 = 1 or n4 = 1:
again without loss of generality assume that n2 = 1. By Claim 5, n1 > 1, and by Claim 11,
n4 > 1. If n5 > 1, then n4 is odd by Claim 9, but then (f1, d1,n1

= d2,1 = d3,1, d3,2, d3,3, . . . , d3,n3
=

d4,1, d4,2, d4,3, . . . , d4,n4
= d5,1, f5, f6, . . . , f2n) is a noncontractible face ring (by Claims 4, 6 and 7)

of odd length, a contradiction. Therefore n5 = 1, and from Claim 10, n4 is even.

Claim 13. If ni = 1 then either ni+1 and ni+2 are even and ni+3 = 1, or ni+1 is an odd number at
least 3 and ni+2 = 1.

Proof of Claim. Without loss of generality assume that i = 1. If n2 is even then by Claim 12 we
know that n3 is even and n4 = 1. If n2 is odd then by Claim 10 n3 = 1.

Claim 14. We cannot have ni, ni+1, ni+2, ni+3 all greater than 1.

Proof of Claim. Without loss of generality assume that i = 1. Suppose that n1, n2, n3, n4 > 1.
By Claim 9, n2 and n3 are odd. By Claims 4, 6 and 7, (f1, d1,n1

= d2,1, d2,2, d2,3, . . . , d2,n2
=

d3,1, d3,2, d3,3, . . . , d3,n3
= d4,1, f4, f5, . . . , f2n) is a noncontractible face ring of odd length, a contra-

diction.

Suppose now that no ni is even. By Claim 14, some ni is equal to 1, say n1 = 1. Since
no ni is even, Claim 13 implies that n2, n4, n6, . . ., n4n are all odd numbers at least 3, while
n3 = n5 = . . . = n4n−1 = 1. In particular, n1 = n2n+1 = 1, which means that f1 is a 4-cycle face, a
contradiction.

Therefore, some ni is even, and by Claim 12 either ni−1 = 1 or ni+1 = 1. Without loss of
generality we may assume that n3 is even and n2 = 1. By Claim 5, n1 > 1, and by Claim 13, n4

is even and n5 = 1, so that, by Claim 5 again, n6 > 1. By Claims 4, 6 and 7, (f1, d1,n1
= d2,1 =

d3,1, d3,2, d3,3, . . . , d3,n3
= d4,1, d4,2, d4,3, . . . , d4,n4

= d5,1 = d6,1, f6, f7, . . . , f2n) is a noncontractible
face ring of odd length, a contradiction, if ρ ≥ 6.

Therefore, ρ = 4. To satisfy Claims 13 and 14, and since some ni is even, we must have the
following situation, or one rotationally equivalent to it: n2 = 1, n3 even, n4 even, n5 = 1, n6 even,
n7 even, n8 = 1, and n1 odd and at least 3.

By Lemma 5.1, (f1, d1,n1
= d2,1 = d3,1, f3, f4) is a noncontractible face ring. The union of the

closures of these faces is a closed Möbius strip with boundary cycle L′, which we may divide into 8
subpaths L′

i in the same way that L is divided into subpaths Li. We see that L4, L8 ⊆ L′ and we
may orient L′ and label its subpaths so that L′

4 = L4, L
′

8 = L8, and the orientation of L′ agrees
with that of L on these two subpaths. If n′

i is the length of L′

i we see that n′

1 = n1 − 1 is even, n′

2

is unknown, n′

3 = n3 − 1 is odd, n′

4 = n4 is even, n′

5 = n5 + 1 = 2, n′

6 = 1, n′

7 = n7 + 1 is odd, and
n′

8 = n8 = 1. By Claim 12, n′

3 = 1 so that n3 = 2. By symmetry, n7 = 2 also.
In the same way, (f4, d4,n4

= d5,1 = d6,1, f6, f7) is a noncontractible face ring, and we get a closed
Möbius strip whose boundary cycle is divided into 8 subpaths of lengths n′′

i , 1 ≤ i ≤ 8, where we
see that n′′

1 = 1, n′′

2 = n2 + 1 = 2, n′′

3 = n3 = 2, n′′

4 = n4 − 1 is odd, n′′

5 is unknown, n′′

6 = n6 − 1 is
odd, n′′

7 = n7 = 2, and n′′

8 = n8 + 1 = 2. By Claim 12, n′′

4 = n′′

6 = 1 so that n4 = n6 = 2.
Now all even numbers ni (n3, n4, n6, n7) have been shown to equal 2. By the same reasoning,

all even numbers n′

i must be 2. In particular, n′

1 = n1 − 1 = 2, so that n1 = 3.
Since n1 = 3 and n3 = n4 = n6 = n7 = 2 we may write L = (v1w1,1w1,2v2v3w3v4w4v5v6w6v7

w7v8). For each u ∈ {w1,1, w1,2, w3, w4, w6, w7}, let u′ denote the neighbor of u to which u is joined
by an edge that is not an edge of L. By Claim 3, no such u′ is a vertex of L.

If d3,2 does not touch d1,2 then (f4 = f8, d8,1 = d1,1, d1,2, d1,3 = d2,1 = d3,1, d3,2 = d4,1) is a
noncontractible face ring of length 5, which is odd, a contradiction. So d3,2 touches d1,2.

Write ∂d1,2 ∩ d3,2 = x2y2 where x2 precedes y2 in the clockwise order around ∂d3,2. By Claim
3, x2 and y2 are not vertices of L. If w′

1,2, w
′

3 and y2 are not all equal, then {w1,2w
′

1,2, w3w
′

3, x2y2}
is a nontrivial 3-edge-cut, a contradiction. Therefore, y2 = w′

1,2 = w′

3 is a vertex shared by d1,2,
d1,3 = d2,1 = d3,1, and d3,2. Similarly, there is a vertex y1 = w′

1,1 = w′

7 shared by d1,2, d1,1 = d8,1 =
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d7,2, and d7,1, with neighbor x1 6= w1,1, w7, where neither x1 nor y1 is on L. Since d1,2 is not a 3- or
4-cycle face, y1 6= y2 and y1y2 /∈ E(G), so that x1 6= y2 and x2 6= y1.

Since d5,1 is not a 4-cycle face, w4w6 /∈ E(G). Since the neighbors of y1 are x1, w7 and w1,1, y1 is
adjacent to neither w4 nor w6; similarly, y2 is adjacent to neither w4 nor w6. Thus, {y1, y2, w4, w6}
is an independent set and x1, x2, w

′

4, w
′

6 do not belong to this set.
Now there is a contractible simple closed curve intersecting the embedding at precisely four

points, one interior point of each of the four edges y1x1, y2x2, w4w
′

4, w6w
′

6, in that order. This
curve bounds an open disk ∆ containing x1, x2, w

′

4 and w′

6. Let H be the subgraph of G induced by
V (G)∩∆. Since G is cyclically-4-edge-connected,H is either a single edge, or is a 2-connected graph
embedded in a closed disk D′ bounded by a cycle C′ through distinct vertices x1, x2, w

′

4, w
′

6 in that
order (and possibly containing other vertices). If H is a single edge, then either x1 = x2, w

′

4 = w′

6,
x1w

′

4 ∈ E(G), and there is a noncontractible simple closed curve through f3, d3,2 and d7,1 that
intersects G at only 3 points; or x1 = w′

6, x2 = w′

4, x1w
′

4 ∈ E(G), and there is a noncontractible
simple closed curve through f1, d1,2 and d5,1 that intersects G at only 3 points. In either case
we have a contradiction, so H is 2-connected and we have D′ and C′ as described above. Let
B1 = x1C

′x2 = x2(∂d1,2)x1 and B3 = w′

4C
′w′

6 = w′

6(∂d5,1)w
′

4. Then for every B1B3-face chain
(B1, g1, g2, . . . , gl−1, B3) of length l through D′, (f1, d1,2, g1, g2, . . . , gl−1, f5,1) is a noncontractible
face ring, which must have even length, so that l is always even. Therefore, by Corollary 4.7 there
is a 4-cycle face contained in D′, a contradiction.

Since every possibility leads to a contradiction, our original assumption must be wrong, and Ψ
does have either a 4-cycle face or a noncontractible elementary face ring of odd length.

Now we prove the main result, which we restate.

Theorem 1.2. Every 2-connected projective-planar cubic graph has a closed 2-cell embedding in
some orientable surface.

Proof. Suppose G is a 2-connected cubic graph with a projective-planar embedding Ψ but with no
orientable closed 2-cell embedding and that, subject to these conditions, G has a minimum number
of vertices. By Corollary 4.3, G is simple, cyclically-4-edge-connected (hence 3-connected), and has
no 3- or 4-cycles.

If ρ(Ψ) ≤ 1 then G can be embedded in the plane [9, 14], and hence has a spherical closed 2-cell
embedding. Otherwise, by Theorem 5.2, since G has no 4-cycle, Ψ must have a noncontractible ele-
mentary face ring of odd length. Then by Theorem 3.4, G has an orientable closed 2-cell embedding,
as required.

We would like to strengthen Theorem 1.2 to say that we have a k-face-colorable orientable closed
2-cell embedding for some fixed small k. Then we could improve Corollary 1.3 to say that we have
an orientable k-cycle double cover (the cycles can be colored using at most k colors so that each
edge is contained in two cycles of different colors). However, this seems difficult. The obstacle is
our 4-cycle reduction: we see no obvious way to avoid increasing the number of face colors needed
when f1 6= g2 and f2 6= g1 in the proof of Lemma 4.2.
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