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Abstract

A theorem of Cohn and Lempel [J. Combin. Theory Ser. A 13 (1972),
83-89] gives an equality relating the number of circuits in a directed cir-
cuit partition of a 2-in, 2-out digraph to the GF (2)-nullity of an associated
matrix. This equality is essentially equivalent to the relationship between
directed circuit partitions of 2-in, 2-out digraphs and vertex-nullity in-
terlace polynomials of interlace graphs. We present an extension of the
Cohn-Lempel equality that describes arbitrary circuit partitions in (undi-
rected) 4-regular graphs. The extended equality incorporates topological
results that have been of use in knot theory, and it implies that if H is
obtained from an interlace graph by attaching loops at some vertices then
the vertex-nullity interlace polynomial qN (H) is essentially the generating
function for certain circuit partitions of an associated 4-regular graph.
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1 Introduction

Cohn and Lempel [9] gave a simple formula relating the number of orbits in
a finite set under a certain kind of permutation to the nullity of an associated
binary matrix. Let σ be the cyclic permutation σ = (1...m) of the set {1, ...,m},
let σ1, ..., σk be pairwise disjoint transpositions of elements of {1, ...,m}, and let
π = σσ1...σk. Let Iπ be the symmetric k×k matrix over GF (2) with (Iπ)ij = 1
if and only if σi = (ab) and σj = (cd) with either a < c < b < d or c < a < d < b.

Theorem 1 (Cohn-Lempel equality) The number of orbits in {1, ...,m} under
π = σσ1...σk is 1 + ν(Iπ), where ν(Iπ) is the GF (2)-nullity of Iπ.

The Cohn-Lempel equality was reproven by Moran [21] and Stahl [24]. It
was extended to non-disjoint transpositions σ1, ..., σk by Beck and Moran [5, 6],
who also pointed out that an equivalent equality was obtained much earlier by
Brahana [8]. Other related results have been presented by Macris and Pulé [19],
Lauri [18] and Jonsson [14].

1

http://arxiv.org/abs/0903.4405v2


Suppose D is a connected 2-in, 2-out digraph with V (D) = {v1, ..., vn} and
E(D) = {e1, ..., em}; D may have loops or multiple edges. A directed trail in
D is described by a sequence vj1ej1vj2ej2 ...vjcejcvjc+1

of vertices and pairwise
distinct edges such that each ejk is directed from vjk to vjk+1

; a trail may also
be described by its sequence of edges. If vjc+1

= vj1 the trail is a circuit ; the
same circuit is described if the sequence is permuted cyclically, with the natural
notation changes at the ends. D must have a directed Euler circuit, i.e., a
directed circuit that includes every edge. We presume the edges are indexed so
that e1...em is an Euler circuit, which we denote C. A partition P of E(G) into
directed circuits is associated to a permutation πP of {1, ...,m}, with iπP = j

if ei is followed immediately by ej in one of the directed circuits of P . The
elements of P correspond to the orbits in {1, ...,m} under πP . P may also be
specified by giving the subset SP ⊆ V (D) consisting of the vertices at which
the incident circuit(s) of P do not follow the same edge-to-edge transitions as
C [16]. If the edges directed into such a vertex v are ea−1 and eb−1, and those
directed outward are ea and eb, then saying that the incident circuit(s) of P
do not follow the same transitions as C means that C is ea−1ea...eb−1eb... and
the incident circuit(s) of P are ea−1eb... and ...eb−1ea. (Obvious changes in
indexing may be required if any of these edges is a loop or if 1 ∈ {a, b}.) The
permutation πP is then of the form σσ1...σk, with a transposition σi associated
to each v ∈ SP ; if ea and eb are the edges directed outward from v then σi is
(ab).

Following [22], let I(D,C) be the interlace matrix of D with respect to C:
the n× n matrix over GF (2) whose ij entry is 1 if and only if i 6= j and vi and
vj are interlaced in C, i.e., when we follow C starting at vi we encounter vj ,
then vi, then vj again before finally returning to vi. If P is a directed circuit
partition of D then IπP

is simply the submatrix of I(D,C) that involves the
rows and columns corresponding to elements of SP .

Corollary 2 Let D be a connected 2-in, 2-out digraph, and let P(D) be the
set of partitions of E(D) into directed circuits. Let I(D,C) be the interlace
matrix corresponding to an Euler circuit C of D, and for each subset S ⊆ V (D)
let IS(D,C) be the submatrix of I(D,C) that involves the rows and columns
corresponding to elements of S. Then

∑

P∈P(D)

(y − 1)|P |−1 =
∑

S⊆V (D)

(y − 1)ν(IS(D,C)).

Proof. P ↔ SP defines a one-to-one correspondence between elements of
P(D) and subsets of V (D), and the Cohn-Lempel equality tells us that for each
P ∈ P(D), |P | = ν(IπP

) + 1 = ν(ISP
(D,C)) + 1.

Arratia, Bollobás, and Sorkin introduced the interlace polynomials of looped,
undirected graphs in [2, 3, 4]. These invariants were first defined recursively,
but soon it was shown that they are also given by formulas involving matrix
nullities [1, 4]. Given an undirected graph G with V (G) = {v1, ..., vn}, let A(G)
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be the n × n matrix with entries in GF (2) given by aii = 1 if and only if vi
is looped, and for i 6= j, aij = 1 if and only if vi and vj are adjacent. For
S ⊆ V (G) let A(G)S denote the submatrix of A(G) consisting of the rows and
columns corresponding to elements of S; equivalently A(G)S = A(G[S]), where
G[S] denotes the subgraph of G induced by S .

Definition 3 The vertex-nullity interlace polynomial of G is

qN (G) =
∑

S⊆V (G)

(y − 1)ν(A(G)S)

and the (two-variable) interlace polynomial of G is

q(G) =
∑

S⊆V (G)

(x − 1)|S|−ν(A(G)S)(y − 1)ν(A(G)S).

Definition 3 may be applied to graphs with parallel edges or parallel loops,
but parallels do not affect A(G) or the interlace polynomials.

Suppose D is a connected 2-in, 2-out digraph with an Euler circuit C, and
H is the interlace graph of D with respect to C, i.e., the undirected graph with
V (H) = V (D) and A(H) = I(D,C). Theorem 24 of [3] states that qN (H)
is essentially the same as the generating function for partitions of E(D) into
directed circuits. The proof given there involves the recursive definition of qN ,
but once it is recognized that qN can also be given by Definition 3, it becomes
clear that the relationship between qN (H) and directed circuit partitions of D
is equivalent to Corollary 2 above.

The Kauffman bracket polynomial of a knot or link diagram (and other
link invariants too) can be given by a sum whose terms are obtained by count-
ing circuits in circuit partitions. As Arratia, Bollobás, and Sorkin observed
in [3], this leads directly to a relationship between the Kauffman bracket and
the vertex-nullity interlace polynomial. The fact that the Kauffman bracket
can be described by formulas involving GF (2)-nullity has also been noted by
knot theorists; Soboleva [23] seems to have been the first to explicitly cite the
Cohn-Lempel equality. Some of the formulas used by knot theorists resemble
the Cohn-Lempel equality or Corollary 2 without being quite the same. For
instance, Zulli [27] counted circuits using a formula that involves the GF (2)-
nullities of matrices that may have nonzero entries on the diagonal, and are all
n× n. More recently, Lando [17] and Mellor [20] used a formula that includes
both the Cohn-Lempel equality and Zulli’s formula. As is natural in the litera-
ture of knot theory, the discussions in these references are essentially topological
– the arguments of Lando and Zulli involve the homology of surfaces, and Mellor
and Soboleva are concerned with weight systems for link invariants – and they
focus (implicitly or explicitly) on connected, planar digraphs.

In this note we present a combinatorial proof of an extended version of the
Cohn-Lempel equality that applies to arbitrary circuit partitions in arbitrary
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4-regular graphs. This extended Cohn-Lempel equality does not require that
the 4-regular graph in question be connected, directed or planar, and it includes
the various formulas just mentioned. The greater generality of the extended
Cohn-Lempel equality is not only pleasing but also useful: it is a crucial part
of an interlacement-based analysis of Kauffman’s bracket for virtual links [15]
developed by Zulli and the present author [25, 26], and as we see below it
allows us to extend the relationship between circuit partitions and interlace
polynomials to include interlace graphs that have had some loops attached.

Before stating the extended Cohn-Lempel equality we take a moment to
establish notation and terminology. Suppose G is an undirected 4-regular graph.
If G is connected it must have an Euler circuit C. Choose one of the two
orientations of C, let D be the 2-in, 2-out digraph obtained from G by directing
all edges according to that orientation, and let I(D,C) be the interlace matrix of
D with respect to C. If G is not connected then let C be a set of Euler circuits,
one in each of the c(G) connected components of G, and let D be a 2-in, 2-out
digraph resulting from one of the 2c(G) possible choices of orientations for the
circuits in C. The interlace matrix I(D,C) then consists of c(G) diagonal blocks
corresponding to the interlace matrices of the components of G with respect to
the circuits of C; the entries outside these diagonal blocks are all 0.

Let P be a partition of E(G) into undirected circuits. Suppose vi ∈ V (G),
and consider an edge e that is directed toward vi in D. Some circuit of P must
contain e. If we follow this circuit through vi after traversing e, then there are
three ways we might leave vi: along the edge C uses to leave vi after arriving
along e, along the other edge directed away from vi in D, or along the remaining
edge directed toward vi in D. We say P follows C through vi in the first case,
P is orientation-consistent at vi but does not follow C in the second case, and
P is orientation-inconsistent at vi in the third case. Changing the choice of
e or the orientations of the circuit(s) in C does not affect the descriptions of
the three cases. (N.B. In order to provide well-defined descriptions of the three
possibilities at looped vertices we should actually refer to half-edges ; we leave
this sharpening of terminology to the reader.) A matrix IP = IP (D,C) is
obtained from I(D,C) as follows. If P follows C through vi then the row and
column of I(D,C) corresponding to vi are removed; if P is orientation-consistent
at vi but does not follow C then the row and column of I(D,C) corresponding
to vi are retained without change; and if P is orientation-inconsistent at vi
then the row and column of I(D,C) corresponding to vi are retained with one
change: their common diagonal entry is changed from 0 to 1.

Theorem 4 (Extended Cohn-Lempel equality) If G is an undirected, 4-regular
graph with c(G) components and P is a partition of E(G) into undirected circuits
then

|P | = ν(IP ) + c(G).

As an example of the extended Cohn-Lempel equality consider the complete
graph K5, with vertices denoted 1, 2, 3, 4 and 5. Let D be the directed version
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of K5 with edge-directions given by the Euler circuit C = 1234513524. If P
follows C at vertex 1, is orientation-inconsistent at vertices 2 and 3, and is
orientation-consistent but does not follow C at vertices 4 and 5 then

ν(IP (D,C)) = ν









1 0 1 0
0 1 1 1
1 1 0 0
0 1 0 0









= 0,

so |P | = 1. The one circuit in P is the Euler circuit 1254231534. The partition
P ′ that disagrees with P only by following C at 3 corresponds to the matrix
IP ′(D,C) obtained by removing the second row and column of IP (D,C), so
ν(IP ′ (D,C)) = 1. P ′ contains the circuits 1254234 and 135.

The extended Cohn-Lempel equality implies that the relationship between
interlace polynomials and directed circuit partitions extends to looped interlace
graphs.

Corollary 5 Suppose C, D and G are as in Theorem 4, and H is obtained from
the interlace graph of D with respect to C by attaching loops at some vertices.
Then

qN (H) =
∑

S⊆V (H)

(y − 1)|PS |−c(G),

where PS is the undirected circuit partition that follows C at each vertex v 6∈
S, is orientation-inconsistent at each looped vertex v ∈ S, and is orientation-
consistent but does not follow C at each unlooped vertex v ∈ S. Also, the
two-variable interlace polynomial of H is

q(H) =
∑

S⊆V (H)

(x− 1)|S|−|PS |+c(G)(y − 1)|PS |−c(G).

In the balance of the paper we prove Theorem 4, derive an analogue of Corol-
lary 5 for the multivariate interlace polynomial of Courcelle [10], and comment
briefly on related results of Beck and Moran [5, 6], Macris and Pulé [19], Lauri
[18] and Jonsson [14]. Before proceeding we should express our gratitude to D.
P. Ilyutko and L. Zulli, whose discussions of [12] and [27] inspired this note. We
are also grateful to Lafayette College for its support.

2 Proof of the extended Cohn-Lempel equality

The equality is proven under the assumption that G is connected; the general
case follows as the contributions from different connected components are simply
added together.

We begin with a special case: every entry of IP is 0. This case falls under
the original Cohn-Lempel equality but we provide an argument anyway, for the
sake of completeness. If IP is the empty matrix, then P = {C} and the equality
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is satisfied. If IP is the 1× 1 matrix (0) and the one entry corresponds to a, let
aC1a and aC2a be circuits with C = aC1aC2a; then P consists of two separate
circuits aC1a and aC2a, so the equality is satisfied. Proceeding by induction on
the size of IP = 0, let SP be the set of vertices at which P does not follow C.
Choose a ∈ SP so that C = aC1aC2a with C1 as short as possible. Then no
element of SP appears on C1, for a vertex that appears only once is interlaced
with a (violating IP = 0) and a vertex b that appears twice has C = bC′

1bC
′
2b

with C′
1 shorter than C1 (violating the choice of a). LetQ be the circuit partition

that disagrees with P only by following C at a. Then IQ is smaller than IP , so
the inductive hypothesis tells us that |Q| = ν(IQ)+1 = ν(IP ). As C = aC1aC2a

and both P and Q follow C at every vertex of C1, it is clear that a appears on
two circuits of P (aC1a and another), these two circuits are united in Q, and
the other elements of P and Q coincide. Hence |P | = |Q|+ 1 = ν(IP ) + 1.

If IP is the 1 × 1 matrix (1) with a single entry corresponding to a, and
C = aC1aC2a, then the equality is satisfied because P contains only the Euler
circuit aC1aC̄2a. Here C̄2 is the reverse of C2 and the Euler circuit aC1aC̄2a is
the κ-transform of C at a, denoted C ∗ a [7, 16].

The argument proceeds by induction on the size of IP 6= 0. Suppose P

is orientation-inconsistent with C at a vertex a, and let C = aC1aC2a. Then
C ∗ a = aC1aC̄2a is also an Euler circuit of G, and P follows C ∗ a through a.
If v 6= a is a vertex that appears on both C1 and C2 then either P follows both
C and C ∗ a through v, or else P is orientation-inconsistent with respect to one
of C,C ∗ a at v and orientation-consistent with the other of C,C ∗ a without
following it through v. If v 6= a is a vertex that appears on only one of C1, C2

then P has the same status with respect to C and C ∗ a at v. If a 6∈ {v, w} and
v and w both appear on C1 and C2, then the interlacement of v and w with
respect to C ∗a is the opposite of their interlacement with respect to C. On the
other hand, if a 6∈ {v, w} and either v or w doesn’t appear on both C1 and C2

then their interlacement with respect to C ∗a is the same as their interlacement
with respect to C. In sum, if D ∗ a denotes the digraph on G consistent with
C ∗ a then

IP (D,C) =





1 1 0

1 M11 M12

0 M21 M22



 and IP (D∗a, C∗a) =

(

M̄11 M12

M21 M22

)

for appropriate submatrices Mij ; here M̄11 differs from M11 in every entry.
Adding the first row of IP (D,C) to each row involved in M11 and M12, we see
that IP (D ∗ a, C ∗ a) and IP (D,C) have the same nullity. As IP (D ∗ a, C ∗ a)
is smaller than IP (D,C), induction tells us that |P | = ν(IP (D,C)) + 1.

Suppose now that there is no vertex at which P is orientation-inconsistent;
this case too falls under the original Cohn-Lempel equality. As the equality
has already been verified in the case IP = 0, we presume that there are two
interlaced vertices a and b such that P follows C neither at a nor at b. Let
C = aC1bC2aC3bC4a, and C ∗ a ∗ b ∗ a = aC1bC4aC3bC2a; then P follows

6



C ∗ a ∗ b ∗ a through both a and b. A case-by-case analysis shows that

IP (D,C) =

















0 1 1 1 0 0

1 0 1 0 1 0

1 1 M11 M12 M13 M14

1 0 M21 M22 M23 M24

0 1 M31 M32 M33 M34

0 0 M41 M42 M43 M44

















and IP (D,C ∗ a ∗ b ∗ a) =









M11 M̄12 M̄13 M14

M̄21 M22 M̄23 M24

M̄31 M̄32 M33 M34

M41 M42 M43 M44









for appropriate submatrices. For instance, suppose vi appears in C2 and C3

and vj appears in C2 and C4; then vi is interlaced with vj with respect to
C if and only if vi precedes vj in C2, whereas vi is interlaced with vj with
respect to C ∗ a ∗ b ∗ a if and only if vi follows vj in C2. Consequently the
entry of IP (D,C) corresponding to vi and vj , which falls in M13 and M31, is
the opposite of the corresponding entry of IP (D,C ∗a∗ b∗a). Using elementary
row operations we see that IP (D,C ∗ a ∗ b ∗ a) and IP (D,C) have the same
nullity; as IP (D,C ∗ a ∗ b ∗ a) is smaller the inductive hypothesis tells us that
|P | = ν(IP (D,C)) + 1.

Readers familiar with [1, 4] will recognize the matrix reductions in the argu-
ment. The same reductions are used to deduce the recursive properties of the
interlace polynomials from their matrix formulas.

3 The multivariate interlace polynomial

Courcelle [10] introduced a multivariate interlace polynomial of a looped graph
H , given by

C(H) =
∑

A,B⊆V (H)
A∩B=∅

(

∏

a∈A

xa

)(

∏

b∈B

yb

)

u|A∪B|−ν((H∇B)[A∪B])vν((H∇B)[A∪B])

whereH∇B denotes the graph obtained fromH by toggling loops at the vertices
in B and u, v, and the various xa and yb are independent indeterminates. The
contribution of each A,B pair to C(H) is distinguished by the corresponding
indeterminates. Consequently if D is a 2-in, 2-out digraph and H is a looped
version of the interlace graph of D with respect to a set C of directed Euler
circuits for the components of D, then the extended Cohn-Lempel equality tells
us that C(H) is essentially the same as the list of all partitions of E(D) into
undirected circuits, with each partition listed along with its cardinality. That
is, C(H) is essentially the transition polynomial studied by Jaeger [13] and
Ellis-Monaghan and Sarmiento [11].
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Corollary 6 Suppose D is a 2-in, 2-out digraph, C contains a directed Euler
circuit for each component of D, and H is obtained from the interlace graph of
D with respect to C by attaching loops at some vertices. Then the multivariate
interlace polynomial of H is

C(H) =
∑

A,B⊆V (H)
A∩B=∅

(

∏

a∈A

xau

)(

∏

b∈B

ybu

)

(
v

u
)|PA,B |−c(D)

where PA,B is the undirected circuit partition that follows C at vertices not in
A ∪B, is orientation-inconsistent at looped vertices in A and unlooped vertices
in B, and is orientation-consistent but does not follow C at unlooped vertices in
A and looped vertices in B.

Proof. Reformulating the definition,

C(H) =
∑

A,B⊆V (H)
A∩B=∅

(

∏

a∈A

xau

)(

∏

b∈B

ybu

)

(
v

u
)ν((H∇B)[A∪B]).

4 Two remarks

1. The original form of the Cohn-Lempel equality is not completely general.
For instance, if n ≥ 3 then the identity permutation is not σσ1...σk for any
disjoint transpositions σ1, ..., σk. Beck and Moran [5, 6] extended the Cohn-
Lempel equality to arbitrary permutations by removing the requirement that
the σi be disjoint. Theorem 4 may also be applied to arbitrary permutations.
If π is a permutation of {1, ..., 2n} choose any partition of {1, ..., 2n} into pairs,
and construct the directed graph D whose n vertices correspond to these pairs
and whose 2n edges correspond to 1, ..., 2n, with the edge corresponding to i

directed from the vertex corresponding to the pair containing i to the vertex
corresponding to the pair containing iπ. If π′ is a permutation of {1, ..., 2n−1},
first replace it with the permutation π of {1, ..., 2n} that has iπ = iπ′ for i <

2n− 1, (2n− 1)π = 2n, and (2n)π = (2n− 1)π′; then construct D as before.

2. Macris and Pulé [19], Lauri [18] and Jonsson [14] introduced skew-
symmetric integer matrices that reduce (mod 2) to Iπ and whose nullity over
the rationals is ν(Iπ). In general, however, there is no skew-symmetric version
of IP (D,C) whose Q-nullity can be used in Theorem 4. For example, consider
the directed graph D with vertices denoted 1, 2, 3 (mod 3) in which there are
two edges directed from vertex i to vertex i + 1 for each i. E(D) has a parti-
tion P containing three undirected circuits; each element of P consists of two
parallel edges. IP (D,C) is the 3 × 3 binary matrix with every entry 1, and
ν(IP (D,C)) = 2 in accordance with the extended Cohn-Lempel equality. How-
ever a skew-symmetric 3× 3 matrix of Q-nullity 2 must have at least five of its
nine entries equal to 0.
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5 Dedication

T. H. Brylawski’s work has influenced a generation of researchers studying ma-
troids and the Tutte polynomial. My training in knot theory was focused on
algebraic topology rather than combinatorics, so I particularly appreciated the
clarity and thoroughness of his expository writing. No less important was his
professional hospitality, which made me feel welcome in a new field. This note
is gratefully dedicated to his memory.
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