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Abstract

Let Gi be the (unique) 3-graph with 4 vertices and i edges. Razborov [On 3-

Hypergraphs with Forbidden 4-Vertex Configurations, SIAM J. Discr. Math. 24

(2010), 946–963] determined asymptotically the minimum size of a 3-graph on

n vertices having neither G0 nor G3 as an induced subgraph. Here we obtain

the corresponding stability result, determine the extremal function exactly, and

describe all extremal hypergraphs for n ≥ n0. It follows that any sequence of almost

extremal hypergraphs converges, which answers in the affirmative a question posed

by Razborov.

1 Introduction

For a set X and an integer k, let
(
X
k

)
= {Y ⊆ X : |Y | = k}. A k-graph G with vertex set

V is a subset of
(
V
k

)
, i.e., it is a collection of k-element subsets of V . Elements of V and

G are called vertices and edges respectively. We will also call G a hypergraph.

Let G be a family of k-graphs. A k-graph F is G-free if it contains no member of

G as an induced subgraph. Let t(n,G) be the minimum size of a G-free k-graph on n

vertices. This function is related to the Turán problem; we refer the reader to surveys by

Füredi [Für91], Sidorenko [Sid95], and Keevash [Kee11].
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If G = {G} consist of one k-graph G, we may abbreviate t(n, {G}) to t(n,G), etc.

For 0 ≤ i ≤ 4, let Gi be the (unique) 3-graph with 4 vertices and i edges.

One of the most famous open questions in extremal combinatorics is to determine

t(n,G0). It goes back to the fundamental paper by Turán [Tur41] who conjectured that

t(n,G0) = tn, (1)

where tn is defined as follows.

For pairwise disjoint sets V0, V1, and V2, the Turán pattern TV0,V1,V2 is the 3-graph on

V = V0 ∪ V1 ∪ V2 whose edges are triples {x, y, z} with x, y ∈ Vi and z ∈ Vi ∪ Vi+1 for

some i ∈ Z3. (Here Zm denotes the additive group of residues modulo m.) Let tv0,v1,v2
be the number of edges in TV0,V1,V2 where |Vi| = vi. The Turán 3-graph Tn is the (unique

up to isomorphism) Turán pattern TV0,V1,V2 with v0 + v1 + v2 = n and |vi − vj| ≤ 1 for

all i, j ∈ Z3. It is not hard to show (see Lemma 4) that among all Turán patterns on n

vertices, the Turán 3-graph Tn has the smallest size. Let

tn = |Tn|.

We have tn = (4
9

+ o(1))
(
n
3

)
as n → ∞. Also, any Turán pattern is G0-free; thus

t(n,G0) ≤ tn. The problem of obtaining a matching lower bound (even within a (1+o(1))-

factor) seems to be extremely difficult. Successively better lower bounds on t(n,G0) were

proved by de Caen [dC94], Giraud (unpublished, see [CL99]), and Chung and Lu [CL99].

Razborov [Raz07, Raz10a] presented a general framework for working with extremal prob-

lems of this kind. His solution of a certain semidefinite program with over 900 variables

suggests that t(n,G0) ≥ 0.43833
(
n
3

)
for all sufficiently large n, see also Baber and Tal-

bot [BT10]. One of many difficulties here is that, if Turán’s conjecture (1) is correct, then

there are many non-isomorphic extremal 3-graphs, see Brown [Bro83], Kostochka [Kos82],

and Fon-Der-Flaass [FDF88]. Also, we refer the reader to Razborov [Raz10b] for some

related results.

Note that Tn is also G3-free; thus t(n, {G0, G3}) ≤ tn. Applying his technique

Razborov [Raz10a] proved the matching asymptotic lower bound. Thus

t(n, {G0, G3}) =

(
4

9
+ o(1)

)(
n

3

)
. (2)

This result is interesting because there are very few non-trivial hypergraphs or hyper-

graph families for which the asymptotic of its Turán function is known. Also, it gives us a

better understanding of the original conjecture of Turán. For example, if the conjecture is

false, then any G0-free 3-graph G on n vertices beating tn has to contain an induced copy

of G3. (In fact, if |G| ≤ (1 − Ω(1)) tn as n → ∞, then G contains Ω(n4) G3-subgraphs

by the super-saturation technique of Erdős and Simonovits [ES83]).

Here, we prove for all n ≥ n0 that t(n, {G0, G3}) = tn and the Turán hypergraph Tn
is the unique extremal 3-graph:
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Theorem 1 (Exact Result) There is n0 such that every {G0, G3}-free 3-graph F on

n ≥ n0 vertices has at least tn edges with equality if and only if F ∼= Tn.

In particular, t(n, {G0, G3}) = tn for n ≥ n0.

Theorem 1 is also interesting in the context of the rapidly developing theory of graph

and hypergraph limits, see e.g. [LS06, BCL+08, ES08]. Although Razborov’s proof of (2)

is stated without any appeal to hypergraph limits, the flag algebras introduced by him

provide a convenient and powerful language for manipulating limit objects. Also, any

relations proved with the help of flag algebras or (hyper)graph limits hold only asymp-

totically as the order of the underlying (hyper)graph tends to infinity. So, at the first

sight, this technique can give asymptotic results only. However, the proof of Theorem 1

gives an example of how a solution of the “limiting” case may lead to an exact result

for all sufficiently large n. The key ingredient here is the stability property which states,

roughly speaking, that all almost extremal hypergraphs have essentially the same unique

structure. Here is the precise formulation for the {G0, G3}-problem:

Theorem 2 (Stability Property) For every ε > 0 there is c > 0 such that the follow-

ing holds. Let G be a {G0, G3}-free 3-graph on n > 1/c vertices with at most tn + cn3

edges. Then we can make G isomorphic to Tn by changing at most εn3 triples.

Stability greatly helps in proving exact results (with one example being Theorem 1).

This approach was pioneered by Simonovits [Sim68] in the late 1960s and has led to exact

solutions of numerous extremal problems since then. In recent years it has been actively

used to prove exact results for the hypergraph Turán problem, see e.g. [KM04, FS05,

KS05a, KS05b, MP07, FMP08, Pik08].

As an extra bonus, Theorem 2 also implies the following result, which answers in the

affirmative a question posed by Razborov [Raz10a, Section 5]. For F ⊆
(
V
k

)
and H ⊆

(
U
k

)
let ind(H,F ) denote the induced density of H in F , that is, the probability that a random

injection U → V preserves all edges and non-edges of H.

Theorem 3 (Convergence) Let ni → ∞. Let Fi ⊆
(
[ni]
3

)
be a {G0, G3}-free 3-graph

with |Fi| = (4
9

+ o(1))
(
ni

3

)
as i → ∞. Then, for every fixed 3-graph H, the limit

limi→∞ ind(H,Fi) exists (and is equal to limm→∞ ind(H,Tm)).

Proof. By Theorem 2 we can change o(n3
i ) edges in Fi and transform it into Tni

. Relabel

the vertices of Fi so that V (Fi) = V (Tni
) and the symmetric difference Fi4Tni

has o(n3)

triples, where V (F ) denotes the vertex set of a hypergraph F .

For every fixed 3-graph H we have |ind(H,Fi) − ind(H,Tni
)| = o(1) because the

probability that a random injection V (H) → V (Fi) hits one of the triples where Fi
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and Tni
differ is o(1). Also, ind(H,Tm) tends to an (explicitly computable) limit λH as

m→∞. Thus ind(H,Fi)→ λH , as required.

Remark. A simple application of the Principle of Inclusion-Exclusion shows that the

conclusion of Theorem 3 is equivalent to the statement that the sequence (Fi) of 3-graphs

converges, as defined by Elek and Szegedy [ES08, Definition 2.5].

2 Some Notation

We denote [n] = {1, . . . , n}. For brevity, we often omit punctuation signs when writing

sets; for example, abc is a shorthand for {a, b, c}.

Let G ⊆
(
V
k

)
be a k-graph on V . For A ⊆ V , G[A] = {D ∈ G : D ⊆ A} denotes the

subgraph of G induced by A. For disjoint subsets V1, . . . , Vk ⊆ V , let

G[V1, . . . , Vk] = {D ∈ G : ∀ i ∈ [k] |D ∩ Vk| = 1}

denote the k-partite subgraph of G induced by the sets Vi. For A ⊆ V with a ≤ k − 1

elements, the link (k − a)-graph of A is

GA = {D : D ⊆ V \ A, D ∪ A ∈ G}.

When a = k− 1, we view GA as a set of vertices rather than a set of 1-element sets. The

maximum degree of G is ∆(G) = max{|Gx| : x ∈ V }.

Let G and H be two k-graphs with the same number of vertices. They are isomorphic

(written as G ∼= H) if there is a bijection f : V (G) → V (H) such A ∈ G if and only if

f(A) ∈ H for every A ∈
(
V (G)
k

)
. The edit distance δ1(G,H) is the minimum of |σ(G)4H|

over all bijections σ : V (G)→ V (H). In other words, δ1(G,H) is the smallest number of

k-tuples whose inclusion into G one has to change in order to make G isomorphic to H.

3 Auxiliary Results

Here we list a few lemmas needed later. Their proofs are fairly straightforward and are

included here for the sake of completeness.

Lemma 4 Let n ≥ 3. For every Turán pattern TX,Y,Z on [n] we have |TX,Y,Z | ≥ tn and,

if we have equality, then TX,Y,Z ∼= Tn.

Proof. Let x, y, z be the cardinalities of X, Y, Z respectively. The claim is trivial for

n = 3, so let us assume that n ≥ 4.
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It is enough to show that no two of x, y, z differ by more than by 1. Suppose on

the contrary that this is false. We will give an example of a triple strictly better than

(x, y, z), thus proving the lemma. Up to a symmetry, there are two cases.

Case 1 x ≥ y ≥ z and x ≥ z + 2.

Routine simplifications show that

∂ := tx,y,z − tx−1,y,z+1 =
x2

2
+ xy − xz − y2

2
− 3x

2
− y

2
+ z + 1.

It is enough to show that this expression is strictly positive. This a linear function of

z with the coefficient 1 − x < 0, so it suffices to show that ∂ > 0 under the additional

assumption that z = min(x− 2, y).

If z = x− 2, then y can be one of x, x− 1, and x− 2 and ∂ is x− 1, x− 1, and x− 2

respectively. Since n ≥ 4, we have x ≥ 2. Also, if x = 2, then z = 0, n = 4, and y = 2.

In all cases, ∂ is strictly positive, as desired.

If z = y, then ∂ = x2

2
− 3x

2
− y2

2
+ y

2
+ 1, which is an increasing function of x ≥ 2. So

it follows from the case x = z + 2 which we have just done.

Case 2 x ≥ z ≥ y and x ≥ y + 2.

Routine simplifications show that

∂ := tx,y,z − tx−1,y+1,z = −y
2

2
+ xy − yz +

z2

2
− y

2
− z

2
.

This is a non-decreasing function of x, so it is enough to consider the case x = max(y +

2, z). If y = x − 2, then z is one of x, x − 1, x − 2 with ∂ being x − 1, x − 2 and

x − 2 respectively. The assumption n ≥ 4 implies that ∂ > 0 in each case. If z = x,

then ∂ = x2

2
− x

2
− y2

2
− y

2
, which is increasing in x ≥ 2, so it enough to assume that

x = z = y + 2; we have ∂ = x− 1 > 0 in this case.

Lemma 5 For every ε > 0 there is c > 0 such that for every n > 1/c and for every

non-negative integers v0, v1, v2 with v0 + v1 + v2 = n and tv0,v1,v2 ≤ (4
9

+ c)
(
n
3

)
we have

|vi − n/3| ≤ εn for every i ∈ Z3.

Proof. Since we are not interested in an explicit dependence of c on ε, we present a

“non-constructive” but short proof. Suppose that the lemma is false, that is, there is

ε > 0 such that for every integer m we have a counterexample (v0, v1, v2) for c = 1/m.

By choosing a subsequence of m, we can assume that vi/n converges for each i ∈ Z3; let

xi be the limit of vi/n. By Lemma 4, we have tv0,v1,v2 = (4
9

+ c)
(
n
3

)
. Thus

P (x0, x1, x2) =
x30 + x31 + x32

6
+
x20x1 + x21x2 + x22x0

2
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assumes value 4
9
× 1

3!
= 2

27
.

Let us minimize P (x, y, z) over non-negative reals x, y, z with x + y + z = 1. If, for

example, x ≥ y ≥ z with x > z, then the following difference of partial derivatives

∂

∂z
P (x, y, z)− ∂

∂x
P (x, y, z) = (y − x)

x+ y

2
+ (z − y)x

is strictly negative (because at least one of y − x ≤ 0 and z − y ≤ 0 is strictly negative

while x ≥ 1
3
). Thus P (x − δ, y, z + δ) < P (x, y, z) for all small δ > 0. Likewise, if

x ≥ z ≥ y with x > y, then

∂

∂y
P (x, y, z)− ∂

∂x
P (x, y, z) = (z − x)y + (y − z)

y + z

2
≤ 0.

Moreover, if we have equality here, then y = z = 0, x = 1 and P assumes value 1
6
>

P (1
3
, 1
3
, 1
3
) = 2

27
. In any case, P (x, y, z) is not minimum. This implies that the only

extremal point is (1
3
, 1
3
, 1
3
) and the minimum value of P is 2

27
.

It follows that x0 = x1 = x2 = 1
3
, which contradicts the fact some two of the ratios

v0/n, v1/n, and v2/n differ by at least ε for every m.

4 Stability for the {G0, G3}-Problem

In this section we will prove Theorem 2. Suppose on the contrary that it is false. Thus

there is ε > 0 and a sequence (Fi) with |Fi| ≤ (4
9

+ o(1))
(
ni

3

)
as i → ∞, where Fi is a

{G0, G3}-free 3-graph on ni > i vertices that is εn2
i -far in the edit distance from Tni

.

Fix any such sequence (Fi). We will split the whole proof resulting in a final contra-

diction into a sequence of claims.

Let us call a 3-graph H singular if H is {G0, G3}-free but for every n the Turán

graph Tn does not contain H as an induced subgraph. Clearly, it is enough to check this

inclusion for n = 3 |V (H)| only. There are exactly 26 non-isomorphic singular 3-graphs

on 6 vertices, denoted by H9, . . . , H34 in [Raz10a].

Claim 1 For every singular 3-graph H on 6 vertices we have ind(H,Fi)→ 0 as i→∞.

Proof of Claim. Although this claim is stated in [Raz10a, Section 5], let us sketch its

proof very briefly. Let n → ∞ and let F be an arbitrary {G0, G3}-free 3-graph on n

vertices. Let ρ = |F |/
(
n
3

)
be the edge density of F . Razborov [Raz10a, Section 3] derives

the following identity:

5

9
(ρ− 4/9) = [[(e− 4/9)2]]1 + [[Q1(f1, . . . , f4)]]τ1 + [[Q2(g0, . . . , g5)]]τ2 +R + o(1). (3)

Rather than formally defining all terms appearing here, we state only those properties

that we need in order to prove Claim 1, referring the reader to [Raz10a] for all details.
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• Each term involving the brackets [[. . .]] is non-negative by Inequality (6) in [Raz10a].

• The last term, which we denoted by R, is of the form
∑

H αH ind(H,F ), where the

following applies.

– The sum runs over {G0, G3}-free 3-graphs H with 6 vertices.

– αH are explicit non-negative reals that are listed in Table 3 in [Raz10a].

– αH ≥ 1/360 for every singular H.

It follows that if |F | ≤ (4
9

+ ε)
(
n
3

)
, then ind(H,F ) ≤ 360× 5ε

9
+ o(1) for every singular

6-vertex hypergraph H. The claim follows.

Now, we can apply the Strong Hypergraph Removal Lemma of Rödl and Schacht

[RS09] to each 3-graph Fi with respect to induced singular subgraphs H9, . . . , H34. The

lemma shows that we can change o(n3
i ) edges in Fi as i→∞ and ensure that it contains

no induced singular subgraph on 6 vertices. Hence, by making ε slightly smaller, it is

enough to derive a contradiction under the additional assumption that Fi has no induced

singular subgraph on 6 vertices.

Fix large i, and let n = ni, F = Fi, and V = V (F ) for the remainder of this section.

Let T be the logical predicate that takes three disjoint sets U0, U1, U2 ⊆ V as input and is

true if and only if the induced subgraph F [U0 ∪ U1 ∪ U2] follows the Turán pattern, that

is, its edges are precisely triples xyz with xy ∈ Uj and z ∈ Uj ∪ Uj+1 for some j ∈ Z3.

Thus we have the following claim.

Claim 2 For any set U ⊆ V with |U | ≤ 6, there is a partition U = U0 ∪ U1 ∪ U2 such

that T (U0, U1, U2) holds.

Let the logical predicate S(ab, cd) state that the vertices a, b, c, d ∈ V are pairwise

distinct, abc, abd ∈ F , and acd, bcd 6∈ F . Also, for a, b ∈ V let us write a ∼ b if a = b or

there are c, d ∈ V satisfying S(ab, cd). In the latter case, we call the pair cd a witness of

a ∼ b. Clearly, the binary relation ∼ is symmetric. The following claim can be checked

by a trivial case analysis.

Claim 3 If T (U0, U1, U2) holds and a, b, c, d ∈ U0 ∪ U1 ∪ U2 satisfy S(ab, cd), then for

some j ∈ Z3 we have a, b ∈ Uj and c, d ∈ Uj+1.

Claim 4 The relation ∼ is transitive.

Proof of Claim. Suppose that a ∼ b and b ∼ f , which is witnessed by S(ab, cd) and

S(bf, gh) respectively. Let U = {a, b, c, d, f, g, h}.

7



If |U | ≤ 6, then take a partition U = U0 ∪ U1 ∪ U2 given by Claim 2. By Claim 3

and symmetry, we can assume that e.g. ab ∈ U0 and cd ∈ U1. Since S(bf, gh) holds, the

vertices b and f are in the same part Uj by Claim 3. Thus f ∈ U0. Then S(af, cd) holds,

giving f ∼ a as required.

So suppose that |U | = 7 (i.e. all involved vertices are pairwise distinct). Consider

U ′ = U \ {g}. It has 6 elements, so by Claim 2 there is a partition U ′ = U ′0 ∪ U ′1 ∪ U ′2
satisfying T (U ′0, U

′
1, U

′
2). Assume by Claim 3 that a, b ∈ U ′0 and c, d ∈ U ′1.

If f ∈ U ′0, then S(af, cd) holds and thus a ∼ f , as required. So suppose that f 6∈ U ′0.

If f or h is in U ′1, say h ∈ U ′1, then we have S(ab, dh). We can replace c by h in U ,

reducing its size to 6 and conclude as above that a ∼ f . So suppose that f, h 6∈ U ′1.

Since bfh ∈ F , it must be the case that f, h ∈ U ′2. Thus T (ab, cd, fh) holds, in

particular, afh ∈ F . By the symmetry, we can swap f with a and cd with gh in the

above analysis and conclude that either we are done or that T (fb, gh, ac) holds. But the

latter relation implies that afh 6∈ F . This contradiction proves Claim 4.

Thus all vertices of F are partitioned into ∼-equivalence classes, say

V = V1 ∪ · · · ∪ Vk.

Let us call two vertices a, b ∈ V twins if swapping a and b we get an automorphism of F .

Claim 5 If a ∼ b, then a and b are twins.

Proof of Claim. Pick c and d such that S(ab, cd) holds. Let e, f ∈ V \{a, b} be arbitrary.

Let U = {a, b, c, d, e, f}. Apply Claim 3 to U to obtain a Turán partition U = U0∪U1∪U2.

Without loss of generality assume that a, b ∈ U0. Wherever the vertices e, f fall, we have

aef ∈ F if and only if bef ∈ F by the symmetry of U0 with respect to F [U ], as required.

Hence, we can define the skeleton 3-graph F ′ on [k]: namely, a triple fgh ∈
(
[k]
3

)
is

an edge of F ′ if and only if the induced 3-partite 3-graph F [Vf , Vg, Vh] is complete (or,

equivalently by Claim 5 non-empty).

Claim 6 F ′ does not contain an induced copy of G0, G2, nor G3.

Proof of Claim. If some 4-set uwxy ∈
(
[k]
4

)
spans exactly two triples in F ′, say uwx, uwy ∈

F ′, then S(ab, cd) holds for arbitrary representatives a ∈ Vu, b ∈ Vw, c ∈ Vx, and d ∈ Vy.
Thus a ∼ b, a contradiction to u 6= w.

The {G0, G3}-freeness of F ′ follows from the {G0, G3}-freeness of F and Claim 5.

Claim 7 Each Vj spans a complete 3-graph.
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Proof of Claim. Let a, b, c ∈ Vj be distinct. Choose a witness fg to a ∼ b. By Claim 5,

the pair fg also witnesses b ∼ c and a ∼ c. Thus abf, acf, bcf ∈ F . Since we do not have

G3, abc ∈ F .

Claim 8 If fgh ∈ F ′, then Vf ∪ Vg ∪ Vh spans the complete 3-graph in F .

Proof of Claim. Take c ∈ Vf , d ∈ Vg and distinct a, b ∈ Vh. We have acd, bcd ∈ F . Since

c 6∼ d, at least one of abc or abd is an edge of F . But F does not contain G3. Hence both

abc and abd are edges of F . The result follows from Claim 7.

Claim 9 If two edges D,E ∈ F ′ intersect in two vertices, then D∪E induces a complete

subgraph in F ′.

Proof of Claim. This follows from Claim 6 (the {G2, G3}-freeness of F ′).

Claim 10 If two edges D,E ∈ F ′ intersect in one vertex, then D∪E induces a complete

subgraph in F ′.

Proof of Claim. Let D = abc and E = cde. The 4-set abde spans at least one edge

(since F ′ is G0-free), say abd ∈ F ′. By Claim 9 applied to abc, abd ∈ F ′, the quadruple

abcd induces G4. Since cde ∈ F ′ intersects each of acd, bcd ∈ F ′ in two vertices, we

have G[acde] ∼= G[bcde] ∼= G4 by Claim 9. This implies that every triple of abcde is in

F ′ except perhaps abe. But Claim 9 applied to abc, bce ∈ F ′ shows that abe ∈ F ′, as

required.

By the above claims, F ′ is a vertex-disjoint union of complete subgraphs on sets

W1, . . . ,Wl respectively. Let us agree that each isolated vertex of F ′, if there are any,

forms a separate part Wj. The sets W1, . . . ,Wl partition [k] = V (F ′). Since F ′ is G0-

free, we have l ≤ 3 (otherwise pick one vertex from some four parts Wj to obtain a

G0-subgraph in F ′). Moreover, every triple of F intersects at most two of the parts Wj.

For j ∈ [l], define Uj = ∪h∈Wj
Vh and uj = |Uj|. The sets U1, . . . , Ul partition V = V (F ).

Claim 11 For each j ∈ [l], the set Uj ⊆ V spans a complete subgraph in F .

Proof of Claim. If Wj = {h} has only one element, then Uj = Vh and the result follows

from Claim 7. If |Wj| ≥ 3, then Wj spans a (non-trivial) complete subgraph in F ′ and

the result follows from Claim 8. Finally, it is impossible to have |Wj| = 2 for otherwise

the two vertices of Wj would be isolated in F ′ and would form a separate part Wh each.

Suppose first that l = 3. Then the following holds.
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Claim 12 For every h ∈ [3] there is j 6= h such that abc ∈ F for every ab ∈
(
Uh

2

)
and

c ∈ Uj.

Proof of Claim. Without loss of generality assume h = 3. For j = 1, 2, let Hj be the

2-graph that consists of all pairs ab ∈
(
U3

2

)
such that abc ∈ F for every c ∈ Uj.

Let us show that the union of H1 and H2 is
(
U3

2

)
. If, on the contrary, some pair

ab ∈
(
U3

2

)
is not in H1 ∪ H2, then pick cj ∈ Uj with abcj 6∈ F for j = 1, 2 and observe

that abc1c2 spans G0 in F , a contradiction.

Also, for j = 1, 2, the 2-graph Hj contains no induced path of length 2. Indeed, if

ad, bd ∈ Hj but ab 6∈ Hj, then pick c ∈ Uj with abc 6∈ F and observe that abcd spans G3

(note that abd ∈ F by Claim 11), a contradiction.

Hence, each of H1 and H2 is a union of vertex-disjoint cliques. Since H1 ∪H2 =
(
U3

2

)
,

it easily follows that H1 or H2 is equal to
(
U3

2

)
, proving the claim.

Claim 13 For every distinct j, h ∈ [3], F contains at least

u2juh + uju
2
h

2
−
ujuh

√
u2j + u2h

2
+O(n2) (4)

triples within Uj ∪ Uh that intersect both Uj and Uh.

Proof of Claim. Suppose without loss of generality that j = 1 and h = 2.

Let i = 1 or 2. Let mi be the number of triples that do not belong to F and have

exactly two vertices in Ui and one vertex in U3−i. For ab ∈
(
Ui

2

)
, let mab be the number

of c ∈ U3−i such that abc 6∈ F . The sum

si =
∑

ab∈(Ui
2 )

(
mab

2

)

counts 4-tuples abcd such that ab ∈
(
Ui

2

)
, cd ∈

(
U3−i

2

)
, and abc, abd 6∈ F . Since F is G0-

free, no 4-tuple is counted twice (i.e. for both i = 1 and i = 2). Thus s1 + s2 ≤
(
u1
2

)(
u2
2

)
.

On the other hand, the convexity of the function
(
x
2

)
and the identity mi =

∑
ab∈(Ui

2 )mab

imply that

si ≥
(
ui
2

)(
mi/

(
ui
2

)
2

)
=
m2
i

u2i
+O(n3)

We conclude that
u21u

2
2

4
≥ m2

1

u21
+
m2

2

u22
+O(n3). (5)

If we ignore the error term and maximize m = m1 + m2 over non-negative reals m1,m2

satisfying (5), then any optimal assignment makes (5) equality. Using this to eliminate

10



m2, we obtain that m = m1 +u2(u
2
1u

2
2/4−m2

1/u
2
1)

1/2. This function of m1 has the unique

maximum 1
2
u1u2(u

2
1 +u22)

1/2 attained at the unique positive root m1 = u31u2(u1 +u2)
1/2/2

of its derivative. This gives an upper bound on the number of triples between U2 and U3

that are missing from F , proving the claim.

By Claim 12, fix j(h) for each h ∈ [3]. Up to a symmetry we have two cases.

Case 1 (j(1), j(2), j(3)) = (2, 1, 1).

Here U1 ∪ U2 spans a complete subgraph in F . By Claim 13, the number of edges in

F is at least P (u1, u2, u3) +O(n2), where

P (u1, u2, u3) =
(u1 + u2)

3 + u33
6

+
u1u

2
3

2
+
u2u

2
3 + u22u3

2
− u2u3

√
u22 + u23
2

.

Claim 14 The minimum value of P (x, y, z) over non-negative x, y, z with x+ y + z = 1

is strictly larger than 4
9
× 1

6
= 2

27
.

Proof of Claim. Let

Q(y, z) = P (1− y − z, y, z)− 2

27
=
y2z

2
− z3

2
− yz

√
y2 + z2

2
+ z2 − z

2
+

5

54
.

Let us minimize Q over

S = {(y, z) ∈ R2 : y ≥ 0, z ≥ 0, y + z ≤ 1}.

The derivative

∂Q(y, z)

∂y
= −

z
(
y −

√
y2 + z2

)2
2
√
y2 + z2

,

is non-positive. Hence, there is an optimal assignment with y = 1− z. Note that

Q(1− z, z) =
5

54
+

(z2 − z)
√

1− 2z + 2z2

2
.

Let I = [0, 1] ⊆ R denote the closed unit interval. It is enough to show that (5/54)2 −
(Q(1− z, z)− 5/54)2 is positive on I. The last expression is a polynomial and factorizes

as (18z2 − 18z + 5)R(z)/2916, where R(z) = −81z4 + 162z3 − 99z2 + 18z + 5. Clearly, it

remains to show that R(z) is positive on I. The derivative R′(z) has three simple roots

1/2 and (3±
√

5)/6, all of which are in I. So the potential minima of f on I are restricted

to values f(0), f(1/2), or f(1). But each of these is positive. This proves Claim 14.

By Claim 14, we have that |F | is strictly larger than ( 2
27

+ o(1))n3 = (4
9

+ o(1))
(
n
3

)
,

a contradiction.
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Case 2 (j(1), j(2), j(3)) = (2, 3, 1).

Thus F contains the Turán pattern T = TU1,U2,U3 plus perhaps some extra edges. By

Lemma 5, the 3-graph T alone has at least (4
9

+ o(1))
(
n
3

)
edges. Since we have assumed

that |F | ≤ (4
9

+o(1))
(
n
3

)
, each of F and T has size (4

9
+o(1))

(
n
3

)
and |F \T | = o(n3). Thus

F can be converted into T by changing o(n3) edges. By the second part of Lemma 5,

uj = (1
3

+ o(1))n for each j ∈ [3]. Therefore, δ1(T, Tn) = o(n3). Thus F and Tn are

o(n3)-close in the edit distance, a contradiction to our assumption.

Since l = 1 is impossible (otherwise F =
(
[n]
3

)
), it remains to consider the case l = 2.

By Claim 13 and the routine fact that the maximum of x(1 − x)(x2 + (1 − x)2)1/2 for

x ∈ I is attained for x = 1/2, we have

|F | ≥
(
n

3

)
− u1u2

√
u21 + u22
2

+O(n2) ≥ n3

6
− n3

8
√

2
+O(n2),

which is strictly larger than (4
9

+ o(1))
(
n
3

)
. This final contradiction proves Theorem 2.

5 Exact Result for the {G0, G3}-Problem

First, we will obtain the conclusion of Theorem 1 under the additional assumptions that

G is close to a Turán pattern and its maximum degree is at most that of Tn:

Theorem 6 There is ε > 0 such that the following holds. Let G be a {G0, G3}-free 3-

graph on n ≥ 1/ε vertices such that |G| ≤ tn, ∆(G) ≤ ∆(Tn), and G is εn3-close in the

edit distance to some TV0,V1,V2. Then G is isomorphic to Tn.

Then, in Section 5.2, we will show that Theorems 2 and 6 imply Theorem 1.

5.1 Proof of Theorem 6

Suppose on the contrary that Theorem 6 is false. Then for every ε > 0 there is a coun-

terexample. In fact, there are infinitely many counterexamples (otherwise by Lemma 4,

we would have eliminated all of them by making ε sufficiently small). Thus we may

assume that ε → 0 and that n, the number of vertices, is arbitrarily large with respect

to 1/ε.

In order to make the proof more readable, we use the asymptotic notation where all

terms depending on ε are hidden. For example, a = o(n) means that |a| ≤ f(ε)n for

some function f(ε) that depends on ε only and tend to 0 as ε→ 0.

12



We will use the following constants that are chosen in this order, each being sufficiently

small positive number depending on the previous ones:

c1 � c2 � c3 � c4 � c5 � c6 � c7.

We do not try to optimize the inequalities that we derive in the course of the proof.

Let G ⊆
(
[n]
3

)
satisfy all assumptions of Theorem 6. Choose a best-fit partition, that

is, a partition [n] = V0∪V1∪V2 such that |T \G| is smallest possible, where T = TV0,V1,V2 .

By our assumptions, there is a Turán pattern T ′ with |T ′ \G| ≤ |T ′4G| ≤ εn3. By

the extremality of T , we have

|T \G| ≤ |T ′ \G| ≤ εn3 = o(n3).

We conclude that

|T | ≤ |T ∩G|+ |T \G| ≤ |G|+ εn3 ≤ tn + o(n3).

So, by Lemma 5, we have

vi = (1/3 + o(1))n. (6)

Let B = T \G and S = G \ T . We call triples in B bad and triples in S superfluous.

Let b = |B| ≤ εn3 and s = |S|.

Since each vi is at least 4, we cannot remove any triple from T without creating G0.

If s = 0, then G ⊆ T and, in fact, G = T by the G0-freeness of G; thus |T | = tn
and G ∼= T ∼= Tn by Lemma 4, satisfying Theorem 6. So assume that s > 0. Also,

tn ≥ |G| = |T |+ s− b ≥ tn + s− b, so s ≤ b. Summarizing:

0 < s ≤ b = o(n3). (7)

Let P = {xy ∈
(
[n]
2

)
: |Bxy| ≥ n/20} be the set of pairs of vertices that belong to at

least n/20 bad triples. Let p = |P |.

Claim 1 p ≥ b/2n.

Proof of Claim. Suppose on the contrary that p < b/2n. Let L ⊆ B consist of bad triples

that do not contain pairs in P . We have |L| ≥ b− p(n− 2) ≥ b/2.

Let l be the number of pairs (D,E) ∈ L× S such that |D ∩E| = 2. Every bad triple

xyz ∈ L contributes at least (1
3

+ o(1))n to l. Indeed, if x, y ∈ Vi and z ∈ Vi ∪ Vi+1

for some i ∈ Z3, then for every w ∈ Vi−1 at least one of wxy, wxz, wyz belongs to S

(otherwise the quadruple wxyz spans a copy of G0 in G). Thus l ≥ (b/2) (1
3

+o(1))n. On

13



the other hand, the 2-shadow of S has at most 3s pairs, so some pair xy is covered by at

least l/(3s) triples of L. Thus, by (7),

|Bxy| ≥ |Lxy| ≥
(b/2) (1

3
+ o(1))n

3b
>

n

20
.

Thus xy ∈ P , which contradicts the definition of L.

Claim 2 There is a vertex x with |Bx| ≥ c2n
2.

Proof of Claim. Each pair in P can either lie inside some part Vi or connect two parts.

We distinguish two cases depending on where the majority of pairs in P go.

Case 1 |P ∩ (∪2
i=0

(
Vi
2

)
)| ≥ p/2.

Without loss of generality, suppose that |P 0| ≥ p/6, where P 0 = P ∩
(
V0
2

)
. Define

P ′ = {xy ∈ P 0 : |Bxy ∩ V1| ≥ n/40}.

Case 1.1 |P ′| ≥ p/12.

For each quadruple uwxy with xy ∈ P ′ and u,w ∈ Bxy ∩ V1 (at least (p/12)×
(
n/40
2

)
choices), uwx or uwy is superfluous (otherwise G[uwxy] ∼= G0). Therefore, some triple,

say uwx ∈ S with x ∈ V0, appears for at least

(p/12)×
(
n/40
2

)
s

≥
(b/(24n))×

(
n/40
2

)
b

≥ c1n

choices of y, where we used (7) and Claim 1. This vertex x is in at least 1
2
×c1n×(n/20) ≥

c2n
2 bad triples, as required.

Case 1.2 |P ′| < p/12.

For each pair xy ∈ P 0\P ′ (at least p/12 choices), u ∈ V0∩Bxy (at least |Bxy|−n/40 ≥
n/40 choices), and w ∈ V1 \Bxy (at least (1/3−1/40 + o(1))n choices), we have wxy ∈ G
and uxy 6∈ G. Thus, in order to avoid G3, we have that uwx or uwy is in B. By averaging,

some triple, say, uwx ∈ B with w ∈ V1 appears for at least c1n choices of y in this way.

Out of these c1n P -pairs connecting such vertices y to u, x ∈ V0, at least half go to the

same vertex, which necessarily has B-degree at least c2n
2.

Case 2 More than half of edges of P connect two different parts Vi.

Without loss of generality, suppose that at least p/6 pairs of P connect V0 to V1.

Let the 2-graph P 01 consist of these pairs. Note that any bad triple xyz with xy ∈ P 01

satisfies z ∈ V0. Define

P ′′ = {xy ∈ P 01 : |V2 \ Sxy| ≥ n/6}.

14



Case 2.1 |P ′′| ≥ p/12.

For every choice of xy ∈ P ′′, z ∈ Bxy ⊆ V0, and w ∈ V2\Sxy (at least (p/12)×(n/20)×
(n/6) choices), at least one of wxz or wyz is superfluous (to prevent G[wxyz] ∼= G0). By

averaging, some triple, say, wxz ∈ S with w ∈ V2 appears for at least c1n choices of y,

implying that x has the required B-degree.

Case 2.2 |P ′′| < p/12.

For every choice of xy ∈ P 01 \P ′′, say x ∈ V0 and y ∈ V1, and distinct u,w ∈ Sxy ∩V2,
we have uwx ∈ B or uwy ∈ S (to avoid G3). One of these alternatives occurs at least

half of the time. Averaging gives a triple (in B or in S) that appears at least c1n times

this way. As above, this gives a vertex incident to at least c2n
2 edges of B. The claim is

proved.

Fix some vertex x with |Bx| ≥ c2n
2. The following definitions and assumptions will

apply to the rest of the section. Assume without loss of generality that x ∈ V0. Partition

the link 2-graphs Bx and Sx as B0 ∪B1 ∪B2 and S0 ∪ S1 ∪ S2, where

B0 = Bx ∩
(
V0
2

)
,

B1 = {yz ∈ Bx : y ∈ V0, z ∈ V1},

B2 = Bx ∩
(
V2
2

)
,

S0 = {yz ∈ Sx : y ∈ V1, z ∈ V2},

S1 = Sx ∩
(
V1
2

)
,

S2 = {yz ∈ Sx : y ∈ V0, z ∈ V2}.

For i ∈ Z3, let bi = |Bi| and si = |Si|.

Let A be a largest subset of V1 with the property that

|S1[A]| ≥
(
|A|
2

)
− c3n2. (8)

Since A = ∅ satisfies (8), A is well-defined. Let α = |A|/n. Also, let

C = {y ∈ V0 : |B1
y | ≥ c4n},

where B1
y = (B1)y is the set of neighbors of y in the 2-graph B1. Let γ = |C|/n.

Let us state a few easy inequalities relating some of the parameters that have just

been defined.

By the definition of A, we have

s1 ≥
(
αn

2

)
− c3n2. (9)
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Also, let us show that

b1 ≤ αγn2 + c4n
2 + o(n2). (10)

The vertices in V0 \ C are incident to at most |V0| × c4n < c4n
2 edges of B1. Let

C ′ = {y ∈ C : |B1
y | > αn}. Clearly, C \ C ′ is incident to at most αγn2 edges of B1.

For every y ∈ C ′, we have |S1[B1
y ]| > c3n

2 by the definition of α; moreover, for every

distinct u,w ∈ B1
y with uw 6∈ S1, we have uwy ∈ S (to avoid G[uwxy] ∼= G0). Thus

|C ′| × c3n2 ≤ |S|. By (7), |C ′| = o(n), and (10) follows.

Let us estimate l, the number of pairs (E,D) with E ∈ B2, D ∈ S0, and |E ∩D| = 1

plus the number of pairs (E,w) with E ∈ B2, w ∈ V1, and E ∪ {w} ∈ S. On one hand,

every yz ∈ B2 contributes at least v1 to l: for every w ∈ V1 at least one of wxy, wxz, wyz

is in S (to prevent G[wxyz] ∼= G0). On the other hand, each D ∈ S0 contributes at most

v2 − 1 to l while the number of pairs (E,w) is at most |S| = o(n3). By (6), we have

b2n/3 ≤ s0n/3 + o(n3), i.e.

s0 ≥ b2 + o(n2). (11)

Similarly to above, let us estimate l, the number of pairs (E,D) with E ∈ B0, D ∈ B1,

and |E∩D| = 1 plus the number of pairs (E,w) where E ∈ B0, w ∈ V1, and E∪{w} ∈ B.

Each yz ∈ B0 contributes at least v1 to l: for every w ∈ V1, at least one of wxy, wxz, wzy

is in B (to avoid G3). On the other hand, each D ∈ B1 contributes at most v0 − 1 to l

while there are at most |B| = o(n3) required pairs (E,w). This implies that

b1 ≥ b0 + o(n2). (12)

By (6) every vertex of T (as well as of Tn) has degree (4/9 + o(1))
(
n
2

)
. Since

∆(Tn) ≥ ∆(G) ≥ |Gx| = |Tx|+ |Sx| − |Bx|,

by the maximum degree assumption of Theorem 6, we conclude that

b0 + b1 + b2 ≥ s0 + s1 + s2 + o(n2). (13)

The number of triples in T \G that contain x is

|(T \G)x| = |Bx| = b0 + b1 + b2. (14)

If we change T by moving x to V1, then |(T \G)x| becomes b0 + (
(
n/3
2

)
− s1) + ((n/3)2 −

s0) + o(n2). By the best-fit property of T , this is at least (14), which implies that

b1 + b2 + s0 + s1 ≤
n2

6
+ o(n2). (15)

If we move x to V2, then |(T \ G)x| becomes (
(
n/3
2

)
− s1) + b2 + ((n/3)2 − s2) + o(n2).

Again by the best-fit property of T , we have

b0 + b1 + s1 + s2 ≤
n2

6
+ o(n2). (16)

16



Claim 3 s0 ≥ c5n
2.

Proof of Claim. Let us suppose on the contrary that s0 < c5n
2. By (11), we have

b2 ≤ c5n
2 + o(n2). Thus

b0 + b1 = |Bx| − b2 ≥ c2n
2 − c5n2 + o(n2) ≥ 3c2n

2/4 + o(n2)

and by (12), we have b1 ≥ 3c2n
2/8 + o(n2). This, (10), and max(α, γ) ≤ 1/3 + o(1) imply

that both α and γ are at least (3c2/8− c4)/(1/3) + o(1) > c2.

Let A be as in (8). Take y ∈ V0 \ C. Let A′ = A \B1
y . We have |A′| ≥ (α− c4)n and

|S1[A′]| ≥
(
|A′|
2

)
− c3n2 ≥

(
(c2 − c4)n

2

)
− c3n2 > c22n

2/3.

For every wz ∈ S1[A′], we have wyz ∈ S (to avoid G3 on wxyz). Thus |V0 \C|×c22n2/3 ≤
|S| = o(n3) and, by (6), γ = 1/3 + o(1).

Pick y ∈ C, z ∈ B1
y , and w ∈ V2. There are at least γn× c4n× v2 such triples. By (7)

and the assumption on s0, o(n
3) choices satisfy wyz ∈ S and at most c5n

3 choices satisfy

wz ∈ S0. For all remaining triples wyz, we have wy ∈ S2 (to avoid G0 on wxyz). Let

S = {wy : y ∈ C, w ∈ V2, wy 6∈ S2} be the bipartite complement of S2[C, V2]. Since for

each wy ∈ S there are at least c4n choices of z, we have |S|c4n ≤ c5n
3 + o(n3). Thus e.g.

|S| ≤ (c4 + o(1))n2. We conclude that

s2 ≥ |C| × |V2| − |S| ≥ (1/9− c4 + o(1))n2.

By (11) and (13), we have

(1/9− c4)n2 + s1 ≤ b0 + b1 + o(n2). (17)

Inequalities (9), (10), (17), and b0 ≤
(
v0
2

)
imply that

1

9
− c4 +

α2

2
− c3 ≤

1

18
+
α

3
+ c4 + o(1). (18)

Inequalities 1
9

+ α2

2
≤ 1

18
+ α

3
and 0 ≤ α ≤ 1

3
imply that α = 1/3. It follows from (18) that,

for example, α ≥ 1/3− c2, b0 ≥ (1/18− c2)n2, s1 ≥ (α2/2− c2)n2, and b1 ≥ (α/3− c2)n2.

But this contradicts (16). The claim is proved.

Claim 4 s1 ≥ (1/18− c26)n2.

Proof of Claim. Let

V ′1 =

{
y ∈ V1 :

∣∣∣∣Sy ∩ (V22
)∣∣∣∣ ≤ c7n

2

}
. (19)
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By (7), |V1\V ′1 | = o(n). In particular, the number of S0-edges intersecting V1\V ′1 is o(n2).

By Claim 3 and (6), the average S0-degree of a vertex in V ′1 is at least (3c5 + o(1))n.

Take a vertex y ∈ V ′1 whose S0-degree is at least this average. Let D = S0
y . For every

distinct u,w ∈ D with uwy 6∈ G, we have uw ∈ B2 (to avoid G3). Thus

|B2[D]| ≥
(
|D|
2

)
− c7n2. (20)

Fix this D. Let z ∈ V ′1 be arbitrary. Let D′ = D \S0
z . For every pair uw ∈

(
D′

2

)
, we have

uw 6∈ B2 or uwz ∈ S (to avoid G0 on uwxz). Thus
(|D′|

2

)
≤ (c7 + c7 + o(1))n2 by (19)

and (20). Hence,

|S0
z ∩D| ≥ |D| − (2

√
c7 + o(1))n

for every z ∈ V ′1 . We conclude that

|S0[D, V ′1 ]| ≥ (|D| − 2
√
c7 n)× |V ′1 |+ o(n2) ≥ |D| |V ′1 | −

√
c7 n

2. (21)

Define D′′ = {z ∈ D : |Bz ∩
(
V1
2

)
| ≤ c7n

2}. Then D′′ contains all but o(n) vertices of D.

Pick z ∈ D′′ whose S0-degree is at least the average, which is at least (1/3−√c7/(3c5) +

o(1))n by (21). For every distinct u,w ∈ S0
z we have uwz ∈ B or uw ∈ S1 (to avoid

G3 on uwxz). Thus the edges in the complement S1 of S1 are restricted to pairs that

intersect V1 \ S0
z and to Bz ∩

(
V1
2

)
. Thus

|S1| ≤ (
√
c7/(3c2) + c7 + o(1))n2 ≤ c26n

2/2,

proving the claim.

Claim 5 b1 ≥ (1/9− 2c6)n
2.

Proof of Claim. Let V ′0 = {z ∈ V0 : |Sz ∩
(
V1
2

)
| ≤ c7n

2}. By (6) and (7), |V ′0 | =

(1/3 + o(1))n. Take z ∈ V ′0 . Let D = V ′1 \ B1
z , where V ′1 is defined by (19). For every

distinct u,w ∈ D, we have uwz ∈ S or uw 6∈ S1 (to avoid G3 on uwxz). Thus(
|D|
2

)
≤ |S1|+ |Sz| ≤ (c26 + c7 + o(1))n2,

where we used Claim 4. Thus |D| ≤ ((2c26 + 2c7)
1/2 + o(1))n. Since z ∈ V ′0 was arbitrary,

it follows that |B1[V0, V1]|, the number of pairs connecting V0 to V1 that are not in B1, is

at most

|V0 \ V ′0 | × v1 + (2c26 + 2c7)
1/2 n× (n/3) + o(n2) ≤ 2c6n

2,

giving the claim.

Claims 3, 4, and 5 imply that b1 + s0 + s1 ≥ (1/9 − 2c6 + c5 + 1/18 − c26 + o(1))n2,

contradicting (15). This final contradiction proves Theorem 6.
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5.2 Proof of Theorem 1

Let ε > 0 be the constant returned by Theorem 6. Let c = c(ε) > 0 be the constant

returned by Theorem 2 on input ε. Assume that c ≤ ε. Let us show that n0 = (1/c)3

suffices. Let G be an arbitrary {G0, G3}-free 3-graph on n ≥ n0 vertices with at most tn
edges.

Initially, define Gn = G and m = n. If ∆(Gm) ≤ ∆(Tm), then we stop. Otherwise,

pick a vertex x of Gm of degree at least ∆(Tm) + 1, let Gm−1 = Gm − x be obtained

from Gm by removing this vertex x (and all edges that contain it), decrease m by 1, and

repeat.

When we stop, then m ≥ 2 and we have

0 ≤ |Gm| ≤ tm − (n−m) ≤
(
m

3

)
+m− n < m3 − n. (22)

Thus m > n1/3 ≥ 1/c. Theorem 2 implies that Gm is εm3-close to Tm in the edit distance.

(Note that |Gm| ≤ tm by (22).) Since m ≥ 1/c ≥ 1/ε, Theorem 6 implies that Gm
∼= Tm.

By (22), we have m = n. Thus G ∼= Tn, proving Theorem 1.
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[ES83] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica
3 (1983), 181–192.

19



[ES08] G. Elek and B. Szegedy, A measure-theoretic approach to the theory of dense hyper-
graphs, E-print arxiv.org:0810.4062, 2008.

[FDF88] D. G. Fon-Der-Flaass, A method for constructing (3, 4)-graphs, Math. Zeitschrift 44
(1988), 546–550.
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