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0 A superlinear bound on the number of perfect

matchings in cubic bridgeless graphs

Louis Esperet∗ Frantǐsek Kardoš† Daniel Král’‡

Abstract

Lovász and Plummer conjectured in the 1970’s that cubic bridge-
less graphs have exponentially many perfect matchings. This conjec-
ture has been verified for bipartite graphs by Voorhoeve in 1979, and
for planar graphs by Chudnovsky and Seymour in 2008, but in gen-
eral only linear bounds are known. In this paper, we provide the first
superlinear bound in the general case.

1 Introduction

In this paper we study cubic graphs in which parallel edges are allowed. A
classical theorem of Petersen [10] asserts that every cubic bridgeless graph
has a perfect matching. In fact, it holds that every edge of a cubic bridgeless
graph is contained in a perfect matching. This implies that cubic bridge-
less graphs have at least 3 perfect matchings. In the 1970’s, Lovász and
Plummer [7, Conjecture 8.1.8] conjectured that this quantity should grow
exponentially with the number of vertices of a cubic bridgeless graph. The
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conjecture has been verified in some special cases: Voorhoeve [12] proved in

1979 that n-vertex cubic bridgeless bipartite graphs have at least 6·(4/3)n/2−3

perfect matchings. Recently, Chudnovsky and Seymour [1] proved that cu-
bic bridgeless planar graphs with n vertices have at least 2n/655978752 perfect
matchings; Oum [9] proved that cubic bridgeless claw-free graphs with n
vertices have at least 2n/12 perfect matchings.

However, in the general case all known bounds are linear. Edmonds,
Lovász, and Pulleyblank [3], inspired by Naddef [8], proved in 1982 that the
dimension of the perfect matching polytope of a cubic bridgeless n-vertex
graph is at least n/4+1 which implies that these graphs have at least n/4+2
perfect matchings. The bound on the dimension of the perfect matching
polytope is best possible, but combining it with the study of the brick and
brace decomposition of cubic graphs yielded improved bounds (on the number
of perfect matchings in cubic bridgeless graphs) of n/2 [5], and 3n/4−10 [4].

Our aim in this paper is to show that the number of perfect matchings in
cubic bridgeless graphs is superlinear. More precisely, we prove the following
theorem:

Theorem 1. For any α > 0 there exists a constant β > 0 such that every
n-vertex cubic bridgeless graph has at least αn− β perfect matchings.

2 Notation

A graph G is k-vertex-connected if G has at least k+1 vertices, and remains
connected after removing any set of at most k − 1 vertices. If {A,B} is a
partition of V (G), the set E(A,B) of edges with one end in A and the other
in B is called an edge-cut or a k-edge-cut of G, where k is the size of E(A,B).
A graph is k-edge-connected if it has no edge-cuts of size less than k. Finally,
an edge-cut E(A,B) is cyclic if the subgraphs induced by A and B both
contain a cycle. A graph G is cyclically k-edge-connected if G has no cyclic
edge-cuts of size less than k. The following is a usefull observation that we
implicitly use in our further considerations:

Observation 2. If G is a graph with minimum degree three, in particular G
can be a cubic graph, then a k-edge-cut E(A,B) such that |A| ≥ k − 1 and
|B| ≥ k − 1 must be cyclic.

In particular, in a graph with minimum degree three, 2-edge-cuts are
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necessarily cyclic. Hence, 3-edge-connected cubic graphs and cyclically 3-
edge-connected cubic graphs are the same.

We say that a graph G is X-near cubic for a multiset X of positive
integers, if the multiset of degrees of G not equal to three is X . For example,
the graph obtained from a cubic graph by removing an edge is {2, 2}-near
cubic.

If v is a vertex of G, then G \ v is the graph obtained by removing the
vertex v together with all its incident edges. If H is a connected subgraph of
G, G/H is the graph obtained by contracting all the vertices of H to a single
vertex, removing arising loops and preserving all parallel edges. Let G and
H be two disjoint cubic graphs, u a vertex of G incident with three edges
e1, e2, e3, and v a vertex of H incident with three edges f1, f2, f3. Consider
the graph obtained from the union of G \ u and H \ v by adding an edge
between the end-vertices of ei and fi (1 ≤ i ≤ 3) distinct from u and v.
We say that this graph is obtained by gluing G and H through u and v.
Note that gluing a graph G and K4 through a vertex v of G is the same as
replacing v by a triangle.

A Klee-graph is inductively defined as being either K4, or the graph ob-
tained from a Klee-graph by replacing a vertex by a triangle. A b-expansion
of a graph G, b ≥ 1, is obtained by gluing Klee-graphs with at most b + 1
vertices each through some vertices of G (these vertices are then said to be
expanded). For instance, a 3-expansion of G is a graph obtained by replacing
some of the vertices of G with triangles, and by convention a 1-expansion
is always the original graph. Observe that a b-expansion of a graph on n
vertices has at most bn vertices. Also observe that if we consider k expanded
vertices and contract their corresponding Klee-graphs into single vertices in
the expansion, then the number of vertices decreases by at most k(b−1) ≤ kb.

Let G be a cyclically 4-edge-connected cubic graph and v1v2v3v4 a path
in G. The graph obtained by splitting off the path v1v2v3v4 is the graph
obtained from G by removing the vertices v2 and v3 and adding the edges
v1v4 and v′1v

′
4 where v′1 is the neighbor of v2 different from v1 and v3, and v′4

is the neighbor of v3 different from v2 and v4.

Lemma 3. Let G be a cyclically ℓ-edge-connected graph with at least 2ℓ+ 2
vertices, let G′ be the graph obtained from G by splitting off a path v1v2v3v4,
and let v′1 be the neighbor of v2 different from v1 and v3, and v′4 the neighbor
of v3 different from v2 and v4. If E(A′, B′) is a cyclic ℓ′-edge-cut of G′ with
ℓ′ < ℓ, then ℓ′ ≥ ℓ−2 and neither the edge v1v4 nor the edge v

′
1v

′
4 is contained
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in the cut E(A′, B′).

Proof. Assume first that the edges v1v4 and v′1v
′
4 are both in the cut E(A′, B′).

If v1, v1 ∈ A′ and v4, v
′
4 ∈ B′ then E(A′ ∪ {v2}, B

′ ∪ {v3}) is a cyclic
(ℓ′ − 1)-edge-cut of G. Otherwise if v1, v

′
4 ∈ A′ and v4, v

′
1 ∈ B′ then E(A′ ∪

{v2, v3}, B
′) is a cyclic ℓ′-edge-cut ofG. SinceG is cyclically ℓ-edge-connected,

we can exclude these cases.
Assume now that only v1v4 is contained in the cut, i.e., v1 ∈ A′ and

v4 ∈ B′ by symmetry. We can also assume by symmetry that v′1 and v′4 are
in A′. However in this case, the cut E(A′∪{v2, v3}, B

′) is a cyclic ℓ′-edge-cut
of G which is impossible. Hence, neither v1v4 nor v′1v

′
4 is contained in the

cut. Similarly, if {v1, v
′
1, v4, v

′
4} ⊆ A′ or {v1, v

′
1, v4, v

′
4} ⊆ B′, then G would

contain a cyclic ℓ′-edge-cut.
We conclude that it can be assumed that {v1, v4} ⊆ A′, {v′1, v

′
4} ⊆ B′, and

|A′| ≤ |B′|. Say A := A′ ∪ {v2, v3}, B := B′. Since G′[A′] has a cycle, G[A]
has a cycle, too. Since |B| ≥ ℓ, there is a cycle in G[B] as well. Therefore,
E(A,B) is a cyclic (ℓ′+2)-edge-cut in G and thus ℓ′ is either ℓ−2 or ℓ−1.

A cubic graph G is k-almost cyclically ℓ-edge-connected if there is a cycli-
cally ℓ-edge-connected cubic graph G′ obtained from G by contracting sides
of none, one or more cyclic 3-edge-cuts and the number of vertices of G′ is
at least the number of vertices of G decreased by k. In particular, a graph
G is 2-almost cyclically 4-edge-connected graph if and only if G is cycli-
cally 4-edge-connected or G contains a triangle such that the graph obtained
from G by replacing the triangle with a vertex is cyclically 4-edge-connected.
Observe that the perfect matchings of the cyclically 4-edge-connected cubic
graph G′ correspond to perfect matchings of G (but several perfect matchings
of G can correspond to the same perfect matching of G′ and some perfect
matchings of G correspond to no perfect matching of G′).

We now list a certain number of facts related to perfect matchings in
graphs, that will be used several times in the proof. The first one, due to
Kotzig, concerns graphs (not necessarily cubic) with only one perfect match-
ing.

Lemma 4. If G is a graph with a unique perfect matching, then G has a
bridge that is contained in the unique perfect matching of G.

A graph G is said to be matching-covered if every edge is contained in a
perfect matching of G, and it is double covered if every edge is contained in
at least two perfect matchings of G.

4



Theorem 5 ([11]). Every cubic bridgeless graph is matching-covered. More-
over, for any two edges e and f of G, there is a perfect matching avoiding
both e and f .

The following three theorems give lower bounds on the number of perfect
matchings in cubic graphs.

Theorem 6 ([1]). Every planar cubic graph (and thus every Klee-graph) with
n vertices has at least 2n/655978752 perfect matchings.

Theorem 7 ([12]). Every cubic bridgeless bipartite graph with n vertices has
at least (4/3)n/2 perfect matchings avoiding any given edge.

Theorem 8 ([5]). Every cubic bridgeless graph with n vertices has at least
n/2 perfect matchings.

The main idea in the proof of Theorem 1 will be to cut the graph into
pieces, apply induction, and try to combine the perfect matchings in the
different parts. If they do not combine well then we will show that Theorems 6
and 7 can be applied to large parts of the graphs to get the desired result.
Typically this will happen if some part is not double covered (some edge is in
only one perfect matching), or if no perfect matching contains a given edge
while excluding another one. In these cases the following two lemmas will be
very useful.

Lemma 9 ([4]). Every cyclically 3-edge-connected cubic graph that is a not a
Klee-graph is double covered. In particular, every cyclically 4-edge-connected
cubic graph is double covered.

Lemma 10. Let G be a cyclically 4-edge-connected cubic graph and e and f
two edges of G. G contains no perfect matchings avoiding e and containing
f if and only if the graph G \ {e, f} is bipartite and the end-vertices of e are
in one color class while the end-vertices of f are in the other.

Proof. Let f = uv, and assume that the graph H obtained from G by re-
moving the vertices u, v and the egde e has no perfect matching. By Tutte’s
theorem, there exists a subset S of vertices of H such that the number k
of odd components of H \ S exceeds |S|. Since H has an even number of
vertices, we actually have k ≥ |S| + 2. Let S ′ = S ∪ {u, v}. The number
of edges leaving S ′ in G is at most 3|S ′| − 2 because u and v are joined
by an edge. On the other hand, there are at least three edges leaving each
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odd component of H \ S with a possible exception for the (at most two)
components incident with e (otherwise, we obtain a cyclic 2-edge-cut in G).
Consequently, k = |S|+ 2, and there are three edges leaving |S| odd compo-
nents and two edges leaving the remaining two odd components. Since G is
cyclically 4-edge-connected, all the odd components are single vertices and
G has the desired structure.

The key to prove Theorem 1 is to show by induction that cyclically 4-
edge-connected cubic graphs have a superlinear number of perfect matchings
avoiding any given edge. In the proof we need to pay special attention to 3-
edge-connected graphs, because we were unable to include them in the general
induction process. The next section, which might be of independent interest
for the reader, will be devoted to the proof of Lemma 18, stating that 3-edge-
connected cubic graphs have a linear number of perfect matchings avoiding
any given edge that is not contained in a cyclic 3-edge-cut (this assumption
on the edge cannot be dropped).

3 3-edge-connected graphs

We now introduce the brick and brace decomposition of matching-covered
graphs (which will only be used in this section). For a simple graph G,
we call a multiple of G any multigraph whose underlying simple graph is
isomorphic to G.

An edge-cut E(A,B) is tight if every perfect matching contains precisely
one edge of E(A,B). If G is a connected matching-covered graph with a tight
edge-cut E(A,B), then G[A] and G[B] are also connected. Moreover, every
perfect matching ofG corresponds to a pair of perfect matchings in the graphs
G/A and G/B. Hence, both G/A and G/B are also matching-covered. We
say that we have decomposed G into G/A and G/B. If any of these graphs
still have a tight edge-cut, we can keep decomposing it until no graph in the
decomposition has a tight edge-cut. Matching-covered graphs without tight
edge-cuts are called braces if they are bipartite and bricks otherwise, and
the decomposition of a graph G obtained this way is known as the brick and
brace decomposition of G.

Lovász [6] showed that the collection of graphs obtained from G in any
brick and brace decomposition is unique up to the multiplicity of edges.
This allows us to speak of the brick and brace decomposition of G, as well
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as the number of bricks (denoted b(G)) and the number of braces in the
decomposition of G. The brick and brace decomposition has the following
interesting connection with the number of perfect matchings:

Theorem 11 (Edmonds et al., 1982). If G is a matching-covered n-vertex
graph with m edges, then G has at least m− n+ 1− b(G) perfect matchings.

A graph is said to be bicritical if G\{u, v} has a perfect matching for any
two vertices u and v. Edmonds et al. [3] gave the following characterization
of bricks:

Theorem 12 (Edmonds et al., 1982). A graph G is a brick if and only if it
is 3-vertex-connected and bicritical.

It can also be proved that a brace is a bipartite graph such that for any
two vertices u and u′ from the same color class and any two vertices v and v′

from the other color class, the graph G \ {u, u′, v, v′} has a perfect matching,
see [7]. We finish this brief introduction to the brick and brace decomposition
with two lemmas on the number of bricks in some particular classes of graphs.

Lemma 13 (see [5]). If G is an n-vertex cubic bridgeless graph, then b(G) ≤
n/4.

Lemma 14 (see [4]). If G is a bipartite matching-covered graph, then b(G) =
0.

We now show than any 3-edge-connected cubic graph G has a linear
number of perfect matchings avoiding any edge e not contained in a cyclic 3-
edge-cut. We consider two cases: if G− e is matching-covered, we show that
its decomposition contains few bricks (Lemma 15). If G− e is not matching-
covered, we show that for some edge f , G− {e, f} is matching-covered and
contains few bricks in its decomposition (Lemma 17).

Lemma 15. Let G be a 3-edge-connected cubic graph and e an edge of G that
is not contained in a cyclic 3-edge-cut of G. If G − e is matching-covered,
then the number of bricks in the brick and brace decomposition of G− e is at
most 3n/8− 2.

Proof. Let u and v be the end-vertices of e. Clearly, the edges between
{u} ∪ N(u) and the other vertices and the edges between {v} ∪ N(v) and
the other vertices form tight edges-cuts in G− e. Splitting along these tight
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edge-cuts, we obtain two multiples of C4 and a graph G′ with n− 4 vertices.
Depending whether u and v are in a triangle in G, G′ is either a {4, 4}-near
cubic graph or a {5}-near cubic graph.

We will now keep splitting G′ along tight edge-cuts until we obtain bricks
and braces only. We show that any graph H obtained during splitting will
be 3-edge-connected and it will be either a bipartite graph, a cubic graph, a
{4, 4}-near cubic graph or a {5}-near cubic graph. Moreover, the edge e will
correspond in a {4, 4}-near cubic graph to an edge joining the two vertices of
degree four in H , and it will correspond in a {5}-near cubic graph to a loop
incident with the vertex of degree five.

If H is a {4, 4}-near cubic graph and the two vertices u and v of degree
four have two common neighbors that are adjacent, we say that H contains
a 4-diamond with end-vertices u and v (see the first picture of Figure 1 for
the example of a 4-diamond with end-vertices v and w). After we construct
the decomposition, we prove the following estimate on the number of bricks
in the brick and brace decomposition of H :

Claim. Assume that H is not a multiple of K4, and that it has nH vertices.
Then b(H) ≤ 3

8
nH−1 if H is cubic, b(H) ≤ 3

8
nH− 3

4
if H is a {5}-near cubic

graph or a {4, 4}-near cubic graph without 4-diamond, and b(H) ≤ 3
8
nH − 1

4

if H contains a 4-diamond.

Observe that the claim implies that if H has no 4-diamond, b(H) ≤
3
8
nH − 1

2
regardless whether H is a multiple of K4 or not. To simplify our

exposition, we consider the construction of the decomposition and after each
step, we assume that we have verified the claim on the number of bricks for
the resulting graphs and verify it for the original one.

Let H be a graph obtained through splitting along tight edge-cuts, ini-
tially H = G′. Observe that G′ is 3-edge-connected since the edge e is not
contained in any cyclic 3-edge-cut of G.

If H is bipartite, from Lemma 14 we get b(H) = 0.
If H is not bipartite, then by Theorem 12 it is a brick unless it is not 3-

vertex-connected or it is not bicritical. If it is a brick then the inequalities of
the claim are satisfied since nH ≥ 6 unless H is a multiple ofK4. Assume now
that H is not 3-vertex-connected. By the induction, the maximum degree
of H is at most five and since H is 3-edge-connected, it cannot contain a
cut-vertex. Let {u, v} be a 2-vertex-cut of H . Since the sum of the degrees
of u and v is at most eight, the number of components of H \ {u, v} is at
most two. Let C1 and C2 be the two components of H \ {u, v}. We now
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Figure 1: Some cases if H has a 2-vertex-cut {u, v}. The tight edge-cuts are
represented by dashed lines.

distinguish several cases based on the degrees of u and v (symmetric cases
are omitted):

dH(u) = dH(v) = 3. It is easy to verify thatH cannot be 3-edge-connected.

dH(u) = 3, dH(v) = 4, uv ∈ E(H). It is again easy to verify that H
cannot be 3-edge-connected.

dH(u) = 3, dH(v) = 4, uv /∈ E(H). Since H is 3-edge-connected, there
must be exactly two edges between v and each Ci, i = 1, 2. By sym-
metry, we can assume that there a single edge between u and C1 and
two edges between u and C2.

Let w be the other vertex of H with degree four. Assume first that
v and w are the end-points of a 4-diamond (this case is depicted in
the first picture of Figure 1). Let C ′

1 and C ′
2 be the two components

remaining inH after removing u and the four vertices of the 4-diamond.
Without loss of generality, assume that the two neighbors of v (resp.
w) not in the diamond are in C ′

1 (resp. C ′
2). We split H along the

three following tight edge-cuts: the three edges leaving C ′
1, the four

edges leaving C ′
2∪{w}, and finally the four edges leaving v and its two

neighbors in the 4-diamond. We obtain a cubic graph H1, a multiple
of K4, a multiple of C4, and a {4, 4}-near cubic graph H2. If n1 and
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n2 are the orders of H1 and H2, we have n1 + n2 = nH − 2. By the
induction,

b(H) ≤ 1 + (3
8
n1 −

1
2
) + (3

8
n2 −

1
4
) = 3

8
nH − 1

2
≤ 3

8
nH − 1

4
.

Hence, we can assume that H does not contain a 4-diamond. If w is
contained in C2, both C1 and C2 have an odd number of vertices and
both the cuts between {u, v} and Ci, i = 1, 2, are tight (this case is
depicted in the second picture of Figure 1). After splitting along them,
we obtain a multiple of C4, a cubic graph of order n1 and a {4, 4}-near
cubic graph of order n2, such that n1 + n2 = nH . By the induction,

b(H) ≤ 3
8
nH − 1

2
− 1

4
= 3

8
nH − 3

4
.

It remains to analyse the case when w is contained in C1 (this case is
depicted in the third picture of Figure 1). Splitting the graph along
the tight edge-cut between C1 ∪ {v} and C2 ∪ {u}, we obtain a {4, 4}-
near cubic graph H1 which is not a multiple of K4 (otherwise u would
have more than one neighbor in C1), and a cubic graph H2. Observe
that H1 does not contain any 4-diamond, since otherwise H would
contain one. If H2 is not a multiple of K4, then by the induction
b(H) ≤ 3

8
(nH + 2) − 3

4
− 1 ≤ 3

8
nH − 3

4
. Assume now that H2 is a

multiple of K4, and let u1 be the neighbor of u in C1, and u2 and
v2 be the vertices of C2 (this case is depicted in the fourth picture of
Figure 1). We splitH along the two following tight edge-cuts: the edges
leaving {u, u2, v2}, and the edges leaving {u1, u, v, u2, v2}. We obtain a
multiple of K4, a multiple of C4, and a graph of order nH − 4, which is
either a {4, 4}-near cubic graph or a {5}-near cubic graph (depending
whether u1 = w). In any case

b(H) ≤ 1 + 3
8
(nH − 4)− 1

4
= 3

8
nH − 3

4
.

dH(u) = dH(v) = 4, uv ∈ E(H). The sizes of C1 and C2 must be even;
otherwise, there is no perfect matching containing the edge uv. Hence,
the number of edges between {u, v} and Ci is even and one of these
cuts has size two, which is impossible since H is 3-edge-connected.

dH(u) = dH(v) = 4, uv /∈ E(H). Assume first that there are exactly two
edges between each of the vertices u and v and each of the components
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Ci (this case is depicted in the fifth picture of Figure 1). In this case,
each Ci must contain an even number of vertices. Hence, the edges
between C1 ∪ {u} and C2 ∪ {v} form a tight edge-cut. Let H1 and
H2 be the two graphs obtained by splitting along this tight edge-cut.
Observe that if H contains a 4-diamond, then at least one of H1 and
H2 is a multiple of K4. Moreover, Hi contains a 4-diamond if and only
it is a multiple of K4. Consequenty, if neither H1 nor H2 is a multiple
of K4, then none of H , H1, and H2 contains a 4-diamond. Hence by
the induction, b(H) ≤ 3

8
(nH + 2)− 3

4
− 3

4
= 3

8
nH − 3

4
. If both H1 and

H2 are multiples of K4, then H has 2 = 3
8
× 6 − 1

4
bricks. Finally if

exactly one of H1 and H2, say H2, is a multiple of K4, then H contains
a 4-diamond and H1 does not. Hence,

b(H) ≤ 1 + 3
8
(nH − 2)− 3

4
≤ 3

8
nH − 1

4
.

If there are not exactly two edges between each of the vertices u and v
and each of the components Ci, then we can assume that there is one
edge between u and C1 and three edges between v and C2 (this case is
depicted in the sixth picture of Figure 1). Since H is 3-edge-connected,
there are exactly two edges between v and each of the components Ci,
i = 1, 2. Observe that each Ci contains an odd number of vertices and
thus the cuts between Ci and {u, v} are tight. Splitting the graph along
these tight edge-cuts, we obtain a multiple of C4, a cubic graph H1, and
a {5}-near cubic graph H2, of orders n1 and n2 satisfying n1+n2 = nH .
By the induction,

b(H) ≤ 3
8
n1 −

1
2
+ 3

8
n2 −

1
2
≤ 3

8
nH − 3

4
.

dH(u) = 3, dH(v) = 5, uv ∈ E(H). Since H is 3-edge-connected, the
number of edges between u and each Ci is one and between v and
each Ci is two. Hence, both C1 and C2 contain an odd number of
vertices and thus there is no perfect matching containing the edge uv
which is impossible since H is matching-covered.

dH(u) = 3, dH(v) = 5, uv /∈ E(H). By symmetry, we can assume that
there is one edge between C1 and u and two edges between C2 and
v. We have to distinguish two cases: there are either two or three
edges between C1 and v (other cases are excluded by the fact that H
is 3-edge-connected).
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If there are two edges between C1 and v, the number of vertices of
both C1 and C2 is odd (this case is depicted in the seventh picture of
Figure 1). Hence, both the edge-cuts between Ci, i = 1, 2, and {u, v}
are tight. The graphs obtained by splitting along these two edge-cuts
are a multiple of C4, a cubic graph H1, and a {5}-near cubic graph H2,
of orders n1 and n2 satisfying n1 + n2 = nH . By the induction,

b(H) ≤ 3
8
n1 −

1
2
+ 3

8
n2 −

1
2
≤ 3

8
nH − 3

4
.

If there are three edges between C1 and v, the edge-cut between C1∪{v}
and C2∪{u} is tight (this case is depicted in the seventh and last picture
of Figure 1). Splitting along this edge-cut, we obtain a {5}-near cubic
graph H1 which is not a multiple of K4 (the underlying simple graph
has a vertex of degree two), and a cubic graph H2, of orders n1 and n2

satisfying n1 + n2 = nH + 2. Let u′ be the new vertex of H1 and let u1

be its neighbor in C1. Observe that the edges leaving {u′, u1, v} form
a tight edge-cut in H1. Splitting along it we obtain a {5}-near cubic
graph H ′

1 of odred n1 − 2 and a multiple of C4. Hence, by induction,

b(H) ≤ 3
8
(n1 − 2)− 1

2
+ 3

8
n2 −

1
2
≤ 3

8
nH − 3

4
.

It remains to analyse the case when H is 3-vertex-connected but not
bicritical. Let u and u′ be two vertices of H such that H \ {u, u′} has no
perfect matching. Hence, there exists a subset S of vertices ofH , {u, u′} ⊆ S,
|S| = k ≥ 3, such that the number of odd components of H \ S is at least
k−1. Since the order of H is even, the number of odd components of H \S is
at least k. An argument based on counting the degrees of vertices yields that
there are exactly k components of G\S; let C1, . . . , Ck be these components.
Clearly, for each i = 1, . . . , k the cut between the component Ci and the
set S is a tight edge-cut. Let Hi be the graph containing Ci obtained by
splitting the cut; let H0 be the graph containing vertices from S obtained
after splitting all these cuts. Let ni be the order of Hi. Clearly, n0 = 2k
and

∑k
i=1 ni = nH . An easy counting argument yields that the number of

edges joining S and H \ S is between 3k and 3k + 2, hence, all the graphs
Hi (i = 0, . . . , k) are cubic, {4, 4}-near cubic or {5}-near cubic. However, at
most two graphs Hi are {4, 4}-near cubic (or one is {5}-near cubic).

If H0 is bipartite, then b(H0) = 0 and applying the induction to each Hi,
we obtain that H has at most

3
8
(n1 + · · ·+ nk)− (k − 2) · 1

2
− 2 · 1

4
= 3

8
nH − 1

2
(k − 1)
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bricks. Since k ≥ 3, we have b(H) ≤ 3
8
nH − 1.

If H0 is not bipartite, then all the k tight edge-cuts are 3-edge-cuts,
moreover, H0 is a {4, 4}-near cubic or {5}-near cubic graph and all the graphs
Hi (i = 1, . . . , k) are cubic. Applying the induction to each Hi (including
H0), we obtain that H has at most

3
8
(n0 + n1 + · · ·+ nk)− k · 1− 1

4
= 3

8
nH − 1

4
(k + 1)

bricks. Since k ≥ 3, we have b(H) ≤ 3
8
nH − 1, which finishes the proof of

the claim.

As a consequence, using that G′ has n − 4 vertices, we obtain that the
brick and brace decomposition of G−e contains at most 3

8
(n−4)− 1

4
= 3

8
n−2

bricks. Note that we made sure troughout the proof, by induction, that all
the graphs obtained by splitting cuts are 3-edge-connected and are either
bipartite, cubic, {4, 4}-near cubic, or {5}-near cubic.

We now consider the case that G−e is not matching-covered. Before prov-
ing Lemma 17, we will introduce the perfect matching polytope of graphs.

The perfect matching polytope of a graph G is the convex hull of char-
acteristic vectors of perfect matchings of G. The sufficient and necessary
conditions for a vector w ∈ RE(G) to lie in the perfect matching polytope are
known [2]:

Theorem 16 (Edmonds, 1965). If G is a graph, then a vector w ∈ RE(G)

lies in the perfect matching polytope of G if and only if the following holds:

(i) w is non-negative,

(ii) for every vertex v of G the sum of the entries of w corresponding to the
edges incident with v is equal to one, and

(iii) for every set S ⊆ V (G), |S| odd, the sum of the entries corresponding
to edges having exactly one vertex in S is at least one.

It is also well-known that conditions (i) and (ii) are necessary and sufficient
for a vector to lie in the perfect matching polytope of a bipartite graph G.

We now use these notions to prove the following result:

13



Lemma 17. Let G be a 3-edge-connected cubic graph G and e an edge of
G such that e is not contained in any cyclic 3-edge-cut of G. If G − e
is not matching-covered, then there exists an edge f of G such that G −
{e, f} is matching-covered and the number of bricks in the brick and brace
decomposition of G− {e, f} is at most n/4− 1.

Proof. Since G is not matching-covered, there exists an edge f that is con-
tained in no perfect matching avoiding e. Since G is matching covered, e
and f are vertex-disjoint. Let u and u′ be the end-vertices of f and let
G′ be the graph G \ {u, u′} − e. By Tutte’s theorem, there exists a subset
S ′ ⊆ V (G′) such that the number of odd components of the graph G′ \ S ′ is
at least |S ′| + 1. Since the number of vertices of G′ is even, the number of
odd components of G′ \ S is at least |S ′|+ 2.

Let S be the set S ′ ∪ {u, u′}. The number of edges between S and S is
at most 3|S| − 2 since the vertices u and u′ are joined by an edge. On the
other hand, the number of edges leaving S must be at least 3|S| − 2 since
the graph G is 3-edge-connected and the equality can hold only if the edge
e joins two different odd components of (G − e) \ S, these two components
have two additional edges leaving them and all other components are odd
components with exactly three edges leaving them. Let C1 and C2 be the
two components incident with e and let C3, . . . , C|S| be the other components.
Since e is contained in no cyclic 3-edge-cut of G, the components C1 and C2

are single vertices.
Let H be the graph obtained from G− {e, f} by contracting the compo-

nents C3, . . . , C|S| to single vertices, and let Hi, i = 3, . . . , |S| be the graph
obtained from Ci by introducing a new vertex incident with the three edges
leaving Ci. Each Hi, i = 3, . . . , |S| is matching-covered since it is a cubic
bridgeless graph. Since perfect matchings of Hi combine with perfect match-
ings ofH , it is enough to show that the bipartite graphH is matching-covered
to establish that G− {e, f} is matching-covered.

Observe that H is 2-edge-connected: otherwise, the bridge of H together
with e and f would form a cyclic 3-edge-cut of G.

Let v and v′ be the end-vertices of the edge e. We construct an auxiliary
graph H0 as follows: let U and V be the two color classes of H , U containing
u and u′ and V containing v and v′. Replace each edge of H with a pair of
edges, one directed from U to V whose capacity is two and one directed from
V to U whose capacity is one. In addition, introduce new vertices u0 and v0.
Join u0 to u and u′ with directed edges of capacity two and join v and v′ to
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v0 with directed edges of capacity two.

U V

u

u′

v
v′

u0

v0

U0

V0

Figure 2: A graph with no flow from u0 to v0 of order four.

We claim that there exists a flow from u0 to v0 of order four. If there is
no such flow, the vertices of H0 can be partitioned into two parts U0 and V0,
u0 ∈ U0 and v0 ∈ V0, such that the sum of the capacities of the edges from
U0 to V0 is at most three. The fact that H is 2-edge-connected implies that
{u, u′} ⊆ U0 and {v, v′} ⊆ V0. Hence, the number of edges between U0 and
V0 must be at least three since the edges between U0 and V0 correspond to an
edge-cut in G. Since the sum of the capacities of these edges is at most three,
all the three edges from U0 to V0 are directed from V to U , see Figure 2 for
illustration. However, the number of edges between U ∩U0 and V ∩U0 in H
is equal to 1 modulo three based on counting incidences with the vertices of
U ∩U0 and equal to 0 modulo three based on counting incident with vertices
of V ∩U0, which is impossible. This finishes the proof of the existence of the
flow.

Fix a flow from u0 to v0 of order four. Let ww′ be an edge of H with
w ∈ U and w′ ∈ V . Assign the edge ww′ weight of 1/3, increase this weight
by 1/6 for each unit of flow flowing from w to w′ and decrease by 1/6 for each
unit of flow from w′ to w. Clearly, the final weight of ww′ is 1/6, 1/3, 1/2 or
2/3. It is easy to verify that the sum of edges incident with each vertex of H
is equal to one. In particular, the vector with entries equal to the weights of
the edges belongs to the perfect matching polytope. Since all its entries are
non-zero, the graph H is matching-covered.

Let ni be the number of vertices of Ci, i = 3, . . . , |S|. Since H is bipartite,
its brick and brace decomposition contains no bricks by Lemma 14. The
number of bricks in the brick and brace decomposition of Ci is at most ni/4
by Lemma 13. Since n3+. . .+n|S| does not exceed n−4, the number of bricks
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in the brick and brace decomposition of G− {e, f} is at most n/4− 1.

Lemma 18. Let G be an n-vertex 3-edge-connected cubic graph G and e an
edge of G that is not contained in any cyclic 3-edge-cut of G. The number
of perfect matchings of G that avoids e is at least n/8.

Proof. If G− e is matching-covered, then b(G− e) ≤ 3n/8−2 by Lemma 15.
By Theorem 11, the number of perfect matchings of G− e is at least

3n/2− 1− n+ 1− (3n/8− 2) = n/8 + 2 ≥ n/8 .

If G − e is not matching-covered, then there exists an edge f such that
G−{e, f} is matching-covered and the number of bricks in the brick and brace
decomposition of G − {e, f} is at most n/4 − 1 by Lemma 17. Theorem 11
now yields that the number of perfect matchings of G− {e, f} is at least

3n/2− 2− n + 1− (n/4− 1) = n/4 ≥ n/8 .

4 Structure of the proof of Theorem 1

The proof is comprised by a series of lemmas – they are referenced by pairs
X.a or triples X.a.b, where X ∈ {A,B,C,D,E} and a = 0, 1, . . . and b =
1, 2, . . .. In the proof of Lemma Y.c or Lemma Y.c.d, we use Lemmas X.a
and Lemmas X.a.b with either a < c or a = c and X alphabetically preceeding
Y. The base of the whole proof is thus formed by Lemmas A.0, B.0, C.0.b,
D.0.b and E.0.b, b ∈ {1, 2, . . .}.

Lemma A.a There exists β ≥ 0 such that any 3-edge-connected n-vertex
cubic graph G contains at least (a+ 3)n/24− β perfect matchings.

Lemma B.a There exists β ≥ 0 such that any n-vertex bridgeless cubic
graph G contains at least (a+ 3)n/24− β perfect matchings.

Lemma C.a.b There exists β ≥ 0 such that for any cyclically 5-edge-
connected cubic graph G and any edge e of G, the number of perfect matchings
of an arbitrary b-expansion of G with n vertices that avoid the edge e is at
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least (a + 3)n/24− β.

Lemma D.a.b There exists β ≥ 0 such that for any cyclically 4-edge-
connected cubic graph G and any edge e of G that is not contained in any
cyclic 4-edge-cut of G, the number of perfect matchings of an arbitrary b-
expansion of G with n vertices that avoid the edge e is at least (a+3)n/24−β.

Lemma E.a.b There exists β ≥ 0 such that for any cyclically 4-edge-
connected cubic graph G and any edge e of G, the number of perfect matchings
of an arbitrary b-expansion of G with n vertices that avoid the edge e is at
least (a + 3)n/24− β.

The series A, B, C, D, and E of the lemmas will be proved in Sections 5,
6, 7, 9, and 10, respectively. Section 8 will be devoted to the study of the
connectivity of graphs obtained by cutting cyclically 4-edge-connected graphs
into pieces.

5 Proof of A-series of lemmas

Proof of Lemma A.a. If a = 0, the claim follows from Theorem 8 with β = 0.
Assume that a > 0. Let βA be the constant from Lemma A.(a − 1) and βE

the constant from Lemma E.(a − 1).b, where b is the smallest integer such
that

2b/655978752 ≥ a+3
24

b+ 3 .

Let β be the smallest integer larger than 2βA + 12 and 3βE/2 such that

2n/655978752 ≥ a+3
24

n− β

for every n.
We aim to prove with this choice of constants that any 3-edge-connected

n-vertex cubic graph G contains at least (a+ 3)n/24− β perfect matchings.
Assume for the sake of contradiction that this is not the case, and take G to
be a counterexample with the minimum order.

If G is cyclically 4-edge-connected, then every edge of G avoids at least
(a+2)n/24−βE perfect matchings by Lemma E.(a−1).b. Hence, G contains
at least

3
2
· a+2

24
n− 3

2
βE ≥ a+3

24
n− 3

2
βE
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perfect matchings, as desired.
Let G contain a cyclic 3-edge-cut E(A,B). Let eAi and eBi (i = 1, 2, 3) be

the edges corresponding to the three edges of the cut E(A,B) in G/A and
G/B, respectively; let mA

i (mB
i ) be the number of perfect matchings of G/A

(G/B) containing eAi (eBi ), i = 1, 2, 3.
If both G/A and G/B are double covered, apply Lemma A.(a − 1) to

G/A and G/B. Let nA = |A| and nB = |B|. Then G/A and G/B have
respectively at least

a+2
24

(nB + 1)− βA and a+2
24

(nA + 1)− βA

perfect matchings. Since G/A and G/B are double covered, mA
i ≥ 2 and

mB
i ≥ 2 for i = 1, 2, 3. Hence, the number of perfect matchings of G is at

least
3

∑

i=1

mA
i ·mB

i ≥

3
∑

i=1

(2 ·mA
i + 2 ·mB

i − 4) = 2 ·

3
∑

i=1

mA
i + 2 ·

3
∑

i=1

mB
i − 12 ≥

≥ 2 · a+2
24

n− 2βA − 12 ≥ a+3
24

n− 2βA − 12 .

Otherwise, Lemma 9 implies that for every cyclic 3-edge-cut E(A,B) at
least one of the graphs G/A and G/B is a Klee-graph. If both of them
are Klee-graphs, then G is a also a Klee-graph and the bound follows from
Theorem 6 and the choice of β. Hence, exactly one of the graphs G/A and
G/B is a Klee-graph. Assume that there exists a cyclic 3-edge-cut E(A,B)
such that G/A is a Klee-graph with more than b vertices. Let nA = |A| and
nB = |B|. By the minimality of G, G/B has at least (a+ 3)(nA + 1)/24− β
perfect matchings. By the choice of b, G/A has at least (a+3)(nB+1)/24+3
perfect matchings. Since G/A and G/B are matching covered, mA

i ≥ 1 and
mB

i ≥ 1, i = 1, 2, 3. The perfect matchings of G/A and G/B combine to at
least

a+3
24

(nB + 1) + 3 + a+3
24

(nA + 1)− β − 3 ≥ a+3
24

n− β

perfect matchings of G.
We can now assume that for every cyclic 3-edge-cut E(A,B) of G, one of

G/A and G/B is a Klee-graph of order at most b. In this case, contract all the
Klee sides of the cyclic 3-edge-cuts. The resulting cubic graph H is cyclically
4-edge-connected and G is a b-expansion of H . By Lemma E.(a−1).b, G has
at least (a+2)n/24− βE perfect matchings avoiding any edge present in H .
Hence, G contains at least

3
2
· a+2

24
n− 3

2
βE ≥ a+3

24
n− β
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perfect matchings, as desired.

6 Proof of B-series of lemmas

If G is a cubic bridgeless graph, E(A,B) a 2-edge-cut with A inclusion-wise
minimal, then G[A] is called a semiblock of G. Observe that the semiblocks
of G are always vertex disjoint. If G has no 2-edge-cuts, then it consists
of a single semiblock formed by G itself. For a 2-edge-cut E(A,B) of G,
let GA (GB) be the graph obtained from G[A] (G[B]) by adding an edge
fA (fB) between its two vertices of degree two. Observe that if G[A] is a
semiblock, then s(G) = s(GB) + 1, where the function s assigns the number
of semiblocks.

Lemma 19. If G is a cubic bridgeless graph, then any edge of G is avoided
by at least s(G) + 1 perfect matchings.

Proof. The proof proceeds by induction on the number of semiblocks of G.
If s(G) = 1, then the statement is folklore. Assume s(G) ≥ 2 and fix
an edge e of G. Let E(A,B) be a 2-edge-cut of G such that G[A] is a
semiblock. If e is contained in E(A,B) or in G[B], then there are at least
s(GB) + 1 = s(G) perfect matchings avoiding e in GB (if e is in E(A,B),
avoiding the edge fB). Choose among these perfect matchings one avoiding
both e and fB. This matching can be extended in two different ways to G[A]
while the other matchings avoiding e extend in at least one way. Altogether,
we have obtained s(G) + 1 perfect matchings of G avoiding e.

Assume that e is inside G[A]. GB contains at least s(GB) + 1 = s(G)
perfect matchings avoiding fB. Each of them can be combined with a perfect
matching of GA avoiding e and fA to obtain a perfect matching of G avoiding
e. Moreover, a different perfect matching of G avoiding e can be obtained by
combining a perfect matching of GB containing fB and a perfect matching
of GA avoiding e and containing fA (if it exists). If such a perfect matching
does not exist, there must be another perfect matching of GA avoiding both
e and fA. Since s(G) ≥ 2 and GA has at least two perfect matchings avoiding
e, we obtain at least s(G) + 1 perfect matchings of G avoiding e.

Proof of Lemma B.a. Let βA be the constant from Lemma A.a and set β =
(βA+2)2. First observe that Lemma A.a implies that if G is a cubic bridgeless
graph with n vertices and s semiblocks, then G has at least (a + 3)n/24 −
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s(βA+2) perfect matchings. This can be proved by induction: if s = 1 then G
is 3-edge-connected and the result follows from Lemma A.a. Otherwise take
a 2-edge-cut E(A,B) such that G[A] is a semiblock of G, with nA = |A| and
nB = |B|. Fix a pair of canonical perfect matchings of GA, one containing
fA and one avoiding it; fix another pair for GB. Each perfect matching
of GA and each perfect matching of GB can be combined with a canonical
perfect matching of the other part to a perfect matching of G. Since two
combinations of the canonical perfect matchings are counted twice, we obtain
at least

a+3
24

nA − βA + a+3
24

nB − (s− 1)(βA + 2)− 2 = a+3
24

n− s(βA + 2)

perfect matchings of G, which concludes the induction.
Consequently, if the number of semiblocks of G is smaller than βA + 3,

the assertion of Lemma B.a follows from Lemma A.a by the choice of β.
The rest of the proof proceeds by induction on the number of semiblocks

of G, under the assumption that G has at least βA + 3 semiblocks. Let
E(A,B) be a 2-edge-cut such that G[A] is a semiblock and let nA = |A|
and nB = |B|. By the induction, GB has at least (a + 3)nB/24 − β perfect
matchings, and by Lemma A.a, GA has at least (a + 3)nA/24 − βA perfect
matchings. LetmA

f andmA
∅ (mB

f andmB
∅) be the number of perfect matchings

in GA (GB) containing and avoiding the edge fA (fB). Clearly, m
A
f and mB

f

are non-zero, and mA
∅ ≥ 2; by Lemma 19, mB

∅ ≥ s(GB) + 1 ≥ βA + 3. Then
(mA

∅ − 2) · (mB
∅ − βA − 3) ≥ 0 and the number of perfect matchings of G is

at least

mA
f ·mB

f +mA
∅ ·mB

∅ ≥ mA
f +mB

f − 1 + (βA + 3)mA
∅ + 2mB

∅ − 2(βA + 3) ≥

≥ mA
f +mA

∅ +mB
f +mB

∅ + (βA + 2)mA
∅ +mB

∅ − 2βA − 7

≥ a+3
24

nA − βA + a+3
24

nB − β + 2(βA + 2) + (βA + 3)− 2βA − 7

≥ a+3
24

n− β .

7 Proof of C-series of lemmas

Given an edge e in a cyclically 5-edge-connected cubic graph G, there are
several possible paths that can be split in such a way that perfect matchings
of the reduced graph H avoiding an edge correspond to perfect matchings of
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G avoiding e. In the following two lemmas we prove that at least three of
four such graphs H are 4-almost cyclically 4-edge-connected.

Lemma 20. Let G be a cyclically 5-edge-connected cubic graph with at least
12 vertices and let v1v2v3v4 be a path in G. Let v′4 be the neighbor of v3
different from v2 and v4. At least one of the graphs H and H ′ obtained from
G by splitting off the paths v1v2v3v4 and v1v2v3v

′
4, respectively, is 4-almost

cyclically 4-edge-connected.

Proof. Let v′1 be the neighbor of v2 different from v1 and v3. By Lemma
3, both H and H ′ are cyclically 3-edge-connected. Assume that neither H
nor H ′ is cyclically 4-edge-connected. i.e., H contains a cyclic 3-edge-cut
E(A,B) and H ′ contains a cyclic 3-edge-cut E(A′, B′). By Lemma 3, we
can assume by symmetry that v1 ∈ A ∩ A′, v′1 ∈ B ∩ B′, v4 ∈ A ∩ B′ and
v′4 ∈ A′ ∩B, see Figure 3.

v1
v2 v3

v4

v′
1

v′
4

A′ B′

A

B

Figure 3: After splitting off the paths v1v2v3v4 and v1v2v3v
′
4 in G we obtain

cyclic edge-cuts E(A,B) and E(A′, B′) in H and H ′, respectively.

We first show that at least one ofG[A], G[A′], G[B] andG[B′] is a triangle.
Assume that this is not the case. Hence, each of A, A′, B and B′ contains
at least four vertices. Let d(X) be the number of edges leaving a vertex set
X in G.

Assume first that |A ∩ A′| = 1. Since |A| ≥ 4 and |A′| ≥ 4, it follows
that |A ∩ B′| ≥ 3 and |A′ ∩ B| ≥ 3. Since G is cyclically 5-edge-connected,
then d(A ∩ B′) ≥ 5 and d(A′ ∩ B) ≥ 5. As there is exactly one edge from
A∩B′ and one edge from A′∩B leading to {v2, v3}, |E(A,B)|+ |E(A′, B′)| ≥
d(A ∩B′) + d(B ∩A′)− 2 ≥ 8 which is a contradiction.

We conclude that |A∩A′| ≥ 2 and, by symmetry, |A∩B′| ≥ 2, |A′∩B| ≥ 2
and |B∩B′| ≥ 2. Since G is cyclically 5-edge-connected, we have d(X∩Y ) ≥
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4 for each (X, Y ) ∈ {A,B} × {A′, B′} (with equality if and only if X ∩ Y
consists of two adjacent vertices). As from each of the four sets X ∩ Y ,
there is a single edge going to {v2, v3}, we obtain that the sum of d(X ∩ Y ),
(X, Y ) ∈ {A,B} × {A′, B′}, is at most 2|E(A,B)| + 2|E(A′, B′)| + 4 = 16.
Hence, all four sets X ∩ Y consist of two adjacent vertices and there are
no edges between A ∩ A′ and B ∩ B′, and between A ∩ B′ and A′ ∩ B. In
this case G must contain a cycle of length 3 or 4. Since G has at least 8
vertices, it would imply that G contains a cyclic edge-cut of size at most
four, a contradiction.

We have shown that for any cyclic 3-edge-cutsE(A,B) inH and E(A′, B′)
in H ′, at least one of the graphs G[A], G[B], G[A′] and G[B′] is a triangle.
This implies that in H or H ′, say H , all cyclic 3-edge-cuts E(A,B) are such
that G[A] or G[B] is a triangle. The only way a triangle can appear is that
there is a common neighbor of one of the vertices v1 and v′1 and one of the
vertices v4 and v′4. Since G is cyclically 5-edge-connected, any pair of such
vertices have at most one common neighbor (otherwise, G would contain a 4-
cycle). In particular, H has at most two triangles and it is 4-almost cyclically
4-edge-connected.

Lemma 21. Let G be a cyclically 5-edge-connected cubic graph with at least
12 vertices and let v1v2v3v4 and v1v2v

′
3v

′
4 be paths in G with v3 6= v′3. At

least one of the graphs H and H ′ obtained from G by splitting off the paths
v1v2v3v4 and v1v2v

′
3v

′
4, respectively, is 4-almost cyclically 4-edge-connected.

Proof. Let v5 be the neighbor of v3 different from v2 and v4, and let v′5 be
the neighbor of v′3 different from v2 and v′4. Again, by Lemma 3, both H
and H ′ are cyclically 3-edge-connected. We assume that neither H nor H ′

is cyclically 4-edge-connected and consider cyclic 3-edge-cuts E(A,B) of H
and E(A′, B′) of H ′. For the sake of contradiction, assume that each of A, B,
A′, and B′ has the size at least four. By Lemma 3, we can also assume that
{v1, v4} ⊆ A and {v′3, v5} ⊆ B. We claim that both v′4 and v′5 also belong to
B. Clearly, at least one of them does (otherwise, G would contain a cyclic
2-edge-cut, which is impossible by Lemma 3). Say, v′5 does and v′4 does not.
Let C = A ∪ {v2, v3, v

′
3} and D = B \ {v′3}. The set D contains the vertices

v5 and v′5, which are distinct since G has no 4-cycle. The edge-cut E(C,D)
is a 4-edge-cut in G, and since G is cyclically 5-edge-connected, we have
D = {v5, v

′
5} and thus G[B] is a triangle as desired. A symmetric argument

applies if v′4 is contained in B and v′5 is not. We conclude that we can restrict
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our attention without loss of generality to the following case: {v1, v4} ⊆ A,
{v′3, v5, v

′
4, v

′
5} ⊆ B, {v1, v

′
4} ⊆ A′ and {v3, v

′
5, v4, v5} ⊆ B′, see Figure 4.

v1

v2
v3

v′
3

v4

v5
v′
5

v′
4

A′ B′

A

B

Figure 4: After splitting off the paths v1v2v3v4 and v1v2v
′
3v

′
4 in G we obtain

cyclic edge-cuts E(A,B) and E(A′, B′) in H and H ′, respectively.

As a consequence, |X ∩ Y | ≥ 1 for each (X, Y ) ∈ {A,B} × {A′, B′} and
the set B ∩B′ contains at least two vertices (v5 and v′5). If |A∩A′| = 1, then
both |A ∩ B′| and |B ∩ A′| are at least three. Consequently, d(A ∩ B′) ≥ 5
and d(A′ ∩B) ≥ 5 where d(X) is the number of edges leaving X in G. Since
|E(A,B)| + |E(A′, B′)| ≥ d(A ∩ B′) + d(A′ ∩ B) − 2 ≥ 8, this case cannot
happen. Similarly, we obtain a contradiction if |A∩B′| = 1 by inferring that
|E(A,B)| + |E(A′, B′)| ≥ d(A ∩ A′) + d(B ∩ B′) − 3 ≥ 7. Hence, each of
the numbers d(X ∩ Y ), (X, Y ) ∈ {A,B} × {A′, B′}, is at least four (with
equality if and only if X ∩Y consists of two adjacent vertices) and their sum
is at least 16. Since exactly five edges leave the sets X ∩ Y to {v2, v3, v

′
3},

we obtain that the sum of d(X ∩ Y ), (X, Y ) ∈ {A,B} × {A′, B′}, is at most
2|E(A,B)|+2|E(A′, B′)|+5 = 17. As a consequence, three of the sets X∩Y
consists of two adjacent vertices and there are no edges between A ∩A′ and
B∩B′, and between A∩B′ and A′∩B. In this case G must contain a cycle of
length 3 or 4. Since G has at least 8 vertices, it would imply that it contains
a cyclic edge-cut of size at most four, a contradiction.

We proved that for any cyclic 3-edge-cuts E(A,B) in H and E(A′, B′) in
H ′, at least one of the graphs G[A], G[B], G[A′] and G[B′] is a triangle. The
rest of the proof follows the lines of the proof of Lemma 20.

We can now prove the lemmas in the C series.

Proof of Lemma C.a.b. Let G be a cyclically 5-edge-connected graph, e =
v1v2 be an edge of G, and H be a b-expansion of G with n vertices. Our
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aim is to prove that for some β depending only on a and b, H has at least
(a+3)n/24−β perfect matchings avoiding e. If a = 0, consider the graph H ′

obtained from H by contracting the Klee-graphs corresponding to v1 and v2
into two single vertices. This graph is 3-edge-connected and e is not contained
in a cyclic 3-edge-cut. Moreover, H ′ has at least n − 2b + 2 vertices, so by
Lemma 18, H ′ has at least n/8− (b−1)/4 perfect matchings avoiding e, and
all of them extend to perfect matchings of H avoiding e. The result follows
if β ≥ (b− 1)/4.

Assume that a ≥ 1, and let βE be the constant from Lemma E.(a− 1).b.
Further, let v3 and v′3 be the neighbors of v2 different from v1, let v4 and
v5 be the neighbors of v3 different v2, and let v′4 and v′5 be the neighbors of
v′3 different v2. Consider the graphs G1, G2, G3 and G4 obtained from G
by splitting off the paths v1v2v3v4, v1v2v3v5, v1v2v

′
3v

′
4 and v1v2v

′
3v

′
5 and after

possible drop of at most four vertices (replacing two triangles with vertices)
to obtain a cyclically 4-edge-connected graph. Let e also denote the new
edges v1v4 in G1, v1v5 in G2, v1v

′
4 in G3 and v1v

′
5 in G4. By Lemmas 20

and 21, at least three of the graphs Gi, say G1, G2, and G3, are cyclically
4-edge-connected, and by Lemma 3 the graph G4 is 3-edge-connected and e
is not contained in a cyclic 3-edge-cut of G4.

e

H4H3

H2H1

e

H

e e

e

Figure 5: A perfect matching of H avoiding e and the corresponding perfect
matchings of H1, H3 and H4 avoiding e.

For every 1 ≤ i ≤ 4, let Hi be the b-expansion of Gi corresponding to H
(expand the vertices present both in G and Gi, i.e., all the vertices but at
most 8 vertices removed for Gi, i = 1, 2, 3 and 2 vertices removed from G4).
In particular, H1, H2 and H3 have at least n−8b vertices and H4 has at least
n − 2b vertices. By Lemma E.(a − 1).b, each of the graphs H1, H2 and H3

contains at least
a+2
24

(n− 8b)− βE

perfect matchings avoiding e and the graph H4 contains at least (n − 2b)/8
such perfect matchings by Lemma 18. Observe that every perfect matching
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of H avoiding e corresponds to a perfect matching in at most three if the
graphs H1, H2, H3, and H4 (see Figure 5 for an example, where the perfect
matchings are represented by thick edges). We obtain that H contains at
least

1

3
·
(

3 ·
(

a+2
24

(n− 8b)− βE

)

+ n−2b
8

)

= a+3
24

n− βE − b
12
(4a + 9)

perfect matchings avoiding e. The assertion of the lemma now follows by
taking β = max{βE + b(4a+ 9)/12, (b− 1)/4}.

8 Cutting cyclically 4-edge-connected graphs

Consider a 4-edge-cut E(A,B) = {e1, . . . , e4} of a cubic graph G, and let vi
be the end-vertex of ei in A. Let {i, j, k, ℓ} be a permutation of {1, 2, 3, 4}.
The graph GA

ij is the cubic graph obtained from G[A] by adding two edges
eij and ekℓ betwen vi and vj and between vk and vℓ. The graph GA

(ij) is the

cubic graph obtained from G[A] by adding one vertex vij adjacent to vi and
vj, one vertex vkℓ adjacent to vk and vℓ, and by joining vij and vkℓ by an
edge denoted by eA(ij). The edge between vi and vij is denoted by eAi . We

sometimes write Gij, G(ij) and e(ij) instead of GA
ij, G

A
(ij) and eA(ij) when the

side of the cut is clear from the context. The constructions of these two types
of graphs are depicted in Figure 6.

A

e1

e2

e3

e4

eA
1

eA
4

GA
12 GA

(12)

e12

e34

eA
3

eA
2 e(12)

v12

v34

Figure 6: The graphs GA
12 and GA

(12).

Lemma 22. Let G be a cyclically 4-edge-connected graph and E(A,B) a
cyclic 4-edge-cut in G. All three graphs GA

(12), GA
(13) and GA

(14) are 3-edge-

connected with any of the edges eAi not being contained in a cyclic 3-edge-cut.
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If G[A] is not a cycle of length of four, then at least two of these graphs are
cyclically 4-edge-connected.

Proof. Recall that according to Observation 2, any 2-edge-cut in a cubic
graph is cyclic. Hence, 3-edge-connected and cyclically 3-edge-connected is
the same for cubic graphs.

First we prove that all three graphs GA
(12), G

A
(13) and GA

(14) are 3-edge-

connected. Assume GA
(12) has a (cyclic) 2-edge-cut E(C,D). If both v12

and v34 are in D, then E(C,D′ ∪ B) is a 2-edge-cut in G (where D′ = D \
{v12, v34}), which is a contradiction with G being cyclically 4-edge-connected,
see Figure 7, left. Therefore, by symmetry we can assume v12 ∈ C and
v34 ∈ D. Let C ′ = C \ {v12} and D′ = D \ {v34}, see Figure 7. Then
E(C ′, D′ ∪ B) is a cyclic 3-edge-cut in G unless C ′ contains no cycle, which
can happen only if it consists of a single vertex. Similarly we conclude thatD′

consists of a single vertex. But then A has no cycle, which is a contradiction.

C D′ B

C ′

D′

B

C

D′

B

Figure 7: Smaller cyclic edge-cuts of G in the proof of Lemma 22.

Next, we prove that none of the edges of eAi is contained in a cyclic 3-edge
cut in GA

(12), G
A
(13) or G

A
(14). For the sake of contradiction, assume GA

(12) has a

cyclic 3-edge-cut E(C,D) containing e1. By symmetry, suppose v1 ∈ C and
v12 ∈ D. We claim that v2 and v34 belong to D: if not, moving v12 from D
to C yields a 2-edge-cut in GA

(12). Let D
′ = D \ {v12, v34}, see Figure 7, right.

Then E(C,D′ ∪B) is a cyclic 3-edge-cut in G, a contradiction again.
Finally, assume that GA

(12) and GA
(13) are not cyclically 4-edge-connected.

Let E(C,D) and E(C ′, D′) be cyclic 3-edge-cuts in GA
(12) and GA

(13), respec-

tively. Just as above, it is easy to see that v12 and v34 (v13 and v24) do not
belong to the same part of the cut (C,D) (the cut (C ′, D′) respectively). Let
v12 ∈ C, v34 ∈ D, v13 ∈ C ′, v24 ∈ D′. Using the same arguments as in the
previous paragraph we conclude that v1 ∈ C ∩C ′, v2 ∈ C ∩D′, v3 ∈ D ∩C ′,
v4 ∈ D ∩D′.

For each (X, Y ) ∈ {C,D}×{C ′, D′} the number of edges leaving X∩Y in
G is at least 3 (with equality if and only if X ∩Y consists of a single vertex).
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As from each of the four sets X ∩ Y there is a single edge going to B, the
number of edges among the four sets within G[A] is at least 1

2
(4 · 2) = 4. On

the other hand, since E(C,D) and E(C ′, D′) are 3-edge-cuts and the edges
e(12) and e(13) are contained in the cuts, the number of edges among the four
sets within G[A] is at most 4. Hence, all four sets X ∪ Y consist of a single
vertex vi and there are no edges between C ∩ C ′ and D ∩ D′, and between
C ∪D′ and C ′ ∪D. Since there can be no parallel edges in G, for the other
four pairs of X and Y there is precisely one edge between the corresponding
vertices in X and Y . It is easy to see that in this case G[A] is a cycle of
length four.

Lemma 23. Let G be a cyclically 4-edge-connected graph and E(A,B) a
cyclic 4-edge-cut in G. If G[A] is neither a cycle of length of four nor the
6-vertex graph depicted in Figure 8, then at least one of the following holds:

• all three graphs GA
(12), G

A
(13) and GA

(14) are cyclically 4-edge-connected,

• for some 2 ≤ i 6= j ≤ 4, the graphs GA
(1i), G

A
(1j) and GA

1i are cyclically
4-edge-connected.

G[A]A

Figure 8: The exceptional graph of Lemma 23.

Proof. We assume that G[A] is not a cycle of length four. For the sake of
contradiction, suppose that GA

(12) and GA
(13) are cyclically 4-edge-connected,

but GA
12, G

A
13, and GA

(14) are not. Let E(C2, D2), E(C3, D3), and E(C4, D4)

be cyclic 2- or 3-edge-cuts in GA
12, G

A
13, and GA

(14), respectively. Note that G
A
12

and GA
13 can contain 2-edge-cuts.

Consider the vertices v1, v2, v3, and v4. If at least three of them are in
D2, then E(C2, D2 ∪ B) is a cyclic 2- or 3-edge-cut in G. If v1 and v3 are in
C2 and v2 and v4 in D2, then E(C2, D2 ∪B) is a cyclic 2- or 3-edge-cut in G
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again. Therefore, by symmetry we can assume v1, v2 ∈ C2 and v3, v4 ∈ D2.
Analogously, we can assume v1, v3 ∈ C3 and v2, v4 ∈ D3. Using the same
arguments as in the proof of Lemma 22 we conclude that v1, v4, v14 ∈ C4 and
v2, v3, v23 ∈ D4. Hence, the sets X1 = C2 ∩ C3 ∩ C4, X2 = C2 ∩ D3 ∩ D4,
X3 = D2∩C3∩D4, and X4 = D2∩D3∩C4 are non-empty, since they contain
v1, v2, v3, and v4, respectively.

Let X5 = D2 ∩ D3 ∩ D4, X6 = D2 ∩ C3 ∩ C4, X7 = C2 ∩ D3 ∩ C4,
X8 = C2 ∩C3 ∩D4. Let d(X) be the number of edges leaving a vertex set X
in G. We have d(Xi) ≥ 3 for each i such that Xi is non-empty, in particular
for i = 1, 2, 3, 4 (with equality if and only if Xi consists of a single vertex).
As from each of the four sets X1, X2, X3, X4 there is a single edge going to
B, the number of edges among the eight sets Xi (1 ≤ i ≤ 8) within G[A] is
at least 1

2
(4 · 2+ k · 3) = 4+ 3

2
k, where k is the number of non-empty sets Xi

for i = 5, 6, 7, 8.
On the other hand, the number of edges among the eight sets is at most 8,

since there are three 3-edge-cuts, and the edge e(14) is in E(C4, D4). There-
fore, k ≤ 2.

If k = 0, the number of edges among the four sets Xi, i = 1, 2, 3, 4, is at
least 4. On the other hand, each edge is counted in precisely two cuts, thus
the number of edges is exactly 4 and the four sets are singletons. In this case
G[A] is a cycle of length four, a contradiction.

Assume that k = 1 and fix i ∈ {1, 2, 3, 4} such that X4+i is non-empty.
The number of edges among the five non-empty sets is at least 6 > 4 + 3

2
.

On the other hand, each edge from Xi (there are at least 2 such edges) is
counted in at least two cuts, thus, the number of edges is at most 8− 2 = 6.
Therefore, the number of edges is precisely 6 and four of the five sets are
singletons. Moreover, precisely two edges are contained in two edge-cuts
and four edges are contained in precisely one edge-cut. The four edges can
only join Xi+4 to some of the sets X1, X2, X3, X4 except for Xi. Hence, Xi+4

contains at least two vertices, thus, X1, X2, X3, X4 are singletons. Since there
are no edges between Xi and Xi+4, there are at least two edges between Xi+4

and some Xj, j 6= i. But then there are at most three edges leaving Xi+4∪Xj

(which contains at least three vertices) in G, a contradiction with G being
cyclically 4-edge-connected.

Assume now that k = 2 and let Xi+4 and Xj+4, 1 ≤ i < j ≤ 4 be
non-empty. The number of edges among the six non-empty sets is at least
7 = 4 + 3

2
· 2 and at most 8. If the number of edges is 8, each of them is

contained in one edge-cut only. Then the edges leaving Xi (there are at least
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two of them) can only end in Xj+4, and the edges leaving Xj can only end
in Xi+4. Since the edges between Xi and Xj+4 and between Xj and Xi+4

belong to the same cut, this cut contains at least four edges, a contradiction.
Therefore, the number of edges is 7; all the six sets are singletons and precisely
one edge belongs to two cuts. Since there can be at most one edge between
any two sets, the edge contained in two cuts is the edge from vi ∈ Xi to
vj ∈ Xj. The remaining six edges are the three edges from vi+4 ∈ Xi+4 to
all vk, k ∈ {1, 2, 3, 4} \ {i} and the three edges from vj+4 ∈ Xj+4 to all vk,
k ∈ {1, 2, 3, 4} \ {j}. The graph G[A] is thus isomorphic to the exceptional
graph depicted in Figure 8.

Cyclic 4-edge-cuts containing a given edge e in a cyclically 4-edge-connected
graph turn out to be linearly ordered:

Lemma 24. Let G be a cyclically 4-edge-connected graph, and e an edge
contained in a cyclic 4-edge-cut of G. There exist A1 ⊆ A2 ⊆ · · · ⊆ Ak

and Bi = V (G) \ Ai, i = 1, . . . , k, such that every cyclic 4-edge-cut of G
containing e is of the form E(Ai, Bi).

Proof. Consider two cyclic 4-edge-cuts E(A,B) and E(A′, B′), such that the
end-vertices of e lie in A∩A′ andB∩B′ respectively. Observe that A,B,A′, B′

all induce 2-edge-connected graphs. In order to establish the lemma, it is
enough to show that A∩B′ = ∅ or A′ ∩B = ∅. If this is not the case, then
for every X ∈ {A ∩ A′, B ∩B′} and Y ∈ {A ∩ B′, B ∩ A′} there are at least
two edges between X and Y . This implies that E(A,B) and E(A′, B′) both
contain at least four edges distinct from e, a contradiction.

9 Proof of D-series of lemmas

The idea to prove the D-series of the lemmas will be to split the graphs along
cyclic 4-edge-cuts, play with the pieces to be sure that they are cubic with
decent connectivity, apply induction on the pieces, and combine the perfect
matchings in the different parts. However, we will see that combining perfect
matchings will be quite difficult whenever a 2-edge-cut appears in one of the
sides of a cyclic 4-edge-cut. Most of the results in this section (Lemmas 26
to 30) will allow us to overcome this difficulty.

Lemma 25. If G is a cyclically 4-edge-connected cubic bipartite graph with
at least 8 vertices, then every edge is contained in at least 3 perfect matchings
of G.

29



Proof. Let e = uv be an edge of G. Observe that the graph H = G \ {u, v}
has minimum degree two, since otherwise G would contain a cyclic edge-
cut of size two or three. Since G is cubic and bridgeless, it has a perfect
matching containing e, and H has a perfect matching M . Our aim is to
find two different (but not necessarily disjoint) alternating cycles in H with
respect to M . This will prove that H has at least three perfect matchings,
which will imply that G has at least three perfect matchings containing e.

Let f be any edge contained inM . Start marching from f in any direction,
alternating the edges in M and the edges not in M until you hit the path
you marched on. Since G is bipartite, this yields an alternating cycle. If
the cycle does not contain f , start marching from f in the other direction
and obtain a different alternating cycle. If the cycle contains f , consider an
edge not contained in the alternating cycle (such an edge exists since H has
at least six vertices) and start marching on it until you hit a vertex visited
before; this yields another alternating cycle.

Let G be a cyclically 4-edge-connected graph. If E(A,B) is a cyclic 4-
edge-cut, we say that B is solid if G[B] does not have a 2-edge-cut with at
least two vertices on each of its sides, in particular, G[B] must have at least
eight vertices.

For a graph containing only vertices of degree two and three, the vertices
of degree two are called corners. If a graph is comprised of a single edge, its
two end-vertices are also called corners. We call twisted net a graph being
either a 4-cycle, or the graph inductively obtained from a twisted net G and
a twisted net (or a single edge) H by adding edges uv and u′v′ to the disjoint
union of G and H , where u, u′ and v, v′ are corners of G and H , respectively.
If H is a single edge, this operation is called an incrementation; it is the same
as adding a path of length three between two corners of G. If H is a twisted
net, the operation is called a multiplication. Observe that every twisted net
has exactly four corners, and that the special graph on six vertices depicted
in Figure 8 is a twisted net. The following lemma will be useful in the proof
of lemmas in Series D:

Lemma 26. Let G be a cyclically 4-edge-connected graph with a distinguished
edge e that is not contained in any cyclic 4-edge-cut. If for every cyclic 4-
edge-cut E(A,B) with e ∈ G[A], B is not solid, then for each such cut G[B]
is a twisted net.

Proof. Proceed by induction on the number of vertices inG[B]. If the number
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of vertices of B is at most six, the claim clearly holds. If B has more than
six vertices, it can be split into parts as B is not solid. If they both contain
a cycle, the claim follows by induction. Otherwise, one of them contains a
cycle and the other is just an edge; the claim again follows by induction.

Our aim is now to prove that twisted nets have an exponential number
of perfect matchings (Lemma 27), and an exponential number of matchings
covering all the vertices except two corners (Lemma 30). In order to prove
this second result we need to consider the special case of bipartite twisted
nets, and prove stronger results about them (Lemma 28).

Lemma 27. If G is a twisted net with n vertices, then G has at least 2n/18+2/3

perfect matchings.

Proof. We proceed by induction on n. First assume that G was obtained
from a single 4-cycle by a sequence of k ≤ 6 incrementations. If k ≤ 1, then
n ≤ 6 and G has at least 2 ≥ 2n/18+2/3 perfect matchings. If 2 ≤ k ≤ 6 it
can be checked that G has at least 3 perfect matchings. Since n ≤ 16, we
have 3 ≥ 2n/18+2/3 and the claim holds. Assume now that there exist two
twisted nets H1 and H2 on n1 and n2 vertices respectively, so that G was
obtained from at most six incrementations of the multiplication of H1 and
H2. In this case n1 + n2 ≥ n − 12 and by the induction, G has at least
2n1/18+2/3 · 2n2/18+2/3 ≥ 2n/18+2/3 perfect matchings.

So we can now assume that G was obtained from a twisted net H0 by a
sequence of seven incrementations, say H1, . . . , H7 = G. For a twisted net
Hi with corners v1i , . . . , v

4
i , and for any X ⊆ {1, . . . , 4} define the quantities

mHi

X as the number of perfect matchings of Hi \ {vji , j ∈ X}. Assume that
H1 is obtained (without loss of generality) by adding the path v10v

2
1v

1
1v

2
0 to

H0, and set v31 = v30 and v41 = v40 . We observe that mH1

∅ = mH0

∅ +mH0

12 and
mH1

12 = mH0

∅ . Moreover, for every pair {i, j} ⊂ {1, 2, 3, 4} distinct from {1, 2},
we have that mH1

ij ≥ mH0

ij . Therefore, mH7

∅ ≥ 2mH0

∅ . As a consequence, G

has at least 2 · 2(n−14)/18+2/3 ≥ 2n/18+2/3 perfect matchings, which concludes
the proof of Lemma 27.

Lemma 28. Let G be a bipartite twisted net with n vertices. Then G has
a pair of corners in each color class, say u1, u2 and v1, v2, and the graphs
G\{u1, u2, v1, v2} and G\{ui, vj} have a perfect matching for any i, j ∈ {1, 2}.
Moreover, for some i, j ∈ {1, 2}, the graph G \ {ui, vj} has at least 2n/18−2/9

perfect matchings.
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Proof. The fact that each color class contains two corners of G, as well as
the existence of perfect matchings of G \ {u1, u2, v1, v2}, and G \ {ui, vj} for
any i, j ∈ {1, 2}, easily follow by induction on n (we consider that the empty
graph contains a perfect matching): if G was obtained from a twisted net H
by an incrementation, a matching avoiding all four corners of G is the same as
a matching avoiding two corners of different colors in H (which is assumed to
exist by the induction). A matching avoiding two corners of different colors
in G is either a perfect matching of H or a matching avoiding two corners of
different colors in H . So we can assume that G was obtained from H1 and
H2 by a multiplication. In this case a matching avoiding all four corners of G
can be obtained by combining matchings avoiding all four corners in H1 and
H2. Let u1, v1 be the corners of G lying in H1 and u2, v2 be the corners of G
lying in H2. First assume that u1, v1 are in one color class of G, and u2, v2
are in the other one. In this case, matchings of G avoiding two corners of
different colors are obtained by combining matchings of H1 and H2 avoiding
two corners of different colors. Otherwise, since G is bipartite, it means
without loss of generality that u1, u2 are in one color class, and v1, v2 are in
the other color class. A perfect matching of G \ {u1, v1} is then obtained
by combining a perfect matching of H1 \ {u1, v1} and a perfect matching of
H2. Let w1 be the corner of H1 of the same color as v1, and let w2 be the
corner of H2 with the same color as u2. A perfect matching of G \ {u1, v2}
is obtained by combining a perfect matching of H1 \ {v1, w1} and a perfect
matching of H2 \ {v2, w2}. All other matchings of G avoiding two corners of
different colors are obtained in one of these two ways.

Consider now the graph H obtained from G by adding two adjacent
vertices u, v and by joining u to v1, v2 and v to u1, u2. This graph is cu-
bic, bridgeless, and bipartite, so by Theorem 7 it has at least (4/3)(n+2)/2

perfect matchings avoiding the edge uv. As a consequence, two corners of
G in different color classes, say u1, v1 are such that G \ {u1, v1} has at least
1
4
(4/3)(n+2)/2 ≥ 2n/6−5/3 perfect matchings (we use that 21/3 ≤ 4/3). If n = 4,

G has at least 1 = 24/18−2/9 matching avoiding two corners. If 6 ≤ n ≤ 12,
it can be checked that G has at least 2 ≥ 2n/18−2/9 matchings avoiding two
corners. If n ≥ 14, 2n/6−5/3 ≥ 2n/18−1/9 ≥ 2n/18−2/9, which concludes the
proof.

Lemma 29. Suppose G is a non-bipartite twisted net with n vertices and
corners v1, . . . , v4. If for every 1 ≤ i < j ≤ 4, we denote by mG

ij the number of

perfect matchings of G\{vi, vj}, then
∏

1≤i<j≤4m
G
ij ≥ 2n/18+4/9. In particular,
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all values mG
ij are at least one.

Proof. We prove the statement by induction on n. There is only one non
bipartite twisted net of order at most six (it is the special graph of Figure 8).
In this graph, one valuemG

ij is two and the others are one. Hence, the product

of the mG
ij is at least 2 ≥ 26/18+4/9. Assume now that G was obtained from

H by adding a path v′1v2v1v
′
2 between v′1 and v′2. By Lemma 27, G \ {v1, v2}

has at least 2(n−2)/18+2/3 ≥ 2n/18+4/9 perfect matchings. So we only have to
make sure that all the other values mG

ij are at least one. If the graph H is not
bipartite, then by the induction, for any pair {x, y} of corners of G distinct
from {v1, v2}, the graph G\{x, y} also has a perfect matching. If H is bipar-
tite, then v′1 and v′2 must lie in the same color class. By Lemma 28, H has
a matching covering all the vertices except the four corners, and matchings
covering all the vertices except any two corners belonging to different color
classes. All these matchings extend to perfect matchings of G\{x, y} for any
pair of corners {x, y} distinct from {v1, v2}.

So we can assume that G was obtained from two twisted nets H1 and
H2 of order n1, n2 by a multiplication. Let v1, v3 be the two corners of G
lying in H1, and let v2, v4 be the two corners of G lying in H2. If none
of H1, H2 is bipartite, then by induction it is easy to check that mG

ij ≥ 1
for all 1 ≤ i < j ≤ 4. Moreover, since H1 \ {v1, v3} has a perfect matching,
G\{v1, v3} has at least 2n2/18+2/3 perfect matchings by Lemma 27. Similarly,
G \ {v2, v4} has at least 2n1/18+2/3 perfect matchings. As a consequence,

∏

1≤i<j≤4

mG
ij ≥ 2n2/18+2/3 · 2n1/18+2/3 ≥ 2n/18+4/3 ≥ 2n/18+4/9.

Assume now that one of H1, H2, say H1, is bipartite, while the other
is not bipartite. Denote by u1, u3 the corners of H1 distinct from v1, v3,
in such way that the graphs H1 \ {u1, v1} and H1 \ {u3, v3} both have a
perfect matching (this is possible by Lemma 28). Also denote by u2 and u4

the corners of H2 adjacent to u1 and u3 in G, respectively. Observe that
the perfect matchings of H2 \ {v2, v4} combine with perfect matchings of
H1 to give perfect matchings of G \ {v2, v4}, and that perfect matchings of
H2 \ {u2, u4} combine with perfect matchings of H1 \ {u1, v1, u3, v3} (their
existence is guaranteed by Lemma 28) to give perfect matchings ofG\{v1, v3}.
Also observe that for any i ∈ {1, 3} and j ∈ {2, 4}, a perfect matching of
G \ {vi, vj} can be obtained by combining perfect matchings of H1 \ {vi, ui}
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and H2 \ {ui+1, vj}. As a consequence,

∏

1≤i<j≤4

mG
ij ≥ 2n1/18+2/3 ·

∏

1≤i<j≤4

mH2

ij ≥ 2n1/18+2/3 · 2n2/18+4/9 ≥ 2n/18+4/9.

Assume now that H1, H2 are both bipartite. Since G is not bipartite,
without loss of generality it means that v1, v3 have different colors in H1

whereas v2, v4 have the same color in H2. Using that H2 has a perfect match-
ing and a matching covering all the vertices except the four corners, and that
both H1 and H2 have matchings covering all the vertices except any two cor-
ners in different color classes gives that for any pair {u, v} ⊂ {v1, v2, v3, v4},
G \ {u, v} has a perfect matching. Hence, all values mG

ij are at least one.
Again, we denote by u1, u3 the corners of H1 distinct from v1, v3, and by
u2 and u4 the corners of H2 adjacent to u1 and u3 in G, respectively. By
Lemma 28, without loss of generality one of H1 \ {v1, v3}, H1 \ {u1, u3}, and
H1 \ {v1, u1} has at least 2n1/18−2/9 perfect matchings. If H1 \ {v1, v3} has
at least 2n1/18−2/9 perfect matchings, then by combining them with perfect
matchings of H2 we obtain at least 2n1/18−2/9 · 2n2/18+2/3 ≥ 2n/18+4/9 perfect
matchings of G \ {v1, v3}. Assume that this is not the case, then we still ob-
tain at least 2n2/18+2/3 such perfect matchings since v1, v3 have different colors
in H1. If H1\{u1, u3} has at least 2n1/18−2/9 perfect matchings, they combine
with perfect matchings of H2 \ {u2, v2, u4, v4} to give at least 2n1/18−2/9 per-
fect matchings of G \ {v2, v4}. If H1 \ {v1, u1} has at least 2n1/18−2/9 perfect
matchings, they combine with perfect matchings of H2 \ {u2, v2} to give at
least 2n1/18−2/9 perfect matchings of G \ {v1, v2}. In any case,

∏

1≤i<j≤4

mG
ij ≥ 2n1/18−2/9 · 2n2/18+2/3 ≥ 2n/18+4/9.

Lemmas 28 and 29 have the following immediate consequence:

Lemma 30. If G is a twisted net with n vertices, then there exist two corners
u, v of G such that G \ {u, v} has at least 2n/108−1/27 perfect matchings.

We now use these results to prove the D series of the lemmas.

Proof of Lemma D.a.b. Let G be a cyclically 4-edge-connected graph, e an
edge of G not contained in a cyclic 4-edge-cut, and H a b-expansion of G
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with n vertices. Our aim is to prove that for some β depending only on a
and b, H has at least (a+3)n/24−β perfect matchings avoiding e. If a = 0,
then the lemma follows from Lemma 18 with β = (b − 1)/4 (see the proof
of the C series). Assume now that a ≥ 1. Let βB be the constant from
Lemma B.a, βC the constant from Lemma C.a.b and βE the constant from
Lemma E.(a− 1).b, and set β to be the maximum of the numbers 2βB + 22,
(a+3)b/6+βB, βC , (a+3)b/2+3βE +30, 21(a+3)b · ln 42(a+3)2b+2+βE ,
and a+3

24
κ(a, b) (with κ(a, b) depending only on a and b, to be defined later

in the proof). The proof proceeds by induction on the number of vertices of
G.

If G is cyclically 5-edge-connected, the claim follows from Lemma C.a.b.
Assume that G has a cyclic 4-edge-cut E(A,B) such that e is contained in
G[A] and at least one of the following holds:

(1) G[A] is a cycle of length four,

(2) G[A] is the six-vertex exceptional graph of Figure 8,

(3) B is a twisted net of size at least k, where k is the smallest integer such
that 2k/108−1/27 ≥ (a + 3)n/24, or

(4) B is solid.

Let E(A∗, B∗) be the edge-cut of H so that H [A∗] and H [B∗] are the ex-
pansions of G[A] and G[B]; let nA and nB be the numbers of vertices of
H [A∗] and H [B∗]. Let e1, e2, e3 and e4 be the edges of E(A,B), let v1, v2,
v3 and v4 be their end-vertices in A, and let vH1 , vH2 , vH3 and vH4 be their
endvertices in H [A∗]. For X ⊆ {1, 2, 3, 4}, let gAX (hA

X) denote the number of
matchings of G[A] (H [A∗]) avoiding e and covering all the vertices of G[A]
(H [A∗]) except vi (v

H
i ), i ∈ X . Similarly, gBX (hB

X) is used. For each of these
types of matchings in H [A∗] and H [B∗] fix two matchings to be canonical
(if they exist, if not fix at least one if possible) and for X = ∅, fix three
matchings to be canonical (if they exist, if not, fix as many as possible). Let
HA

ij and HA
(ij) (HB

ij and HB
(ij)) be the expansions of GA

ij and GA
(ij) (GB

ij and

GB
(ij)), respectively, for {i, j} ⊂ {1, 2, 3, 4}.

First assume that G[A] is a cycle of length four. Without loss of gen-
erality, the edge e joins the end-vertices of v1 and v4. Let H ′ be the graph
obtained from H by contracting the expansions of the vertices of A into 4
single vertices. This graph has at least n − 4b vertices, and each perfect
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matching of HB
12 can be combined with a matching of G[A] avoiding e to give

a perfect matching of H ′ avoiding e. Hence, H has at least

a+3
24

nB − βB ≥ a+3
24

n− a+3
6

b− βB

perfect matchings avoiding e.
The case that G[A] is the six-vertex exceptional graph of Figure 8 will be

addressed later in the proof.
Consider now the third case. If gA∅ 6= 0, then by Lemma 27 the graph

G[B] has at least 2n
G

B
/18+2/3 ≥ 2n

G

B
/108−1/27 ≥ (a+ 3)n/24 perfect matchings,

where nG
B is the number of vertices of G[B]; all such perfect matchings extend

to perfect matchings of H .
Assume gA∅ = 0. By Lemma 30, gBij ≥ 2n

G

B
/108−1/27 ≥ (a+3)n/24 for some

{i, j} ⊂ {1, 2, 3, 4}. By Lemma 22, we may assume that the graphs GA
(12) and

GA
(13) are cyclically 4-edge-connected. Since there are no perfect matchings

in GA
(12) containing the edge eA12 and avoiding e, by Lemma 10 the graph

G[A] \ e is bipartite and e joins two vertices of the same color class. Then by
Lemma 10, GA

(13) has a perfect matching containing eA1 and avoiding eA4 . Such

perfect matchings must contain eA2 and avoid e, thus gA12 6= 0. Similarly, we
obtain that all the quantities gAX with |X| = 2 are non-zero. Therefore, we
can extend the matchings of G[B] avoiding the vertices vBi and vBj to perfect
matchings of H .

We now analyse case (4). Assuming that A contains at least 6 vertices and
B is solid, we will estimate the numbers of perfect matchings ofH canonical in
one part and non-canonical in the other. We start with matchings canonical
in H [A∗] and non-canonical in H [B∗] and show that there are at least (a +
3)nB/24− β/2 such perfect matchings in H .

We first assume that G[A] \ e is not a bipartite graph such that e joins
two vertices of the same color. By Lemma 23, we can assume that one of the
following two cases apply: all the graphs GA

(12), G
A
(13) and GA

(14) are cyclically

4-edge-connected, or all the graphs GA
(12), G

A
(13) and GA

12 are cyclically 4-edge-
connected.

Let us first deal with the case that the graphs GA
(1i) with i = 2, 3, 4 are

cyclically 4-edge-connected. Since neither of these graphs can be of the form
described in Lemma 10, there exists a perfect matching of GA

(1i) containing

e(1i) and avoiding e and so gA∅ ≥ 1. In addition, for any distinct i, j, k ∈
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{1, 2, 3, 4}, gAij + gAik ≥ 1, since there exists a perfect matching of GA
(jk) con-

taining eAi and avoiding e. Hence, by symmetry, we can assume that all the
quantities gA13, g

A
14, g

A
23 and gA24 are non-zero. Now, sinceH

B
(12) is a cubic bridge-

less graph, by Lemma B.a it has at least (a+3)nB/24−βB perfect matchings,
which all extend to H [A∗]. At most 11 of these matchings are canonical in
H [B∗] and thus the number of perfect matchings avoiding e canonical in
H [A∗] and non-canonical in H [B∗] is at least (a+ 3)nB/24− βB − 11.

We now consider the case when the graphs GA
(12), G

A
(13) and GA

12 are cycli-

cally 4-edge-connected. As in the previous case, gA∅ is non-zero. If gA14 or
gA23 is zero, then we conclude that all the quantities gA12, g

A
13, g

A
24 and gA34 are

non-zero and proceed as in the previous case. Hence, we can assume that
both gA14 and gA23 are non-zero. If g

A
1234 is also non-zero, we consider the graph

HB
14 and argue that each of its perfect matchings can be extended to H [A∗]

and obtain the bound. Finally, if gA1234 is zero, then by considering matchings
in GA

12 containing e12 and matchings containing e34 we obtain that both gA12
and gA34 are non-zero. In this case, all the perfect matchings of the graph
HB

(13) extend to H [A∗] and the result follows.

We can now assume that the graph G[A]\e is bipartite (with color classes
U, V ) and e joins two vertices in the same color class, say U . By degree count-
ing argument, we obtain that it can be assumed without loss of generality
that v1 ∈ U and v2, v3, v4 ∈ V , or v1, v2, v3, v4 ∈ U .

In the first case, we can assume by Lemma 22 that the graphs GA
(12) and

GA
(13) are cyclically 4-edge-connected. By Lemma 9, GA

(12) is double covered,
so it has two perfect matchings containing the edge e(12). Since these two
perfect matchings avoid the edge eA2 , they also avoid e by Lemma 10 and
so gA∅ ≥ 2. By Lemma 10, GA

(12) has a perfect matching containing eA1 and

avoiding eAi for i = 3, 4. Since such perfect matchings avoid eA2 , they also
avoid e. Hence, we obtain that gA13 and gA14 are non-zero. A similar argument
for the graph GA

(13) yields that also gA12 is non-zero. Consider now perfect

matchings avoiding the edge eBi in HB
(1i), for i = 2, 3, 4. By Lemma 22, two of

the graphs GB
(1i) are cyclically 4-edge-connected; by Lemma E.(a− 1).b there

are at least (a + 2)nB/24 − βE perfect matchings avoiding eBi in HB
(1i). The

third graph GB
(1i) is cyclically 3-edge-connected and eBi is not contained in a

cyclic 3-edge-cut. Its expansion HB
(1i) is cyclically 3-edge-connected, too, and

the only cyclic 3-edge-cut containing eBi is the cut separating the expansion
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of vBi from the rest of the graph. Let H ′ be the graph obtained from HB
(1i) by

contraction of the Klee-graph corresponding to vBi in HB
(1i) to a single vertex.

The graphH ′ has at least nB−b vertices; it is cyclically 3-edge-connected and
eBi is not contained in a cyclic 3-edge-cut. Hence, by Lemma 18, the number
of perfect matchings of HB

(1i) avoiding eBi is at least (nB − b)/8. Altogether,
we get

2 hB
12 + 2 hB

13 + 2 hB
14 + 3 hB

∅ ≥ 2 · a+2
24

nB + 1
8
nB − 1

8
b− 2βE .

As a consequence, non-canonical matchings of H [B∗] can be combined with
canonical matchings of H [A∗] avoiding e to give at least

hB
12 + hB

13 + hB
14 + 2 hB

∅ − 12 ≥ a+3
24

nB − 1
16
b− βE − 12

perfect matchings of H avoiding e.
We now assume that v1, v2, v3, v4 ∈ U . Again, it can be assumed that

the graphs GA
(12) and GA

(13) are cyclically 4-edge-connected. An application
of Lemma 10 similar to the one in the previous paragraph yields that all the
quantities gAX with |X| = 2 are non-zero. Since B is solid, all the graphs GB

(ij)

with {i, j} ⊆ {1, 2, 3, 4} are cyclically 4-edge-connected. Hence, each HB
(ij)

contains at least (a+2)nB/24−βE perfect matchings avoiding the edge eB(ij).
As a consequence,

2 hB
12 + 2 hB

13 + 2 hB
14 + 2 hB

23 + 2 hB
24 + 2 hB

34 ≥ 3 · a+2
24

nB − 3βE.

Subtracting 12 matchings canonical in H [B∗], we obtain that the number of
perfect matchings avoiding e that are canonical in H [A∗] and non-canonical
in H [B∗] is at least

3
2
· a+2

24
nB − 3

2
βE − 12 ≥ a+3

24
nB − 3

2
βE − 12.

This concludes the counting of perfect matchings of H avoiding e that are
canonical in H [A∗] and non-canonical in H [B∗].

Observe that the bound just above also holds if G[A] is the exceptional
six-vertex graph of Figure 8. The edge e cannot be a part of the 4-cycle
(otherwise the first case would apply), nor be adjacent to it (otherwise e is
contained in a cyclic 4-edge-cut in G). Hence, G[A]\e is bipartite, v1, v2, v3, v4
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have the same color and in particular e connects two vertices of the same
color. In this case, since n ≤ nB + 6b, H has at least

a+3
24

n− a+3
4

b− 3
2
βE − 12

perfect matchings avoiding e. So from now on we can assume that G[A] is
neither a 4-cycle nor the exceptional six-vertex graph of Figure 8.

We will now count the perfect matchings of H that are non-canonical in
H [A∗] and canonical in H [B∗]. Our aim is to show that there are at least
(a+ 3)nA/24− β/2 such matchings.

Consider the graphs GA
(12), G

A
(13) and GA

(14). Two of these graphs are cycli-
cally 4-edge-connected by Lemma 22; the remaining one is 3-edge-connected.
We claim it has no cyclic 3-edge-cut containing e. Assume GA

(12) has a cyclic

3-edge-cut E(C,D) containing e. It is clear that the new edge eA(12) belongs to

the cut; let f be the third edge of the cut. Then {e, f, e1, e2} and {e, f, e3, e4}
are 4-edge-cuts in G containing e. Since G has no cyclic 4-edge-cuts contain-
ing e, both C ∩ A and D ∩ A consist of a pair of adjacent vertices. Then
G[A] is a cycle of length 4, which was excluded above.

Lemmas E.(a− 1).b and 18 now imply that

2hA
12+2hA

13+2hA
14+2hA

23+2hA
24+2hA

34+3hA
∅ ≥ 2 · a+2

24
nA−2βE + 1

8
(nA−2b).

By the choice of B as solid, all the graphs GB
(12), G

B
(13) and GB

(14) are cyclically
4-edge-connected. In particular, if none of them is the exceptional graph
described in Lemma 10, then all the quantities gBX with |X| = 2 are non-zero
and gB∅ ≥ 2 (here we use that cyclically 4-edge-connected graphs are double
covered). The bound now follows by dividing the previous inequality by two
and subtracting the at most 18 canonical matchings.

Otherwise, exactly two of the three graphs are of the form described in
Lemma 10, and G[B] is bipartite. By symmetry, we can assume that v1
and v2 lie in one color class and v3 and v4 in the other. Considering the
graphs GB

(13) and GB
(14), we observe that each of the quantities gB13, g

B
14, g

B
23

and gB24 is at least two as the graphs GB
(13) and GB

(14) are double covered by

Lemma 9. In addition, Lemma 25 applied to the bipartite graph GB
(12) yields

that gB∅ is at least three. Finally, observe that the graph GB
12 satisfies the

conditions of Lemma 10. Hence, any perfect matching of GB
12 containing e12

also contains e34, which implies that gB1234 is non-zero and the number of
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matchings non-canonical in H [A∗] and canonical in H [B∗] is at least

2hA
13 + 2hA

14 + 2hA
23 + 2hA

24 + 3hA
∅ + hA

1234 − 27.

Replace now B with the cycle of length four v1v3v2v4 and observe that the
resulting graph is cyclically 4-edge-connected. By Lemma E.(a − 1).b, its
expansion has

hA
13 + hA

14 + hA
23 + hA

24 + 2hA
∅ + hA

1234 ≥
a+2
24

(nA + 4)− βE

perfect matchings avoiding e. Observe also that the graph GA
(12) is 3-edge-

connected and no cyclic 3-edge-cut contains e. Its expansion (except for the
end-vertices of e) has at least (nA−2b)/8 perfect matchings avoiding e, thus,

hA
13 + hA

14 + hA
23 + hA

24 + hA
∅ ≥ 1

8
(nA − 2b).

Summing the two previous inequalities, we obtain that the number of perfect
matchings avoiding e that are non-canonical in H [A∗] and canonical in H [B∗]
is at least

a+2
24

(nA + 4) + 1
8
nA − 1

4
b− βE − 27 ≥ a+3

24
nA − 1

2
β.

The bound on the number of matchings now follows from the estimates
on the perfect matchings canonical in one of the graphs H [A∗] and H [B∗]
and non-canonical in the other. This finishes the first part of the proof of
Lemma D.a.b.

Based on the analysis above, we may now assume that |A| ≥ 8 and if
E(A,B) is a cyclic 4-edge-cut of G and e is contained in A, then G[B] is
a twisted net of size less than k, where k is the smallest integer such that
2k/108−1/27 ≥ (a + 3)n/24 (see Lemma 26). In particular, consider such a
cyclic 4-edge-cut E(A,B) with B inclusion-wise maximal. Assume that G[B]
is a non-bipartite twisted net. Then by Lemma 29 we have gBX ≥ 1 for any
X ⊂ {1, 2, 3, 4} with |X| = 2. Moreover, by Lemma 27, gB∅ ≥ 2. Then there
are at least

hA
12 + hA

13 + hA
14 + hA

23 + hA
24 + hA

34 + 2hA
∅

perfect matchings avoiding e in H . Consider the graphs GA
(12), G

A
(13) and

GA
(14). Two of these graphs are cyclically 4-edge-connected by Lemma 22; the

remaining one is 3-edge-connected and it has no cyclic 3-edge-cut containing
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e. Since |B| < k, their expansions have at least n − kb vertices. Hence,
Lemmas E.(a− 1).b and 18 imply that

hA
12 + hA

13 + hA
14 + hA

23 + hA
24 + hA

34 + 2hA
∅ ≥

≥ 1
2

(

2 · a+2
24

(n− kb)− 2βE + 1
8
(n− kb− 2b)

)

≥

≥ a+3
24

n+ 1
48
n− b

8
(a + 3)(k + 1).

Assume that G[B] is a bipartite twisted net. Let e1, . . . , e4 be the edges
of the cut ordered in such a way that matchings including ei and ei+1, i =
1, 2, 3, 4, indices modulo four, extend to G[B] by Lemma 28. Moreover,
gB1234 ≥ 1 and gB∅ ≥ 2. Then there are at least

hA
12 + hA

14 + hA
23 + hA

34 + hA
1234 + 2hA

∅

perfect matchings avoiding e in H . Let m12, m14, and m(13) be the number of
perfect matchings avoiding e in the graphs HA

12, H
A
14, and HA

(13), respectively.
Then

hA
12 + hA

14 + hA
23 + hA

34 + hA
1234 + 2hA

∅ ≥ 1
2
(m12 +m14 +m(13)).

In the rest of this section, we show that we can assume that at least one
of the following two cases applies:

(1) GA
(13) and one of the graphs GA

12 and GA
14 (say GA

12) are (2k + 3)-almost

cyclically 4-edge-connected, and GA
14 is 3-edge-connected with no cyclic

3-edge-cut containing e, or

(2) GA
(13) and one of the graphs GA

12 and GA
14 (say GA

12) are (2k + 3)-almost

cyclically 4-edge-connected, and the vertex set ofGA
14 can be partitioned

into three parts X , Y and Z such that E(X, Y ∪Z) and E(X∪Y, Z) are
cyclic 3-edge-cuts containing e, GA

14[Y ] is a twisted net with |Y | < k,
and both the graphs GA

14/(X∪Y ) and GA
14/(Y ∪Z) are 3-edge-connected

with no cyclic 3-edge-cut containing e.

Observe that the expansions of GA
12, G

A
14 and GA

(13) have at least n − kb

vertices. In the first case, we apply Lemma E.(a−1).b to the first two graphs
and Lemma 18 to the remaining one, obtaining that 1

2
(m12 +m14 +m(13)) is

at least
1
2
·
(

2 · a+2
24

(n− (2k + 3)b− kb)− 2βE − n−kb−2b
8

)

≥

≥ a+3
24

n+ 1
48
n− b

8
(a+ 3)(k + 1)− βE.
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In the second case, we again apply Lemma E.(a − 1).b to the first two
graphs. Let e1 and e2 (e3 and e4) be the edges joining Y toX (Z, respectively)
in the third graph, say GA

14. Let v1, v2, v3, v4 be end-vertices of e1, e2, e3, e4 in
Y . According to Lemmas 28 and 29, without loss of generality we may assume
that GA

14[Y ] \ {v1, v3} and GA
14[Y ] \ {v2, v4} both have perfect matchings. Let

hX
i be the number of perfect matchings containing ei, i = 1, 2, in the graph

obtained by GA
14/(Y ∪Z) by expanding as in H all the vertices except for the

end-vertex of e. Observe that such graph does not contain a cyclic 3-edge-cut
containing e. Let hZ

i , i = 3, 4 be defined analogously. Let nX and nZ be the
numbers of vertices in the (full) expansions of GA

14/(Y ∪Z) and GA
14/(X∪Y ).

Since |Y | ≤ k and |B| ≤ k, the number of perfect matchings of GA
14 avoiding

e is at least

hX
1 · hZ

3 + hX
2 · hZ

4 ≥ hX
1 + hX

2 + hZ
3 + hZ

4 − 2 ≥

≥ 1
8
(nX − b) + 1

8
(nZ − b) ≥ 1

8
(n− 2kb− 2b)− 2.

In this case, 1
2
(m12 +m14 +m(13)) is at least

1
2
·
(

2 · a+2
24

(n− (2k + 3)b− kb)− 2βE − n−2kb−2b
8

− 2
)

≥

≥ a+3
24

n+ 1
48
n− b

8
(a+ 3)(k + 1)− 2− βE .

Observe that 2(k−1)/108−1/27 < a+3
24

n. Then using 2168 > e108 and the fact
that ex ≥ 1 + x for all x ∈ R we get

1
48
n = 1

2(a+3)
· a+3

24
n ≥

≥ 1
2(a+3)

· 2(k−1)/108−1/27 = 1
2(a+3)

· 2(k−5)/108 >

> 1
2(a+3)

· e(k−5)/168 = 21(a+ 3)b · e(k−5)/168−ln 42(a+3)2b ≥

≥ 21(a+ 3)b ·
(

1 + k−5
168

− ln 42(a+ 3)2b
)

>

> b
8
(a+ 3)(k + 1)− 21(a+ 3)b · ln 42(a+ 3)2b.

The claim follows by the choice of β.

We now prove that (1) or (2) holds. Assume that one of the graphs
GA

(12), G
A
(13), and GA

(14) is not 4-almost cyclically 4-edge-connected, or one of

the graphs GA
12, G

A
13 and GA

14 is not 3-edge-connected. Then, without loss of
generality G[A] contains a 2-edge-cut E(C,D) so that e, v1, and v2 are in C,
and v3 and v4 are in D. By maximality of B, the 4-edge-cut E(C,D ∪B) of
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G is not cyclic and C consists of a single edge e = v1v2. On the other hand
E(D,C∪B) is a cyclic 4-edge-cut of G (since otherwise A would be a 4-cycle),
so G[D] is a twisted net of size less than k. As a consequence G has at most
2k + 2 ≤ 216 log2(

a+3
24

n) + 12 vertices. Since it has at least n/b vertices, we
obtain that n is upper-bounded by a constant κ(a, b) depending only on a
and b (which we do not compute here, since the computation is very similar
to the previous one). Taking β to be at least a+3

24
κ(a, b) yields the desired

bound on the number of perfect matchings of H avoiding e. Therefore, we
can assume in the following that the graphs GA

(12), G
A
(13), and GA

(14) are 4-

almost cyclically 4-edge-connected, and the graphs GA
12, G

A
13, and GA

14 are
3-edge-connected.

We now show that at least one of the graphs G12 and G14 is (2k+3)-almost
cyclically 4-edge-connected. Assume that this is not the case. Since the
cyclic 3-edge-cuts of G1i correspond to cyclic 4-edge-cuts in G(1i) containing
e1i, Lemma 24 implies that they are linearly ordered. Therefore, G12 contains
a cyclic 3-edge-cut E(C,D) and G14 contains a cyclic 3-edge-cut E(C ′, D′)
such that all the sets C,D,C ′, D′ have size at least k + 2 ≥ 4. Without loss
of generality, we can assume that v1 ∈ C ∩C ′, v2 ∈ C ′∩D, v3 ∈ D∩D′, and
v4 ∈ C ∩D′.

C′

eC D

C′

DC

D′ D′

v4

v2

v3

B B

Figure 9: In the case where none of G12 and G14 is (2k+3)-almost cyclically
4-edge-connected.

Assume there is an edge between C ∩ C ′ and D ∩ D′. Beside this edge,
there are at most four more edges among the four sets X ∩ Y , X ∈ {C,C ′},
Y ∈ {D,D′}. On the other hand, there are at least two edges leaving C ∩D′

and at least two edges leaving D ∩ C ′. Hence, there are precisely two edges
leaving both C ∩ D′ and D ∩ C ′, C ∩ D′ and D ∩ C ′ are {v4} and {v2}
respectively, and C∩C ′ and D∩D′ have size at least k+1 ≥ 3 (see Figure 9,
left). Hence, the edge-cuts leaving C ∩ C ′ and D ∩D′ are cyclic 4-edge-cuts
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by Observation 2. Since e is not in a cyclic 4-edge-cut, e must lie in C ∩ C ′

or D ∩D′. In both cases, this contradicts the maximality of B.
Consequently, we can assume without loss of generality that there are no

edges between C∩C ′ and D∩D′, and between C∩D′ and D∩C ′. Hence, all
six edges of the cuts are within C, C ′, D, and D′. Without loss of generality,
we may assume that there is at most one (C ′, D′)-edge in D and at most one
(C,D)-edge in D′. It means D ∩ D′ contains a single vertex {v3}, C ∩ D′

and D ∩C ′ have size at least k+ 1 ≥ 3 (see Figure 9, right). By maximality
of B, e is neither in C ∩ D′ nor in D ∩ C ′. The edges leaving C ∩ D′ form
a cyclic 4-edge-cut, so by our assumption, G[C ∩D′] is a twisted net of size
at most k, a contradiction. This proves that one of G12 and G14, say G14, is
(2k + 3)-almost cyclically 4-edge-connected.

Assume now that G12 has a cyclic 3-edge-cut containing e. Observe that
cyclic 3-edge-cuts of G12 containing e one-to-one correspond to such cyclic
4-edge-cuts of G(12) and apply Lemma 24 to G(12). Set X = A1, Z = Bk

and Y to be the remaining vertices. Clearly, Y must be a twisted net of size
less than k. Observe that each of G/(X ∪ Y ) and G/(Y ∪ Z) is cyclically
3-edge-connected. By minimality of X and Z, e is not contained in a cyclic
3-edge-cut in any of these two graphs, as claimed.

10 Proof of E-series of lemmas

This section is mainly devoted to counting perfect matchings avoiding an
edge contained in a cyclic 4-edge-cut. A ladder of height k is a 2 × k grid.
The two edges of a ladder having both end-vertices of degree two are called
the ends of the ladder.

Lemma 31. Let G be a cyclically 4-edge-connected graph and E(A,B) a
cyclic 4-edge-cut of G containing the edges e1, . . . , e4 having end-vertices
v1, . . . , v4 in A. For 1 ≤ i 6= j ≤ 4, let gAij be the number of matchings
of G[A] covering all the vertices of A except for vi, vj. If one of the three
numbers gA23, g

A
24, and gA34 is zero, say gAij, then either the other two are at

least two, or one of them is one, say gAik, and the subgraph G[A] is a ladder
with ends v1vi and vjvk.

Proof. Fix G and choose an inclusion-wise minimal set A in G that does not
satisfy the statement of the lemma. By Lemma 22, we can assume that the
graphs GA

(12) and GA
(13) are cyclically 4-edge-connected. By considering the
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matchings including the edges e2 and e3 in these two graphs, we obtain that
gA23+gA24 and gA23+gA34 are at least two since every cyclically 4-edge-connected
graph is double covered by Lemma 9. Hence, if gA23 = 0 then gA24 ≥ 2 and
gA34 ≥ 2. By symmetry we can now assume that gA24 = 0 and so gA23 ≥ 2.
In order to prove the lemma, we only need to show that either gA34 ≥ 2, or
gA34 = 1 and G[A] is a ladder with ends v1v4 and v2v3.

By Lemma 10, there exists a proper 2-coloring of the vertices of G[A] such
that v1 and v3 are in one color class, say C1, while v2 and v4 are in the other
class, say C2. Consequently, the graph G(13) is bipartite. By Lemma 10,
G(13) contains a matching avoiding e1 and containing e4, i.e., g

A
34 ≥ 1.

Assume that gA34 = 1. By Lemma 4, the graph H obtained from G[A] by
removing the vertices v3 and v4 has a bridge contained in the unique perfect
matching of H . Define the deficiency d(H) of a subcubic graph H to be the
sum of the differences between three and the degrees of the vertices. Since
GA

(12) is cyclically 4-edge-connected, the vertices v3 and v4 are not adjacent

in G, hence, d(H) is six, three in each color class of H . Let V and W be
such sets that the cut E(V,W ) is formed by the bridge f of H . Since the
bridge f is contained in the unique perfect matching of H , we can assume
that |V ∩ C1| = |V ∩ C2| + 1 and thus |W ∩ C1| = |W ∩ C2| − 1. It means
that the subgraphs G[V ] and G[W ] induced by V and W have odd numbers
of vertices, hence, their deficiencies (including the end-vertices of the bridge
f) are odd. On the other hand, d(G[V ]) and d(G[W ]) cannot be equal to
one, otherwise f would be a bridge in G. Since d(G[V ]) + d(G[W ]) = 8, we
can assume d(G[V ]) = 3 and d(G[W ]) = 5. But then the three edges leaving
V in G form a cyclic 3-edge-cut, unless G[V ] is a single vertex w. Then
V ∩ C1 = {w} and V ∩ C2 = ∅; the degree of w in H is one.

The vertex w is thus either adjacent to v3 or v4, or it is one of the vertices
v1 and v2. Since v3 and v4 are in different color classes, w is not adjacent to
both of them. Since w ∈ C1, w = v1 and it is adjacent to v4.

Let A′ = A \ {v1, v4} and B′ = B ∪ {v1, v4}. We denote by v′1 and v′4
the neighbors of v1 and v4 in A′. If G[A] is not a cycle of length four, then
E(A′, B′) is a cyclic 4-edge-cut. Observe that gA24 = 0 and gA34 = 1 implies
gA

′

12 = 0 and gA
′

13 = 1. So, by the minimality of A, the subgraph G[A′] is a
ladder with ends v′1v

′
4 and v2v3. Hence, G[A] is a ladder with ends v1v4 and

v2v3.

Proof of Lemma E.a.b. The proof proceeds by induction on the number of
vertices in G (in addition, to the general induction framework).
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Let G be a cyclically 4-edge-connected graph, e an edge of G and H
a b-expansion of G with n vertices. Our aim is to prove that for some β
depending only on a and b, H has at least (a+3)n/24−β perfect matchings
avoiding e. If e is not contained in a cyclic 4-edge-cut of G, then this follows
from Lemma D.a.b, so we can assume in the remaining of the proof that e is
contained in a cyclic 4-edge-cut of G.

If a = 0, then the lemma follows from Lemma 18 with β = b/4. Assume
that a > 0 and let βE be the constant from Lemma E.(a − 1).b, βD the
constant from Lemma D.a.b and βB the constant from Lemma B.a. Let γ be
the least element of {n ∈ N |n ≥ 4} satisfying

2γ/4−2 ≥ a+3
24

(γb) + 2

and β be the maximum of the following numbers: 4βE − 24, (a + 3)b/4,
(a+3)γb/12+βD, (a+3)γb/12+βB, (a+2)γb/8+3βE/2, (a+2)(γ+1)b/6+2βE.

Let A1 ⊆ A2 · · · ⊆ Ak and Bk ⊆ Bk−1 · · · ⊆ B1 be as in the statement
of Lemma 24. Assume first that there exists i0 such that neither G[Ai0 ] nor
G[Bi0 ] is a ladder and they both contain at least eight vertices each. To
simplify the presentation, we will write A instead of Ai0 and B instead of
Bi0 . Let e2, e3, e4, and e = e1 be the edges of the edge-cut E(A,B). As
previously, hA

X denotes the number of matchings of the expansion H [A] of
G[A] covering all the vertices except the end-vertices of eAi , i ∈ X . The
quantities hB

X are defined accordingly for G[B]. Finally, let E(A∗, B∗) be the
edge-cut of H so that H [A∗] and H [B∗] are the expansions of G[A] and G[B],
and let nA and nB be the number of vertices of H [A∗] and H [B∗].

By Lemma 23, without loss of generality at least one of the following
holds:

• All the graphs GA
(12), GA

(13) and GA
(14) are cyclically 4-edge-connected.

By inspecting the types of perfect matchings avoiding e = e1 in these
graphs, we obtain that the three quantities hA

23+hA
24+hA

∅, h
A
23+hA

34+hA
∅,

and hA
24 + hA

34 + hA
∅ are at least (a + 2)(nA + 2)/24 − βE by Lemma

E.(a− 1).b.

• All the graphs GA
(12), G

A
(13) and GA

12 are cyclically 4-edge-connected. By
inspecting the types of perfect matchings avoiding e in these graphs,
we obtain that two quantities hA

23 + hA
24 + hA

∅ and hA
23 + hA

34 + hA
∅ are at

least (a+ 2)(nA + 2)/24− βE , while

hA
34 + hA

∅ ≥ a+2
24

nA − βE .
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In any case, all the quantities hA
23+hA

24+hA
∅, h

A
23+hA

34+hA
∅, and hA

24+hA
34+hA

∅

are at least (a+ 2)nA/24− βE .
A symmetric argument now yields that all the quantities hB

23 + hB
24 + hB

∅ ,
hB
23 + hB

34 + hB
∅ , and hB

24 + hB
34 + hB

∅ are at least (a + 2)nB/24− βE .
Choose one or two (two if possible) canonical matchings for each of the

four possible types avoiding e (23, 24, 34, and ∅). Since one of the graphs
GA

(ij) is cyclically 4-edge-connected, it is double covered by Lemma 9 and so

hA
∅ ≥ 2. Similarly, we have hB

∅ ≥ 2. If all hA
23, h

A
24 and hA

34 are non-zero,
then the number of combinations of a canonical matching in H [A∗] and a
non-canonical matching in H [B∗] is at least

hB
23 + hB

24 + hB
34 + 2hB

∅ − 10 ≥ hB
23 + hB

24 + hB
34 +

3
2
hB
∅ − 10

≥ 3
2
·
(

a+2
24

nB − βE

)

− 10

≥ a+3
24

nB − 3
2
βE − 10.

If one of the quantities is zero, say hA
34 = 0, then gA34 = 0 and Lemma 31

yields gA23 and gA24 (as well as hA
23 and hA

24) are at least two since G[A] is not
a ladder (recall that we assumed that for the 4-edge-cut E(A,B) containing
e, neither G[A] nor G[B] is a ladder). Hence, the number of combinations of
a canonical matching in H [A∗] and a non-canonical matching in H [B∗] is at
least

2 hB
23 + 2 hB

24 + 2 hB
∅ − 12 ≥ 2 · (a+2

24
nB − βE)− 12

≥ a+3
24

nB − 2βE − 12.

Similarly, we estimate combinations of non-canonical matchings inH [A∗] and
canonical matchings of H [B∗] to be at least (a+3)nA/24−2βE −12. Hence,
the expansion of G has at least (a + 3)n/24 − 4βE − 24 perfect matchings
avoiding e.

In the rest, we assume that whenever G[Ai] and G[Bi] have at least 8
vertices, at least one of them is a ladder. Assume there is at least one cut
such that both parts have at least 8 vertices. It is clear that if G[Ai0 ] is a
ladder, then for all i ≤ i0 G[Ai] is a ladder too. Analogously, if G[Bj0] is a
ladder, then for all j ≥ j0 G[Bj ] is a ladder too. Let i0 be the largest i such
that G[Ai] is a ladder. Then if io < k, G[Ai0+1] is not a ladder, and therefore,
G[Bi0+1] is either a ladder or a graph on at most 6 vertices.

Assume that G[Ai0 ] is a ladder with at least γ vertices (recall that γ was
defined as the least integer satisfying 2γ/4−2 ≥ (a + 3)γb/24 + 2) and Bi0
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has at least eight vertices. We again write A and B instead of Ai0 and Bi0 .
It can be checked that G[A] (as well as H [A∗]) has a matching covering all
the vertices except the end-vertices of ei and ej for two different pairs i, j
in {2, 3, 4} with i 6= j, say 2, 3 and 2, 4. Fix a single canonical matching
of H [A∗] avoiding each of these two pairs of vertices, and a single canonical
perfect matching of H [A∗]. Fix a single canonical perfect matching of H [B∗]
(such a perfect matching exists since any of the graphs GB

(ij) is bridgeless, and

thus matching-covered). By Lemma 23 and the observations in the previous
cases, one of the graphs GB

(12), GB
13, or GB

14 is cyclically 4-edge-connected
and all perfect matchings of its expansion avoiding e can be combined with
a canonical matching of H [A∗]. Hence, the number of combinations of a
canonical matching in H [A∗] and a non-canonical matching in H [B∗] is at
least (a+3)nB/24−β−1 by the induction within this lemma (we subtracted
one to count the canonical matching).

Observe that there are at least 2⌊n
G

A
/4⌋ perfect matchings in G[A] contain-

ing none of the edges of the cut, where nG
A is the number of vertices of A and

these at least
a+3
24

nG
A b+ 2 ≥ a+3

24
nA + 2

matchings (the bound follows from the choice of γ) can be extended by
the canonical matching of H [B∗]. Subtracting one for a possible canonical
matching among these, we obtain that the number of combinations of a non-
canonical matching in H [A∗] and a canonical matching in H [B∗] is at least
(a + 3)nA/24 + 1, which together with the bound on the combinations of
canonical matchings in H [A∗] and non-canonical matchings in H [B∗] yields
the desired bound.

Observe that if G[A] is a ladder with at least γ vertices and G[B] has less
than eight vertices, there are at least

a+3
24

nA + 2 ≥ a+3
24

n− a+3
4

b+ 2

perfect matchings in H . This includes the case when the whole graph is a
ladder.

For the rest of the proof, we can assume G[Ai0 ] is a ladder with less than
γ vertices. If the number of vertices of G is less than 3γ, then there is nothing
to prove by the choice of β.

First, assume that i0 = k. We again write A and B instead of Ai0 and Bi0 .
Let E(A,B) = {e = e1, e2, e3, e4}. Since G[A] is a ladder, we may assume
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A′

B B′′

e

A A A′′ A A′′

B′

B

e

B B′′

e

Figure 10: Cyclic 4-edge-cuts containing e if i0 = k.

there is a (canonical) matching of H [A∗] covering all vertices except the
end-vertices of vi and vj, {i, j} = {2, 3} or {2, 4}; and a (canonical) perfect
matching ofH [A∗]. Consider the graph G′ = GB

(12). If there is a cyclic 3-edge-

cut E(X, Y ) in G′, then the new edge e12 is in the cut. Assume that the end-
vertex of e in B is in Y . Then E(A′, B′) with A′ = A∪X\{v34}, B

′ = Y \{v12}
is a cyclic 4-edge-cut in G containing e such that A′ ) A, a contradiction
(see Figure 10, left). Therefore, G′ is cyclically 4-edge-connected.

If G′ has a cyclic 4-edge-cut E(X, Y ) containing e, then the new edge e12
is not in the cut. Again, assume that the end-vertex of e in B is in Y . Then
v12, v34 ∈ X and again E(A′′, B′′) with A′′ = A ∪ X \ {v12, v34}, B

′′ = Y is
a cyclic 4-edge-cut in G such that A′′ ) A, a contradiction (see Figure 10,
center and right). Therefore, there is no cyclic 4-edge-cut containing e in G.
Hence, by Lemma D.a.b, the expansion of GB

(12) has at least

a+3
24

(n− γb)− βD = a+3
24

n− a+3
24

γb− βD

perfect matchings avoiding e. As each of these matchings can be extended
by a canonical matching of H [A∗] to a perfect matching of H , the claim now
follows by the choice of β.

Next, assume that i0 < k. Then G[Ai0+1] is not a ladder, thus G[Bi0+1]
has less than 8 vertices or it is a ladder with less than γ vertices. Let A = Ai0 ,
B = Bi0+1, C = V (G) \ (A∪B). We use the following arguments also in the
case when for all i either G[Ai] or G[Bi] has less than 8 vertices.

The number of edges betwen A and B is one or two: the edge e is con-
tained in both (A∪C,B) and (A,B∪C) and thus it must be joining a vertex
of A and a vertex of B. On the other hand, if they were three or more edges
between A and B, then there would be at most two edges between A ∪ B
and C which is impossible since G is cyclically 4-edge-connected.
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Assume now that there are exactly two edges between between A and B,
and let e2 be the edge distinct from e. Let e3 and e4 be the edges between
A and C and e5 and e6 the edges between B and C (see Figure 11, left).
Since G[A] and G[B] are ladders or have at most 6 vertices, it is easily seen
that they both have at least two perfect matchings. We now distinguish
three cases (we omit symmetric cases) based on the number mA

34 (and mB
56)

of matchings in G[A] (G[B]) covering all the vertices but the end-vertices of
e3 and e4 (e5 and e6, respectively):

• Let mA
34 ≥ 1 and mB

56 ≥ 1. Remove all the vertices of A ∪ B and
identify the edges e3 and e4 to a single edge and the edges e5 and e6 to
a single edge. Observe that the resulting graph is bridgeless and thus
its expansion contains at least

a+3
24

(n− 2γb)− βB = a+3
24

n− a+3
12

γb− βB

perfect matchings by Lemma B.a. Each of these matchings can be
extended to a perfect matching of H avoiding e and the bound follows.

• Let mA
34 = 0 and mB

56 = 0. Observe that G[A∪B] contains a matching
avoiding e and covering all the vertices except the end-vertices of e3 or
e4 (the edge can be prescribed) and e5 or e6 (again, the edge can be
prescribed). To see this, observe that in GA

(13), there exists a perfect

matching containing eA3 . Since m34 = 0, this matching also contains
eA2 . Similarly, considering perfect matchings of GA

(14) containing eA4 we

get that G[A] has a matching covering all the vertices except the end-
vertices of e2 and e4; and the same holds for G[B]. The combination
of these four matchings yields the desired result.

Remove now all the vertices of A ∪ B, identify the end-vertices of e3
and e4 and the end-vertices of e5 and e6 and add an edge between the
two new vertices. Observe that the resulting graph is bridgeless and
thus its expansion contains at least

a+3
24

(n− 2γb)− βB = a+3
24

n− a+3
12

γb− βB

perfect matchings by Lemma B.a. Each of these matchings can be
extended to a perfect matching of H avoiding e and the bound follows.

• LetmA
34 ≥ 1 andmB

56 = 0. Recall that each of G[A] and G[B] is a ladder
or has at most 6 vertices. Hence, each of them is either the exceptional
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graph of Figure 8 or bipartite. Hence, hA
∅ ≥ 2 and hB

∅ ≥ 2 and therefore
there are at least four perfect matchings of G[A ∪B] avoiding e.

Observe that in the exceptional graph, all the values mij are at least
one, so G[B] is necessarily bipartite. Two of the four corners (vertices of
degree two) are white, and two are black. Moreover, there is a matching
covering all the vertices except any pair of corners of distinct colors,
and there are no matchings covering all the vertices except a pair of
corners of the same color. Since mB

56 = 0, the end-vertices of e5 and
e6 have the same color. Hence, there exist a matching covering all the
vertices of G[B] except e2 and e5 (resp. e2 and e6). Consider perfect
matchings of GA

(12) containing eA2 . By symmetry, we may assume there

is a matching of G[A] covering all its vertices except the end-vertices
of e2 and e3.

Altogether, these matchings can be combined to matchings of G[A∪B]
avoiding e covering all its vertices except:

– the end-vertices of e3 and e5, and

– the end-vertices of e3 and e6, and

– the end-vertices of e3 and e4: such a matching is obtained by
combining a perfect matching of G[B] and a matching of G[A]
covering all the vertices except the end-vertices of e3 and e4 (which
exists since mA

34 ≥ 1.)

e

e2

e5

e4

e3

e6 e

e

eC C C
A

GC
45 GC

56GC
46

C
B

Figure 11: When there are two edges between A and B.

Consider now the graphs GC
ij, {i, j} ⊆ {4, 5, 6} obtained from G by

removing all the vertices of A ∪ B, introducing a new cycle of length
four and making its vertices incident with the edges ei, e3, ej and the
remaining edge which will play the role of e (in this order). These three
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graphs are depicted in Figure 11, right. Applying Lemma E.(a − 1).b
to the three graphs GC

ij , we obtain the following inequalities:

hC
34 + hC

35 + 2hC
∅ ≥ a+2

24
(n− 2γb)− βE

hC
34 + hC

36 + 2hC
∅ ≥ a+2

24
(n− 2γb)− βE

hC
35 + hC

36 + 2hC
∅ ≥ a+2

24
(n− 2γb)− βE

where hC
X is the number of matchings of the expansion of G[C] covering

all its vertices except the end-vertices of the edges with indices from X .
Observe that perfect matchings of GC

ij avoiding e can be extended to
perfect matchings of H (avoiding the original e); those avoiding all the
four edges incident with the cycle in at least four different ways. Finally,
we obtain the following estimate on the number of perfect matchings
of H avoiding e:

hC
34 + hC

35 + hC
36 + 4hC

∅ ≥ 3
2
·
[

a+2
24

n− a+2
12

γb− βE

]

≥ a+3
24

n− a+2
8

γb− 3
2
βE .

It remains to consider the case that the edge e is the only edge between A
and B. Let e2, e3 and e4 be the three edges between A and C, and e′2, e

′
3 and

e′4 the three edges between B and C (see Figure 12, left). Recall that each of
G[A] and G[B] is a ladder or has at most six vertices. By symmetry, we can
assume that, in addition to a perfect matching, G[A] contains a matching
covering all its vertices except the end-vertices of e2 and one of the edges e3
and e4 (both choices possible). Symmetrically, for G[B]. Remove now all
the vertices of A∪B, identify the end-vertices of e3 and e4 and join the new
vertex to the end-vertex of e2. Symmetrically, for e′2, e

′
3 and e′4. Finally, let e

be the edge joining the only two vertices of degree two (see Figure 12, center).
It can be verified that the resulting graph G′ is cyclically 4-edge-connected
and e is not in any cyclic 4-edge-cut of it unless e is contained in a triangle
in G′. Hence, unless e is contained in a triangle in G′, by Lemma D.a.b the
expansion of G′ has at least

a+3
24

(n− 2γb)− βD = a+3
24

n− a+3
12

γb− βD

perfect matchings avoiding e which all extend to the expansion of G.
Assume now that e is contained in a triangle. In other words, the edges

e2 and e′2 have a common vertex, say v, in G and let f be the third edge
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e

e2

e4

e′2
e′3
e′4

e3
f

e

C
C \ v

C
A B

Figure 12: When there is only one edge between A and B.

incident with v. Observe that G′ is 2-almost cyclically 4-edge-connected (its
only cyclic 3-edge-cut is the triangle containing e). Reduce the triangle (see
Figure 12, right) and apply Lemma E.(a− 1).b. Observe that each matching
of the expansion of the reduced graph avoiding f can be extended in at
least two different ways to a perfect matching of H avoiding e (for any such
matching, either none of the edges of E(A,B ∪ C) is included and we use
hA
∅ ≥ 2, or none of the edges of E(A∪C,B) is included and we use hB

∅ ≥ 2).
Hence, the number of perfect matchings of H avoiding e is at least

2 · a+2
24

(n− 2γb− 2b)− 2βE ≥ a+3
24

n− a+2
6

(γ + 1)b− 2βE .

This finishes the proof of the E-series of the lemmas and also concludes
the proof of Theorem 1, which is readily seen to be a direct consequence of
the B-series. Note that from the E-series we obtain the following result:

Theorem 32. For any α > 0 there exists a constant β > 0 such that every
n-vertex cyclically 4-edge-connected cubic graph has at least αn − β perfect
matchings avoiding any given edge.

This does not hold for 3-edge-connected graphs: there exists an infi-
nite family of 3-edge-connected cubic graphs containing an edge avoided by
only two perfect matchings. However, recall that by Lemma 18, any 3-edge-
connected cubic graph has a linear number of perfect matchings avoiding any
edge not contained in a cyclic 3-edge-cut.

Despite all our efforts, we were not able to replace the bound in The-
orem 1 by an explicit superlinear bound. We offer 1 kg of chocolate bars
Studentská pečet’ for the first explicit bound derived from our proof. To get
a superpolynomial or even an exponential bound, one would probably like
to insert Lemma 18 in the induction argument; we believe that the linear
bound in Lemma 18 can be replaced by a bound exponential in n.
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