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NORDHAUS-GADDUM FOR TREEWIDTH

GWENAËL JORET AND DAVID R. WOOD

Abstract. We prove that for every n-vertex graph G, the treewidth of G plus the treewidth of the

complement of G is at least n− 2. This bound is tight.

Nordhaus-Gaddum-type theorems establish bounds on f(G)+ f(G) for some graph parameter f ,

where G is the complement of a graph G. The literature has numerous examples; see [1, 4, 5, 8, 10,

13, 14] for a few. Our main result is the following Nordhaus-Gaddum-type theorem for treewidth1,

which is a graph parameter of particular importance in structural and algorithmic graph theory.

Let tw(G) denote the treewidth of a graph G.

Theorem 1. For every graph G with n vertices,

tw(G) + tw(G) ≥ n− 2 .

The following lemma is the key to the proof of Theorem 1.

Lemma 2. Let G be a graph with n vertices, no induced 4-cycle, and no k-clique. Then tw(G) ≥

n− k.

Proof. Let B := {{v,w} : vw ∈ E(G)}. If {v,w} and {x, y} do not touch for some vw, xy ∈

E(G), then the four endpoints are distinct and (v, x,w, y) is an induced 4-cycle in G, which is a

contradiction. Thus B is a bramble in G. Let S be a hitting set for B. Thus no edge in G has both

endpoints in V (G)\S. Hence V (G)\S is a clique in G. Therefore n−|S| ≤ k−1 and |S| ≥ n−k+1.

That is, the order of B is at least n − k + 1. By the Treewidth Duality Theorem, tw(G) ≥ n − k,

as desired. �
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1While treewidth is normally defined in terms of tree decompositions (see [3]), it can also be defined as follows. A

graph G is a k-tree if G ∼= Kk+1 or G − v is a k-tree for some vertex v whose neighbours induce a k-clique. Then

the treewidth of a graph G is the minimum integer k such that G is a spanning subgraph of a k-tree. See [2, 11] for

surveys on treewidth.

Let G be a graph. Two subsets of vertices A and B in G touch if A ∩B 6= ∅, or some edge of G has one endpoint

in A and the other endpoint in B. A bramble in G is a set of subsets of V (G) that induce connected subgraphs and

pairwise touch. A set S of vertices in G is a hitting set of a bramble B if S intersects every element of B. The order

of B is the minimum size of a hitting set. Seymour and Thomas [12] proved the Treewidth Duality Theorem, which

says that a graph G has treewidth at least k if and only if G contains a bramble of order at least k + 1.
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Proof of Theorem 1. Let k := tw(G). Let H be a k-tree that contains G has a spanning subgraph.

Thus H has no induced 4-cycle (it is chordal) and has no (k + 2)-clique. By Lemma 2 and since

G ⊇ H, we have tw(G) ≥ tw(H) ≥ n− k − 2. That is, tw(G) + tw(G) ≥ n− 2. �

Lemma 2 immediately implies the following result of independent interest.

Theorem 3. For every graph G with girth at least 5, we have tw(G) ≥ n− 3.

For k-trees we have the following precise result, which proves that the bound in Theorem 1 is

tight. Let Qk
n be the k-tree consisting of a k-clique C with n− k vertices adjacent only to C.

Theorem 4. For every k-tree G,

tw(G) + tw(G) =







n− 1 if G ∼= Qk
n

n− 2 otherwise .

Proof. First suppose that G ∼= Qk
n. Then G consists of Kn−k and k isolated vertices. Thus tw(G) =

n− k − 1, and tw(G) + tw(G) = n− 1.

Now assume that G 6∼= Qk
n. By the definition of k-tree, V (G) can be labelled v1, . . . , vn such that

{v1, . . . , vk+1} is a clique, and for j ∈ {k + 2, . . . , n}, the neighbourhood of vj in G[{v1, . . . , vj−1}]

is a k-clique Cj . If Ck+2, . . . , Cn are all equal then G ∼= Qk
n. Thus Cj 6= Ck+2 for some minimum

integer j. Observe that each vertex in Cj has a neighbour outside of Cj . Arbitrarily label Cj =

{x1, . . . , xk+1}, and let yi be a neighbour of each xi outside of Cj .

We now describe an (n − k − 2)-tree H that contains G. Let A := V (G) \ Cj be the starting

(n−k−1)-clique ofH. Add each vertex xi toH adjacent to A\{yi}. Observe thatH is an (n−k−2)-

tree and G is a spanning subgraph of H. Thus tw(G) ≤ n− k− 2 and tw(G)+ tw(G) ≤ n− 2, with

equality by Theorem 1. �

In view of Theorem 1, it is natural to also consider how large tw(G) + tw(G) can be. Every

n-vertex graph G satisfies tw(G) ≤ n− 1, implying tw(G) + tw(G) ≤ 2n− 2. It turns out that this

trivial upper bound is tight up to lower order terms. Indeed, Perarnau and Serra [9] proved that, if

G ∈ G(n, p) is a random n-vertex graph with edge probability p = ω( 1
n
) in the sense of Erdős and

Rényi, then asymptotically almost surely tw(G) = n − o(n); see [6, 7] for related results. Setting

p = 1
2
, it follows that asymptotically almost surely, tw(G) = n − o(n) and tw(G) = n − o(n), and

hence tw(G) + tw(G) = 2n− o(n).

Theorems 1 and 4 can be reinterpreted as follows.

Proposition 5. For all graphs G1 and G2, the union G1 ∪ G2 contains no clique on tw(G1) +

tw(G2) + 3 vertices. Conversely, there exist graphs G1 and G2 such that G1 ∪G2 contains a clique

on tw(G1) + tw(G2) + 2 vertices.

Proof. For the first claim, we may assume that V (G1) = V (G2) and E(G1) ∩E(G2) = ∅. Let S be

a clique in G1 ∪G2. Thus G1[S] and G2[S] are complementary. By Theorem 1, tw(G1) + tw(G2) ≥

tw(G1[S]) + tw(G2[S]) ≥ |S| − 2. Thus |S| ≤ tw(G1) + tw(G2) + 2 as desired. The converse claim

follows from Theorem 4. �
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Proposition 5 suggests studyingG1∪G2 further. For example, what is the maximum of χ(G1∪G2)

taken over all graphs G1 and G2 with tw(G1) ≤ k and tw(G2) ≤ k? By Proposition 5 the answer is

at least 2k+2. A minimum-degree greedy algorithm proves that χ(G1 ∪G2) ≤ 4k. This question is

somewhat similar to Ringel’s earth–moon problem which asks for the maximum chromatic number

of the union of two planar graphs.
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