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Abstract

Generalising an example by Girondo and Wolfart, we use finite group theory to
construct Riemann surfaces admitting two or more regular dessins (i.e. orientably
regular hypermaps) with automorphism groups of the same order, and in many cases
with isomorphic automorphism groups.
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1 Introduction

Hypermaps were introduced by Cori [7] in 1975, and their theory was developed in the fol-
lowing years, mainly by Cori and Mach̀ı [8, 9, 10, 12, 40, 41, 42]; see [11] for a comprehensive
survey. As originally defined, hypermaps are algebraic and combinatorial structures which
model certain embeddings of finite graphs in compact oriented surfaces. Although the
theory has subsequently been extended to include surfaces which may be non-orientable,
with boundary [26, 34], or non-compact [31], the main emphasis of current research still
concerns hypermaps on compact oriented surfaces. Recently, much of this research has
been motivated by the unexpected role such hypermaps play in Grothendieck’s theory of
dessins d’enfants [23], where they provide a vital link between compact Riemann surfaces,
algebraic curves, and the Galois theory of algebraic number fields; see [20, 34, 35, 50, 56]
for their connections with this theory. Another recent application (originally motivating
this paper) is in the construction of Beauville surfaces [1, p. 159], rigid complex surfaces
formed from pairs of regular hypermaps with isomorphic automorphism groups [3, 18].
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A hypermap H, as originally defined in [7], is a pair of permutations generating a finite
transitive permutation group G. As such, it is equivalent to a permutation representation
∆ → G of a triangle group ∆, acting on the cosets of a subgroup K of finite index in
∆. Now ∆ acts as a cocompact group of automorphisms of a simply connected Riemann
surface U, and the quotient U/K is a compact Riemann surface X . By Bely̆ı’s Theorem [2],
as reinterpreted by Grothendieck [23], Wolfart [56] and others, and as eventually proved
by Wolfart [55] and Koeck [37], a compact Riemann surface is obtained in this way from
a hypermap if and only if it is defined, as a projective algebraic curve, over the field Q of
algebraic numbers. Thus H carries with it the structure of a compact Riemann surface, or
equivalently a projective algebraic curve, defined over Q; as such, we will call H a dessin,
and X a Bely̆ı surface.

The most symmetric Bely̆ı surfaces are the quasiplatonic surfaces, those obtained
from regular dessins, i.e. orientably regular hypermaps H; this is equivalent to G being a
regular permutation group, to K being a normal subgroup of ∆, and to the Bely̆ı function
U/K → U/∆ ∼= P1(C) being a regular covering. As a dessin, H then has automorphism
group AutH ∼= G ∼= ∆/K. (This is the orientation-preserving automorphism group of the
hypermap, inducing conformal automorphisms of the Riemann surface X ; as a hypermap,
H may also have orientation-reversing automorphisms, acting anti-conformally on X .)

It is well known that a quasiplatonic Riemann surface X may support two (or more)
regular dessins H1 and H2; such surfaces are called multiply quasiplatonic. In the most
familiar cases these dessins correspond to an inclusion ∆1 < ∆2 between triangle groups,
with a normal subgroup K of ∆1 also normal in ∆2, inducing an inclusion G1 < G2

between the corresponding automorphism groups. Inclusions between triangle groups have
been classified by Singerman [49], and the corresponding relationships between dessins have
been studied in various papers by Girondo, Torres and Wolfart, such as [19, 21, 22].

Instead, we will be concerned here with a less common situation, where a multiply
quasiplatonic surface X supports regular dessins Hi with automorphism groups Gi of the
same order (equivalently, the Bely̆ı functions X → X/Gi

∼= P1(C) have the same degree),
and in particular where these groups are isomorphic. Regular dessins on the sphere and the
torus are well known and easily described, so to avoid trivial cases and special arguments
we will restrict attention to dessins of genus g ≥ 2, for which U is the hyperbolic plane H.

The most obvious cause of this phenomenon is a non-normal inclusion ∆ < ∆∗ between
triangle groups: if a subgroup K of ∆ is normal in ∆∗ then the conjugates ∆i of ∆ in ∆∗

induce isomorphic but distinct regular dessins Hi on X = H/K, with Gi = AutHi
∼= ∆/K.

Girondo [19] has studied this situation in detail, so we will consider it only briefly in Sec-
tion 4, giving some examples and showing that the number of such dessins Hi appearing on
X is at most 10, attained only when ∆ and ∆∗ have types (3, 8, 8) and (2, 3, 8) respectively.

A less common example of this phenomenon occurs when triangle groups ∆1 and
∆2 of the same type are non-conjugate subgroups of a triangle group ∆∗. Girondo and
Wolfart [22] have shown that in this case the groups ∆i and ∆∗ have types (n, 2n, 2n)
and (2, 2n, 2n) for some n, with |∆∗ : ∆i| = 2. A surface group K which is normal in
both groups ∆i corresponds to a pair of regular dessins Hi of the same type, with possibly
non-isomorphic automorphism groups Gi

∼= ∆i/K of the same order, on the same surface
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X = H/K. Girondo and Wolfart give such an example, of genus 4, for n = 3, with
G1 6∼= G2; in Section 5 we will show that this is the first of an infinite series of examples of
genus (n − 1)2 for n ≥ 3, lying on certain quotients of Fermat curves. We will also show
how to construct infinite families of examples for which G1

∼= G2, even though H1 6∼= H2.
The only other cases in which we can have non-isomorphic dessins Hi on the same

surface, with automorphism groups Gi of the same order, are when ∆1 and ∆2 have types
(2n, 2n, 2n) and (n, 4n, 4n) for some n, and ∆∗ has type (2, 2n, 4n) or (2, 3, 4n). Examples
of these two cases are constructed in Sections 6 and 7.

Even in the restricted context of these four cases, the residual finiteness of triangle
groups and the abundance of finite groups together make it unrealistic to expect complete
classifications of the relevant pairs of dessins Hi. Instead, we will give group-theoretic
constructions of infinite families of examples, hoping that some of these methods may also
be useful elsewhere. To simplify the exposition we have restricted attention to elementary
examples of groups, such a symmetric groups and projective groups over prime fields, but
in principle these methods can be applied to much wider classes of groups.

The author is grateful to Jürgen Wolfart for some useful suggestions about Example 4,
and to the organisers of the workshop ‘Groups and Languages’ in honour of Antonio Mach̀ı,
at the Università di Roma ‘La Sapienza’, for the opportunity to present some of these ideas
in the presence of the founders of the theory of hypermaps.

2 Hypermaps, dessins and triangle groups

A hypermap H (always assumed to be finite and oriented) is defined to be an ordered pair
of permutations x and y (denoted by σ and α by Cori and Mach̀ı [7, 11]) generating a
finite group G acting transitiviely on a set Ω. One can identify Ω with the set of edges of a
bipartite graph, embedded as a map on a compact oriented surface, so that the cycles of x
and y, known as hypervertices and hyperedges, correspond to the rotation of edges around
the white and black vertices of the graph; this map is the Walsh map W (H) of H, with
the cycles of z := (xy)−1, known as hyperfaces, in bijective correspondence with the faces
of W (H) [52]. The genus of H is that of its underlying surface.

Since xyz = 1, the Riemann Existence Theorem shows that there is a covering
β : X → P1(C) = C ∪ {∞} of the Riemann sphere by a compact Riemann surface X ,
unramified outside {0, 1,∞}, with monodromy permutations x, y and z at these points.
We call β a Bely̆ı function. The inverse image of the unit interval [0, 1] is a bipartite
map on X , isomorphic to W (H), with white and black vertices lying over 0 and 1, and
face-centres over ∞. As a compact Riemann surface, X can be regarded as a projective
algebraic curve defined over C. Bely̆ı’s Theorem [2] shows that the curves X arising in this
way from hypermaps are those defined over the field Q of algebraic numbers. Following
Grothendieck [23], we will use the term dessin to denote a hypermap, represented in the
above way as a bipartite map and carrying this analytic and algebraic structure on its
underlying surface. This extra structure provides some of the motivation for what follows,
but from a combinatorial point of view much of it can be ignored, and our results can be
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regarded as referring to hypermaps in their original sense.
The automorphism group AutH of a dessin H, defined as the centraliser of G in the

symmetric group on Ω, is the orientation- and colour-preserving automorphism group of the
bipartite map W (H). By permuting the names hypervertices, hyperedges and hyperfaces
(equivalently the critical values 0, 1 and ∞ in P1(C)), we obtain new dessins called the
associates of H, with the same automorphisms and underlying surface. We call H a
regular dessin (or an orientably regular hypermap) if AutH is transitive on Ω; equivalently
G is a regular permutation group, in which case AutH ∼= G, both acting regularly, and
β is a regular covering, with covering group G. For the rest of this paper, H or Hi will
always denote a regular dessin, represented as its Walsh map.

If H is regular, and x, y and z have orders l, m and n, then the black and white vertices
all have valencies l and m, while the faces are all 2n-gons; we say that H has type (l, m, n).
A dessin of type (l, 2, n) can be regarded as an l-valent map, by ignoring the black vertices
of valency 2 in W (H), so that all faces are n-gons; following Coxeter and Moser [13], we
say that such a map has type {n, l}.

Given integers l, m, n ≥ 2, the triangle group ∆ = ∆(l, m, n) has a presentation

∆(l, m, n) = 〈u, v, w | ul = vm = wn = uvw = 1〉.

There is an action of ∆ as a group of automorphisms of a simply-connected Riemann
surface U, namely the Riemann sphere P1(C), the complex plane C, or the hyperbolic
plane H, as l−1 + m−1 + n−1 > 1, = 1 or < 1; the canonical generators u, v and w are
rotations through 2π/l, 2π/m and 2π/n about the vertices of a triangle with internal angles
π/l, π/m and π/n. We will be concerned with the last case, when ∆ is a Fuchsian group.

If H is regular, of type (l, m, n), with automorphism group G, there is an epimorphism
∆ = ∆(l, m, n) → G, giving a transitive permutation representation of ∆ on Ω. The kernel
K is a torsion-free normal subgroup of finite index in ∆, with ∆/K ∼= G, and conversely
every such subgroup K of ∆ arises in this way for some regular dessin H. The associated
Riemann surface X is isomorphic to U/K, with K isomorphic to the fundamental group
π1X ofX , and the Bely̆ı function β corresponding to the projection U/K → U/∆ ∼= P1(C).
We say that X is uniformised by the surface group K. Isomorphism of Riemann surfaces
X is equivalent to conjugacy of the corresponding surface groups K in AutU (= PSL2(R)
when U = H). Taking an associate of H corresponds to permuting the periods of ∆ by
changing the canonical generators: for instance, transposing vertex-colours corresponds to
regarding ∆ as ∆(m, l, n) with generators v, uv and w.

3 Multiply quasiplatonic surfaces and triangle group

inclusions

From now on we will assume that

H1 and H2 are regular dessins on the same Riemann surface X of genus g ≥ 2.

To avoid trivial cases, we will also assume that H1 and H2 are not associates of each other.
This is equivalent to X being uniformised by a surface group K ≤ PSL2(R), which is a
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normal subgroup of distinct triangle groups ∆i of the same types as the dessins Hi, with
each ∆i/K ∼= Gi := AutHi. Since each ∆i normalises K it is contained in the normaliser
N(K) of K in PSL2(R); since this is a Fuchsian group containing a triangle group, it
follows from results of Singerman [49] that N(K) must also be a triangle group ∆∗, and
that the possibilities for these triangle group inclusions are all known.

Excluding the rather trivial cases of cyclic and dihedral groups, which are not relevant
here, Singerman’s paper [49] lists the normal and non-normal inclusions between triangle
groups. We will use the notations ∆ ⊳i ∆

∗ and ∆ <i ∆
∗ to denote that ∆ is a normal or

non-normal subgroup of index i in ∆∗.
The normal inclusions between hyperbolic triangle groups have the forms

(a) ∆(s, s, t) ⊳2 ∆(2, s, 2t) where (s− 2)(t− 1) > 2, with quotient group C2,

(b) ∆(t, t, t) ⊳3 ∆(3, 3, t) where t > 3, with quotient group C3,

(c) ∆(t, t, t) ⊳6 ∆(2, 3, 2t) where t > 3, with quotient group S3.

The non-normal inclusions between hyperbolic triangle groups have the forms

(A) ∆(7, 7, 7) <24 ∆(2, 3, 7), (B) ∆(2, 7, 7) <9 ∆(2, 3, 7), (C) ∆(3, 3, 7) <8 ∆(2, 3, 7),

(D) ∆(4, 8, 8) <12 ∆(2, 3, 8), (E) ∆(3, 8, 8) <10 ∆(2, 3, 8), (F) ∆(9, 9, 9) <12 ∆(2, 3, 9),

(G) ∆(4, 4, 5) <6 ∆(2, 4, 5), (H) ∆(n, 4n, 4n) <6 ∆(2, 3, 4n) where n ≥ 2,

(I) ∆(n, 2n, 2n) <4 ∆(2, 4, 2n) where n ≥ 3, (J) ∆(3, n, 3n) <4 ∆(2, 3, 3n) where n ≥ 3,

(K) ∆(2, n, 2n) <3 ∆(2, 3, 2n) where n ≥ 4.

Recent papers [19, 21, 22, 50, 51] by Girondo, Singerman, Syddall, Torres and Wolfart
give useful information about these inclusions and their consequences for dessins. From
now on we will make the extra assumption that

the automorphism groups Gi of the two regular dessins Hi have the same order.

The corresponding triangle groups ∆1 and ∆2 then have the same index |∆∗ : K|/|Gi| in
∆∗ := N(K). Inspection of the above lists shows that there are just four possibilities:

Proposition 3.1 Let ∆1 and ∆2 be two hyperbolic triangle groups of the same index in a

triangle group ∆∗. Then one of the following holds:

1. ∆1 and ∆2 have the same type, and are conjugate in ∆∗;

2. ∆1 and ∆2 have the same type and are not conjugate in ∆∗;

3. ∆1 and ∆2 have types (2n, 2n, 2n) and (n, 4n, 4n) for some n, with ∆∗ = ∆(2, 2n, 4n);

4. ∆1 and ∆2 have types (2n, 2n, 2n) and (n, 4n, 4n) for some n, with ∆∗ = ∆(2, 3, 4n).

Girondo and Wolfart [22] have shown that in Case 2, ∆1 and ∆2 have the same type
(n, 2n, 2n), and are subgroups of index 2 in ∆∗ = ∆(2, 2n, 2n), so both inclusions are of
type (a) with s = 2n and t = n. In Case 3 the inclusions are again of type (a), one
of the form ∆(2n, 2n, 2n) ⊳2 ∆(2, 2n, 4n) with s = t = 2n, and the other of the form
∆(4n, 4n, n) ⊳2 ∆(2, 4n, 2n) with s = 4n and t = n. In Case 4 the inclusions are of types
(c) and (H) with t = 2n. We will consider these four cases in the following sections.
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4 Case 1

It has been shown by Girondo and Wolfart in [22, Theorem 13] that if ∆1 and ∆2 have
the same type, then except in one special case, which we shall consider as Case 2, they
are conjugate in ∆∗. In this situation X has an automorphism transforming H1 to a
distinct but isomorphic dessin H2. This phenomenon has been considered in depth by
Girondo in [19], so here we will consider just one typical inclusion, namely (C), where the
subgroups ∆i are conjugates of ∆ = ∆(3, 3, 7) in ∆∗ = ∆(2, 3, 7).

Example 1. The core (intersection of conjugates) of ∆ in ∆∗ is the surface group K of
genus 3 uniformising Klein’s quartic curve X , given as a projective algebraic curve by the
equation

x3y + y3z + z3x = 0.

This Riemann surface has automorphism group

G = AutX ∼= ∆∗/K ∼= L2(7) ∼= L3(2),

where Ln(q) := PSLn(Fq). If we regard ∆∗ as ∆(3, 2, 7), the regular dessin H∗ corre-
sponding to its normal subgroup K is a trivalent map tessellating X by 21 7-gons, with
AutH∗ ∼= G; this is the dual of the map R3.1 in Conder’s computer-generated list of
regular maps and hypermaps [5]. There is a single conjugacy class of eight subgroups
∆ = ∆i (i = 1, . . . , 8) of index 8 in ∆∗, corresponding to the point-stabilisers in the nat-
ural action of G as L2(7) on P1(7) (equivalently its action by conjugation on its Sylow
7-subgroups). Thus there are eight regular dessins Hi of type (3, 3, 7) on X , each with

AutHi
∼= ∆/K ∼= C7 : C3,

a nonabelian group of order 21. These dessins are permuted transitively by G, the action
being equivalent to that of G as L2(7) on P1(7), so they are mutually isomorphic, appearing
as CH3.1 in [5]. Each Hi, represented as a bipartite map, has seven white and seven black
vertices, each of valency 3, with both sets permuted transitively by a subgroup of order 7;
the points of X appearing as these vertices, for i = 1, . . . , 8, are the vertices of the map H∗,
each appearing in two dessins Hi. Each dessin Hi has three faces, each a 14-gon, incident
with every vertex of Hi; the centres of these faces are also the face-centres of H∗, each
appearing in one dessin Hi. The 24 face-centres of H∗ are thus partitioned into eight sets
of three, each set appearing as the face-centres in Hi for some i, with the three elements
of the set fixed by a subgroup C7 of G fixing a particular point in P1(7).

Example 2. In any other example based on inclusion (C) the underlying Riemann surface
is a covering of the surface X in Example 1, corresponding to a surface group contained
in K. For instance, following Macbeath’s construction of an infinite sequence of Hurwitz
groups [38], for any integer m ≥ 2 let L = K ′Km be the characteristic subgroup of K
generated by its commutators andmth powers. This is a normal subgroup of ∆∗, contained
in each of the eight subgroups ∆i. Since K is a surface group of genus g = 3, the quotient
K/L is isomorphic to C2g

m = C6
m. As a subgroup of finite index in a surface group, L is also
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a surface group. The corresponding surface Y = H/L has genus |K : L|(g−1)+1 = 2m6+1
since the covering Y → X is unbranched. The normal inclusions L⊳∆i correspond to eight
isomorphic regular dessins H̃i on Y , each an m6-sheeted regular covering of Hi. These are
permuted transitively by G̃ = Aut Y ∼= ∆∗/L, an extension of K/L by G. The kernel of
this action is K/L, and the induced action is again equivalent to that of G on P1(7).

Example 3. In Examples 1 and 2,K is identified with π1X , its abelianisationKab = K/K ′

is identified with the first integer homology group H1(X ;Z), and K/L is identified with
the mod (m) homology group H1(X ;Zm) = H1(X ;Z) ⊗Z Zm. The natural action of
G on these homology groups, induced by its action on X , is equivalent to the action
of ∆∗/K by conjugation on K/K ′ and on K/L. Any G-invariant submodule M/L of
K/L, corresponding to a normal subgroup M of ∆∗ lying between K and L, will give
rise to further coverings of the dessins Hi on the surface Z = H/M . For instance, if we
take m = 2 then K/L = H1(X ;Z2) is a direct sum of two 3-dimensional irreducible G-
submodules, corresponding to the Brauer characters ϕ2 and ϕ3 in [27]. These characters
are complex conjugates of each other, so X has a chiral pair of 8-sheeted regular covering
surfaces Z, each carrying eight isomorphic regular dessins of type (3, 3, 7) and genus 17
(CH17.1 in [5]) permuted transitively by AutZ ∼= ∆∗/M .

There are similar examples based on inclusion (C) for other values of m (see, for
instance, Cohen’s construction of Hurwitz groups as abelian coverings of L2(7) in [4]), and
also on the other inclusions in Singerman’s list.

For each of these inclusions, the number of mutually isomorphic dessins Hi on X is
equal to the number of conjugates of ∆ in ∆∗, and this is the index |∆∗ : N∆∗(∆)| in ∆∗

of the normaliser N∆∗(∆) of ∆ in ∆∗. This normaliser can be determined by considering
the action of ∆∗ on the cosets of ∆, using ideas described by Singerman in [48]. In the
case of the normal inclusions (a), (b) and (c), of course, the index is 1. In cases (B), (C),
(E), (G), (J) and (K) we have N∆∗(∆) = ∆, of indices 9, 8, 10, 6, 4 and 3. In case (A)
we have N∆∗(∆) = ∆(3, 3, 7), of index 8 in ∆∗, an inclusion of type (C). In case (D),
N∆∗(∆) = ∆(2, 8, 8) of index 6 and type (H). In case (F), N∆∗(∆) = ∆(3, 3, 9) of index
4 and type (J). In case (H), N∆∗(∆) = ∆(4n, 2, 2n) of index 3 and type (K). In case (I),
N∆∗(∆) = ∆(2n, 2, 2n) of index 2 and type (a).

The number of isomorphic dessins Hi on X is thus at most 10, attained in case (E),
where ∆∗ = ∆(2, 3, 8) acts on the cosets of ∆ = ∆(3, 8, 8) as PGL2(9) on P1(9). The first
example of this, with K the core of ∆ in ∆∗, is a surface of genus 16,; this carries a map
of type {3, 8}, denoted by R16.1 in [5], with ∆∗ regarded as ∆(8, 2, 3).

5 Case 2

Girondo and Wolfart [22, Theorem 13] have shown that the only case in which a hyperbolic
triangle group ∆∗ contains two non-conjugate triangle groups of the same type is when
∆1 and ∆2, both of type (n, 2n, 2n) for some n ≥ 3, are distinct subgroups of index 2 in
∆∗ = ∆(2, 2n, 2n). Specifically, ∆1 and ∆2 are the normal closures in ∆∗ of its second and
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third canonical generators, both of order 2n; these inclusions are of Singerman’s type (a)
with s = 2n and t = n. Although ∆1 and ∆2 are not conjugate in ∆∗, they are conjugate
in a triangle group ∆† = ∆(2, 4, 2n) which contains ∆∗ as a subgroup of index 2.

If a surface group K is normal in both ∆1 and ∆2, and hence in ∆∗, then by regarding
each ∆i as ∆(2n, 2n, n) we obtain dessins Hi of type (2n, 2n, n) on the same surface X =
H/K of genus

g = 1 +
n− 2

2n
|∆i : K|,

with automorphism groups Gi
∼= ∆i/K. These dessins can be represented as bipartite

maps, and if we ignore the vertex colours these are simply maps Mi of type {2n, 2n} on
X . Since K is normal in ∆∗, which we may regard as ∆(2n, 2, 2n), these maps are regular
dessins, with AutMi

∼= ∆∗/K. These maps are mutually dual, with conjugation in ∆†

transposing the two subgroups ∆i and also the two canonical generators of ∆∗ of order 2n.
The inclusion of K in ∆† corresponds to the median map M† = MedMi of both maps

Mi, a map of type {2n, 4} on X . Given any map M, the median map MedM is a map
on the same surface as M; its vertices are the midpoints me of the edges e of M, and if e
and e′ are consecutive edges of a face f of Mi then me and me′ are joined by an edge in
f ; thus MedM has valency 4, each k-valent vertex of M lies in a k-gonal face of MedM,
and each l-gonal face of M encloses a smaller l-gonal face of MedM. A map and its dual
have the same median map. In our case, k = l = 2n, so M† has type {2n, 4}. As a dessin,
M† has automorphism group AutM† ∼= N∆†(K)/K, isomorphic to ∆†/K or to ∆∗/K as
K is or is not normal in ∆†, that is, as M1

∼= M2 or not.
The following example is considered in some detail, for two reasons. Firstly it shows

that an important example described by Girondo and Wolfart in [22], where n = 3, is in
fact the first of an infinite family of examples, arising for all n ≥ 3. Secondly, it is one
of the few instances where it is possible to give a completely explicit link between the
algebraic geometry of the curve and the combinatorial and group-theoretic aspects of the
dessins. As usual in such situations, it is simplest to start with the curve.

Example 4. Let X be the Riemann surface corresponding to the affine curve x2n+yn = 1,
where n ≥ 3. This has ‘obvious’ automorphisms

a : (x, y) 7→ (ζ2nx, y) and b : (x, y) 7→ (x, ζny) (ζm := e2πi/m),

generating a subgroup G1
∼= C2n×Cn of AutX . The regular covering X → X/G1

∼= P1(C)
is given by the Bely̆ı function

β : (x, y) 7→ x2n,

with critical values 0 and ∞, over each of which there are n points of multiplicity 2n, and
1, over which there are 2n points of multiplicity n. It follows from the Riemann-Hurwitz
formula that X has genus (n− 1)2.

Since a, b and ab have orders 2n, n and 2n, there is a smooth epimorphism θ :
∆1 = ∆(2n, n, 2n) → G1, sending the canonical generators of ∆1 to a, b and (ab)−1. We
can identify X with H/K, where K = ker θ is a normal surface subgroup of ∆1 with
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∆1/K ∼= G1. Since G1 is abelian we have K ≥ ∆′
1, and since |∆1 : K| = 2n2 = |∆1 : ∆

′
1|

we have K = ∆′
1. Thus K is a characteristic subgroup of ∆1, so it is a normal subgroup

of N(∆1); by Singerman’s results [49], N(∆1) is a triangle group ∆∗ ∼= ∆(2, 2n, 2n),
containing ∆1 with index 2, so G1 has index 2 in a subgroup G ∼= ∆∗/K of AutX .

In order to determine this larger group, note that the canonical generator of order 2
of ∆∗ acts by conjugation on ∆ by transposing its canonical generators of order 2n. These
induce the automorphisms a and (ab)−1 of X , each of which has n fixed points: those of
(ab)−1 are the points Pj (j ∈ Zn) above ∞, where x, y → ∞ with x2/y approaching a
specific nth root ζj2n of −1, for odd j ∈ Z2n, while those of a are the points Qj = (0, ζjn)
above 0, for j ∈ Zn. This suggests adjoining to G1 an automorphism of the form c :
(x, y) 7→ (λ/x, r(x, y)) for some λ ∈ C and some rational function r(x, y) satisfying

λ2n

x2n
+ rn = 1

whenever x2n + yn = 1. An obvious choice is to put λ2n = 1 and r(x, y) = µy/x2 where
µn = −1. This gives an automorphism c satisfying

c2 : (x, y) 7→
(

x,
µ2y

λ2

)

,

so if we take λ = µ = ζ2n we obtain an involution

c : (x, y) 7→
(ζ2n

x
,
ζ2ny

x2

)

.

This automorphism, which is clearly not in G1, commutes with b and satisfies ac = a−1b−1,
so the subgroup G := 〈a, b, c〉 of AutX is a semidirect product of G1 by 〈c〉 ∼= C2. The
centre of G is Z = 〈an, b〉 ∼= C2 × Cn. There is a subgroup D = 〈a2b, c〉 ∼= Dn in G, and if
n is odd then G = Z ×D ∼= C2n ×Dn (as noted by Girondo and Wolfart [22] in the case
n = 3); however, if n is even then Z ∩D = 〈anbn/2〉 ∼= C2 and |G : ZD| = 2.

We can now determine AutX ∼= N(K)/K. We have N(K) ≥ ∆∗, and by Singerman’s
results [49] the only Fuchsian group properly containing ∆∗ is a triangle group ∆† =
N(∆∗) ∼= ∆(2, 4, 2n). Acting by conjugation, this transposes the two subgroups ∆1,∆2

∼=
∆(2n, n, 2n) of index 2 in ∆∗. It follows that if N(K) = ∆† then ∆1/K ∼= ∆2/K; one of
these is the abelian group ∆/K ∼= G1, so they are both abelian and hence their intersection
(∆1 ∩∆2)/K is a central subgroup of index 4 in ∆∗/K ∼= G. However, the centre Z of G
has index 2n, so n ≤ 2, against our choice. Thus N(K) = ∆∗, so AutX = G.

In order to understand the dessins associated with the inclusions of K in these various
triangle groups, it is convenient to replace the Bely̆ı function β(x, y) = x2n used above
with a Bely̆ı function

β1 =
1

1− β
: (x, y) 7→ y−n.

This change simply permutes the critical values in a 3-cycle, so that the points above
0, 1 and ∞ have multiplicities 2n, 2n and n. We now regard ∆1 and ∆2 as having type
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(2n, 2n, n), so each of the normal inclusions K ⊳∆i corresponds to a regular dessin Hi of
type (2n, 2n, n) on X with Gi := AutHi

∼= ∆i/K. As we have seen, G1 is abelian whereas
G2 is not, so G1 6∼= G2 and hence H1 6∼= H2.

If we represent H1 as a bipartite map on X , then there are n white and n black
vertices, all of valency 2n; these are respectively at the points Pj and Qj with j ∈ Zn,
where β1 = 0 or 1. The edges consist of the points where 0 ≤ β1 ≤ 1, that is, yn ≥ 1
and hence x2n ≤ 0. Thus there are 2n2 edges ej,k, for odd j ∈ Z4n and any k ∈ Zn, along
which x = rζj4n with real r ≥ 0, and y = sζkn with real s = (r2n + 1)1/n ≥ 1. Such an
edge joins Pj−2k to Qk, so there are two edges ej,k and ej+2n,k joining each pair of white
and black vertices. The embedded graph is therefore 2Kn,n, formed by doubling the edges
of the complete bipartite graph Kn,n. The 2n faces of H1 are 2n-gons with centres at the
points Rj = (ζj2n, 0), j ∈ Z2n. The automorphisms ab and a fix all the white and black
vertices respectively, while b fixes all the face-centres.

By ignoring the vertex colours, we can regard H1 as a map M1 of type {2n, 2n} on
X . Since K is normal in ∆∗, now regarded as ∆(2n, 2, 2n), this map is a regular dessin,
with AutM1 = G = AutX . The canonical generators u, v and w of ∆∗, of orders 2n, 2
and 2n, are mapped to the generators a, c and (ac)−1 = abc of G respectively. The Bely̆ı
function corresponding to this inclusion is

β∗ = 4β1(1− β1) : (x, y) 7→ −4
(x

y

)2n

.

The involution c ∈ G fixes the 2n points (x, y) ∈ X where x2 = ζ2n and yn = 2. These are
the midpoints of the edges e1,k and e2n+1,k, which are reversed by c.

The standard embedding S2n of the complete bipartite graph K2n,2n is the dessin on
the Fermat curve x2n+ y2n = 1 corresponding to the Bely̆ı function (x, y) 7→ x2n (see [32]).
The map M1 is the quotient of this by the subgroup generated by the automorphism
(x, y) 7→ (x,−y); the surface covering, given by (x, y) 7→ (x, y2), is branched over the
face-centres Rj . One can also realise M1 as a double covering of the standard embedding
Sn of Kn,n on the Fermat curve xn + yn = 1, branched over all 2n of its vertices.

The subgroup ∆2
∼= ∆(2n, 2n, n) of ∆∗ has canonical generators wv, w and u2. Under

the epimorphism ∆∗ → ∆∗/K = G, these are mapped to a−1c, abc and a2, generating
a subgroup G2 of index 2 in G, with G2 = AutH2 for some regular dessin H2 of type
(2n, 2n, n) on X . Both G1 and G2 contain 〈a2, b〉 ∼= Cn × Cn as a subgroup of index 2.
Although G1 is abelian, G2 is not, since (a2)abc = a−2b−2.

The generators

a−1c : (x, y) 7→
(ζn
x
,
ζ32ny

x2

)

and abc : (x, y) 7→
(1

x
,
ζ2ny

x2

)

of G2 have fixed points R1, Rn+1 and R0, Rn on X respectively. Since they act on the points
Rj by Rj 7→ R2−j and Rj 7→ R−j , this group has two orbits of length n on these points,
consisting of those Rj with j even or odd. Thus the vertices of H2 are the face-centres of
H1, with white or black colours corresponding to a 2-face-colouring of H1. The fixed points
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of the third generator a2 are those of a, namely the n points Qj ; these, together with the
n points Pj, form an orbit of H2, so the face-centres of H2 are the white and black vertices
of H1. This hypermap H2 corresponds to the Bely̆ı function

β2 : (x, y) 7→ −
(1− xn)2

4xn
.

Thus the critical points of β2 are the same as those for β1, namely the points Pj, Qj and
Rj . However, they are partitioned into three sets, lying over the three critical values, in a
different way, with the points Pj and Qj all lying over ∞, while half the points Rj lie over
0 and half lie over 1.

In order to identify the graph embedded by H2, we have

xn = 1− 2β2 ± 2
√

β2(β2 − 1),

with 0 ≤ β2 ≤ 1 along the edges of H2. Writing xn = u + iv with u, v ∈ R, we see that
as β2 increases from 0 to 1 along the unit interval, the two branches of xn travel along
the upper and lower halves of the unit circle u2 + v2 = 1 from xn = 1, via xn = ±i when
β2 = 1/2, to xn = −1. Taking nth roots, we see that along each edge of H2, x follows the
unit circle from a white vertex Rj = (ζj2n, 0) with j even to a black vertex Rj±1 = (ζj±1

2n , 0).
As this happens, x2n goes once around the unit circle in the positive or negative direction,
starting and finishing at 1, so yn = 1− x2n goes round the circle |yn − 1| = 1 in the same
direction, starting and finishing at 0. Taking nth roots, we obtain n closed circuits for y,
all starting and finishing at 0. Thus each vertex Rj is joined by n edges to each of the
vertices Rj±1, so the embedded graph is nC2n, formed by replacing each of the edges of a
2n-cycle C2n with n edges connecting the same pair of vertices. The automorphism a of
X permutes the 2n vertices cyclically, while b fixes the vertices and permutes each of these
sets of n edges cyclically.

As in the case of M1, if we ignore the vertex-colours of H2 we obtain a map M2 of
type {2n, 2n} which is a regular dessin on X , with AutM2

∼= G ∼= ∆∗/K. This is the dual
of M1, with the generators u and w of ∆∗ interchanging their roles in defining vertices
and faces. The edge-centres are the same as those for M1, namely the 2n fixed points of
c. This map M2 can be obtained as an n-sheeted covering of the map {2n, 2}, a spherical
embedding of a 2n-circuit C2n, branched over its vertices. The associated Bely̆ı function is

4β2(1− β2) : (x, y) 7→ −
1

4

(y

x

)2n

.

This is the reciprocal of the Bely̆ı function β∗ associated with M1, corresponding to the
fact that the critical values 0 and ∞ have been transposed.

Since they embed non-isomorphic graphs, the maps M1 and M2 are not isomorphic.
This corresponds to K not being normal in ∆†. The inclusion of K in ∆† corresponds to
the median map M† = MedMi of both maps Mi, a non-regular dessin of type {2n, 4} on
X with AutM† ∼= N∆†(K)/K = ∆∗/K ∼= G. The Bely̆ı function associated with M† is

β† : (x, y) 7→ −
(β∗ − 1)2

4β∗
.
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(Note that β† is invariant under β∗ 7→ 1/β∗.)
The surface X and the Bely̆ı functions considered above are defined over R (in fact,

over Q), so Hi and Mi all admit orientation-reversing automorphisms, that is, they are
regular as unoriented hypermaps and maps; in each case, the full automorphism group
is obtained by adjoining to G1, G2 or G an involution which inverts two of the canonical
generators. For small n they appear in Conder’s lists [5]: for instance, if n = 11, so that
X has genus 100, then M1 and M2 are the dual pair of regular maps R100.43.

In Example 4, the dessins Hi have non-isomorphic automorphism groups. By contrast,
the following construction provides examples in which the automorphism groups of the
dessins are isomorphic, even though the dessins themselves are not.

Lemma 5.1 Let ∆∗ = ∆(l, m, n) with l, m and n all even, so that ∆∗ has three subgroups

∆0, ∆1 and ∆2 of index 2. Let G be a finite group with a unique subgroup H of index 2,
and suppose that G is a smooth quotient ∆∗/L of ∆∗, so that L ≤ ∆j for some j = 0, 1
or 2. Then G is also a smooth quotient ∆i/K of ∆i for each i 6= j in {0, 1, 2}, where
K = ∆i ∩ L for both i.

Proof. If we factor out the subgroup of ∆∗ generated by the commutators and the squares,
we obtain a Klein four-group V4

∼= ∆(2, 2, 2), so ∆∗ has exactly three subgroups ∆i (i =
0, 1, 2) of index 2; these are distinguished from each other by containing one of the three
canonical generators of ∆∗, and the squares of the other two. If G, with a unique subgroup
H of index 2, is a smooth quotient of ∆∗, then the kernel L is a normal surface subgroup
of ∆∗, contained in exactly one of the subgroups of index 2. Renumbering if necessary, we
may assume that L ≤ ∆0. Then L 6≤ ∆i for each i = 1, 2, so Ki := ∆i ∩L is a subgroup of
index 2 in L. Since ∆1 ∩∆0 = ∆2 ∩∆0 we have K1 = K2, = K, say. As an intersection of
two normal subgroups of ∆∗, one of them a surface group, K is a normal surface subgroup
of ∆∗. Then ∆∗/K = ∆i/K × L/K ∼= ∆∗/L×∆∗/∆i

∼= G× C2, and in particular G is a
smooth quotient ∆i/K of ∆i for each i = 1, 2. �

(Here the two distinct but isomorphic subgroups ∆i/K (i 6= j) of ∆∗/K correspond
to the two copies of G in G×C2: one is the obvious direct factor, and the other is obtained
from this by multiplying the elements of the coset G \H by the involution in C2.)

In particular the group ∆∗ = ∆(2, 2n, 2n) has three subgroups ∆0, ∆1 and ∆2 of index
2, distinguished by containing the first, second and third of the canonical generators. Both
∆1 and ∆2 are triangle groups of type (n, 2n, 2n), whereas ∆0 is a quadrilateral group
∆(2, 2, n, n) with signature (0; 2, 2, n, n). Lemma 5.1 immediately implies the following:

Corollary 5.2 Let G be a finite group with a unique subgroup H of index 2. Suppose that

G is a smooth quotient ∆/L of ∆∗ = ∆(2, 2n, 2n), with L ≤ ∆0. Then G is also a smooth

quotient ∆i/K of ∆i for i = 1, 2, where K = ∆1 ∩ L = ∆2 ∩ L. �

In these circumstances, the Riemann surface X = H/K admits regular dessins Hi

(i = 1, 2) of type (n, 2n, 2n), with automorphism groups AutHi
∼= G, corresponding to the
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normal inclusions K ⊳∆i. By the Riemann-Hurwitz Formula, these dessins have genus

g = 1 +
(n− 2)

2n
|G|.

Now K is normal in 〈∆1,∆2〉 = ∆∗, so N(K) is a Fuchsian group containing ∆∗.
By [49], the only possibilities are that N(K) is ∆∗ or that it is the maximal triangle group
∆† = ∆(2, 4, 2n). If N(K) = ∆† then ∆1 and ∆2 are conjugate in N(K), so H1

∼= H2. If,
on the other hand, N(K) = ∆∗ then since ∆1 and ∆2 are not conjugate in N(K) we have
H1 6∼= H2. These two possibilities correspond to whether or not G, as a quotient of ∆∗,
has an automorphism transposing the images y and z of the generators of order 2n. If G
has such an automorphism then L is normal in ∆† and hence so is K, so the two dessins
are isomorphic. If G does not have such an automorphism then L and K are not normal
in ∆†, and the dessins are associates of each other.

The combinatorial explanation for this is as follows. If we regard ∆∗ as ∆(2n, 2, 2n)
then the normal inclusion of L in ∆∗ corresponds to a map M of type {2n, 2n} which is
a regular dessin on a surface Y = H/L, with automorphism group AutM ∼= ∆∗/L ∼= G.
Since K is also normal in ∆∗, and has index 2 in L, it corresponds to a regular dessin
2M: this is a map of type {2n, 2n}, which is an unbranched double covering of M, on
a surface X = H/K of genus g = 2g′ − 1 where Y has genus g′. This map is bipartite
and 2-face-colourable (i.e. its dual map is also bipartite). It is constructed by taking two
copies v0 and v1, coloured white and black, of each vertex v of M, with an edge between v0
and w1 whenever vw is an edge of M; the cyclic rotation of edges vw around the vertices
v of M then determines the cyclic rotations of edges around v0 and v1. This map has
orientation-preserving automorphism group ∆∗/K ∼= G × C2, with the direct factors G
and C2 preserving and transposing vertex colours. Since 2M is bipartite, of type {2n, 2n},
it is the Walsh map of a regular dessin of type (2n, 2n, n) with automorphism group G,
and H1 is an associate of this, of type (n, 2n, 2n). If we apply the same process to the
dual map M′ of M we obtain a second regular dessin H2 on X , with the same type and
automorphism group. These two dessins are isomorphic if and only if M is self-dual, that
is, M ∼= M′.

Example 5. Taking n = 3, we define a smooth homomorphism θ : ∆(2, 6, 6) → S5 by
sending the canonical generators to

x = (12)(34), y = (13)(245) and z = (14)(253).

The image G is transitive, and hence primitive since the degree is prime; G contains a
transposition y3, so G = S5 by [53, Theorem 13.3]. This group has a unique subgroup H
of index 2, namely A5, which contains x, so L := ker θ ≤ ∆0. It follows from Corollary 5.2
that K := ∆1 ∩ L = ∆2 ∩ L is a surface group, normal in both ∆1 and ∆2, with each
∆i/K ∼= S5. The corresponding surface X has genus 21. The triangle groups ∆i (i = 1, 2)
determine regular dessins Hi of type (3, 6, 6) on X , with AutHi

∼= S5. Conjugation by the
permutation (25)(34) transposes y and z, so H1

∼= H2. These dessins are isomorphic to the
hypermap RPH21.4 in [5], with full automorphism group (including orientation-reversing
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automorphisms) S5 × C2. They are constructed, as explained above, from the self-dual
regular map M of genus 11 and type {6, 6} corresponding to θ, denoted by R11.5 in [5].

Example 6. For an example in which the dessins Hi resulting from Corollary 5.2 are not
isomorphic, let us again take n = 3, and define a smooth homomorphism θ : ∆(2, 6, 6) → S9

by sending the canonical generators to

x = (17)(28)(46)(59), y = (123456) and z = (143827)(569).

The image G of θ is transitive, and the stabiliser of 6 contains xy2 = (17359)(284) and
z3 = (18)(24)(37), so G is 2-transitive and hence primitive. Since G contains a 3-cycle
(xy2)5 and an odd permutation y, it follows from [53, Theorem 13.3] that G = S9. Since
y and z are odd, while x is even, we have L := ker θ ≤ ∆0, so Corollary 5.2 shows that
K := ∆1 ∩ L = ∆2 ∩ L is a surface group (of genus 60481), normal in both ∆1 and ∆2,
with each ∆i/K ∼= S9. The triangle groups ∆i (i = 1, 2) determine regular dessins Hi of
type (3, 6, 6) on the surface X = H/K, with AutHi

∼= S9.
The canonical generators of order 6 of ∆∗ = ∆(2, 6, 6) are transposed by conjugation

in ∆(2, 4, 6), whereas y and z, having different cycle-structures, are not transposed by any
automorphism of S9. It follows that L is not normal in ∆(2, 4, 6), and hence neither is K,
since L/K is the centre (and hence a characteristic subgroup) of ∆∗/K ∼= S9 × C2. Thus
N(K) = ∆∗, so ∆1 and ∆1 are not conjugate in N(K), and hence H1 6∼= H2.

As in Case 1, infinite families of further examples can be constructed as coverings
of these, by considering characteristic subgroups of finite index in K, or more generally
G-invariant subgroups of K. Similarly, although the above examples have n = 3, one can
also find examples for other values of n, as follows.

Example 7. Given n ≥ 3, let G = PGL2(p) for some prime p ≡ 2n + 1 mod (4n); since
2n+1 and 4n are coprime, Dirichlet’s Theorem implies that there are infinitely many such
primes. This group G has a unique subgroup H of index 2, namely L2(p). Let x, y and z
be the images in G of the matrices

X =
(

a b
c −a

)

, Y =
(

d 0
0 1

)

and Z = (XY )−1 =
(

ad b
cd −a

)−1

=
(

−a/d −b/d
−c a

)

in GL2(p), where a2 + bc + 1 = 0 and d has multiplicative order 2n in F∗
p. Then x is an

involution in H , while y is an element of order 2n in G \H (note that d is not a square in
F∗
p since 2n does not divide (p− 1)/2). Now XY has trace a(d− 1), so if we choose

a =
d+ 1

d− 1
(1)

then XY and Y have the same trace and determinant; they therefore have the same
eigenvalues, so those of Z are the inverses of those of Y , namely 1/d and 1, and hence z
also has order 2n. If n ≥ 6 then it follows from Dickson’s classification of the subgroups of
L2(q) [14, Ch. XII] that the only maximal subgroups of H which could contain the element
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y2 of order n are the stabilisers of the elements 0 and ∞ of P1(p) and the dihedral group of
order p−1 leaving {0,∞} invariant. However, x is not an element of any of these maximal
subgroups, since abc 6= 0 (otherwise a = 0, giving d = −1, or a2 = −1, giving d2 = −1, so d
has order dividing 4 and hence n ≤ 2). Thus x and y2 generate H and so x and y generate
G. Thus G is a smooth quotient of ∆∗ = ∆(2, 2n, 2n), so by Corollary 5.2 we obtain a pair
of regular dessins Hi of type (n, 2n, 2n), on the same surface, with AutHi

∼= G.
These two dessins are isomorphic if and only if G has an automorphism transposing

y and z. Let u (= −b/(a + 1)) and v (= (a − 1)/c) be the fixed points of z in P1(p)
corresponding to the eigenspaces of Z with eigenvalues 1/d and 1. Then the involution

i : t 7→
v(t− u)

t− v

in G transposes u and v with the fixed points 0 and ∞ of y, where Y has eigenvalues 1
and d. Now an element of G with two given fixed points is uniquely determined by the
ratio of the corresponding eigenvalues of a matrix representing it. It follows that i, acting
by conjugation, transposes y and z, so H1

∼= H2.
However, we can often make our choice of a differ from that in (1) (with a2 6= −1 as

before), so that Z has eigenvalues λ, µ = d(±j−1)/2 for some unit j 6≡ ±1 mod (2n). Then
detZ = λµ = d−1 = det Y −1 and λ/µ = dj, so z still has order 2n. As before, x and y
generate G, and we obtain two regular dessins Hi of type (n, 2n, 2n) on the same surface,
with AutHi

∼= G. Since λ/µ 6= d±1, no inner automorphism of G can transpose y and z.
As the automorphism group of H , a nonabelian simple group, G is complete. Thus each
automorphism of G is inner, and hence cannot transpose y and z, so H1 6∼= H2.

For example, if n = 8 and p = 17 we obtain pairs of regular dessins Hi of type
(8, 16, 16) on the same surface of genus 1837, with automorphism group PGL2(17). Let us
take d = 3, a primitive root mod (17). If we choose a = 2, as in (1), we can put b = 3 and
c = 4 to obtain

X =
(

2 3
4 −2

)

, Y =
(

3 0
0 1

)

and Z =
(

5 −1
−4 2

)

.

Then H1
∼= H2 since Y and Z have eigenvalues 3, 1 and 1, 6 with the same ratio 3±1 = 6∓1.

If, however, we choose a = −1, we can put b = 2 and c = −1, giving

X =
(

−1 2
−1 1

)

, Y =
(

3 0
0 1

)

and Z =
(

6 5
1 −1

)

.

In this case Z has eigenvalues d = 3 and d−2 = 2 with ratio d3 = −5 6= 3±1, so H1 6∼= H2.

The condition n ≥ 6 was imposed in Example 7 to ensure that x and y generate G.
However, in some cases they do this even when n < 6.

Example 8. Let n = 3 and p = 7. Formula (3) in the Appendix and the character table
in [6] show that the group G = PGL2(7) contains |G| = 336 triples x, y and z of orders 2, 6
and 6 with xyz = 1. By inspection, no proper subgroup contains such a triple, so they all
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generate G. They form a single orbit under AutG = G, so ∆∗ = ∆(2, 6, 6) has a unique
normal surface subgroup L with ∆∗/L ∼= G. Since x is contained in the unique subgroup
H = L2(7) of index 2 in G we have L ≤ ∆0. The two regular dessins Hi of type (3, 6, 6)
resulting from Corollary 5.2 have genus 57, and are isomorphic, with AutHi

∼= PGL2(7);
they appear as RPH57.15 in Conder’s list [5], with full automorphism group PGL2(7)×C2.
These dessins are constructed, as explained after Corollary 5.2, from the self-dual regular
map M of type {6, 6} and genus 29 denoted by R29.9 in [5].

We can also use Lemma 5.1 to construct further examples where AutH1 6∼= AutH2,
in addition to those in Example 4. The following consequence of Lemma 5.1 is simply
Corollary 5.2 with subscripts permuted:

Corollary 5.3 Let G be a finite group with a unique subgroup H of index 2. Suppose that

G is a smooth quotient ∆∗/L of ∆∗ = ∆(2, 2n, 2n), with L ≤ ∆1. Then G is also a smooth

quotient ∆i/K of ∆i for i = 0, 2, where K = ∆0 ∩ L = ∆2 ∩ L. �

In this situation ∆1/K = (∆0 ∩∆2)/K × L/K ∼= H ×C2, so if G 6∼= H × C2 then the
regular dessins Hi corresponding to the inclusions K ≤ ∆i for i = 1, 2 have non-isomorphic
automorphism groups H × C2 and G.

Example 9. Let n = 6k for some integer k ≥ 2. In the symmetric group Sd of degree
d = 2n+ 1 = 12k + 1, let

x = (1, 12k + 1)(2, 6k + 3)(3, 2k + 4)(4, k + 5)(5, 6), z = (1, 2, . . . , 12k)(12k + 1)

and y = (zx)−1. Then x and z are odd permutations of orders 2 and 12k = 2n, while y is
an even permutation with cycles

(1, 12k + 1, 12k, . . . , 6k + 3), (2, 6k + 2, 6k + 1, . . . , 2k + 4),

(3, 2k + 3, 2k + 2, . . . , k + 5), (4, k + 4, k + 3, . . . , 6) and (5)

of lengths 6k, 4k, k, k and 1, so y has order 12k = 2n. Mapping the canonical generators
of ∆∗ to x, y and z therefore gives a smooth homomorphism θ : ∆∗ → Sd. The cycle-
structures of x and z show that the image G = 〈x, z〉 of θ is doubly transitive. A particular
case of a theorem of Höchsmann [25] states that if any doubly transitive group G of degree
d has an element of 2-power order moving just m points, then either m ≥ d/2, or G ≥ Ad,
or G is the symplectic group PSp2m(2) with d = 2m−1(2m−1) for some m > 2. In our case
the involution x moves m = 10 points. Since d is odd, the symplectic case cannot arise;
since d > 2m we have G ≥ Ad, and hence G = Sd since x is an odd permutation. The
hypotheses of Corollary 5.3 are now satisfied, with y ∈ H = Ad and L = ker θ. We therefore
obtain two regular dessins Hi of type (n, 2n, 2n) on the Riemann surface X = H/K where
K = ∆0 ∩ L = ∆2 ∩ L. They have non-isomorphic automorphism groups Ad × C2 and Sd.
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6 Case 3

In Cases 3 and 4 of Proposition 3.1 we have ∆1 = ∆(2n, 2n, 2n) and ∆2 = ∆(n, 4n, 4n),
while ∆∗ is ∆(2, 2n, 4n) or ∆(2, 3, 4n) respectively. In either case, we obtain pairs of regular
dessins of types (2n, 2n, 2n) and (n, 4n, 4n) on the same Riemann surface X = H/K of
genus

g = 1 +
(2n− 3)

4n
|∆i : K|. (2)

Having different types, these dessins cannot be isomorphic. As we shall see, their auto-
morphism groups may or may not be isomorphic.

In dealing with Case 3, we will simply assume that N(K) ≥ ∆∗ = ∆(2, 2n, 4n), rather
than that N(K) = ∆∗ = ∆(2, 2n, 4n), so that any results obtained here can also be applied
in Case 4, where N(K) is the larger group ∆(2, 3, 4n). In this situation the analogue of
Corollary 5.2 is the following immediate consequence of Lemma 5.1, where the quadrilateral
group ∆0 = ∆(2, 2, n, 2n) with signature (0; 2, 2, n, 2n) is the third subgroup of index 2 in
∆∗, not equal to ∆1 or ∆2:

Corollary 6.1 Let G be a finite group with a unique subgroup H of index 2. Suppose that

G is a smooth quotient ∆∗/L of ∆∗ = ∆(2, 2n, 4n), with L ≤ ∆0. Then G is also a smooth

quotient ∆i/K of ∆i for i = 1, 2, where K = ∆1 ∩ L = ∆2 ∩ L. �

The combinatorial explanation for this is similar to that given earlier for Corollary 5.2.
As before, the normal inclusions of L andK in ∆∗, now regarded as ∆(2n, 2, 4n), correspond
to a map M and a bipartite double covering 2M, both of type {4n, 2n}, and both regular
dessins with automorphism groups G and G×C2. Now 2M is the Walsh map of a regular
dessin H1 of type (2n, 2n, 2n) on X = H/K with automorphism group G. Applying
the same process to the dual map M′, of type {2n, 4n}, leads to a regular dessin of type
(4n, 4n, n) on X , and H2 is an associate of this, of type (n, 4n, 4n), also with automorphism
group G.

Example 10. We adapt the construction in Example 9. In the symmetric group Sd of
degree d = 4n + 1, where n ≥ 2, let

x = (1, 4n+ 1)(2, 2n+ 3)(3, n+ 4)(4, 5), z = (1, 2, . . . , 4n)(4n+ 1)

and y = (zx)−1. Then x and z are even and odd permutations of orders 2 and 4n, while

y−1 = zx = (1, 2n+ 3, 2n+ 4, . . . , 4n+ 1)(2, n+ 4, n+ 5, . . . , 2n+ 2)(3, 5, 6, . . . , n+ 3)(4)

has disjoint cycles of lengths 2n, n, n and 1, so y is odd and has order 2n. We therefore have
a smooth homomorphism θ : ∆∗ → Sd with L = ker θ ≤ ∆0. As in Example 9, the image G
of θ is doubly transitive, so Höchsmann’s theorem [25] shows that G = Sd provided n ≥ 4.
If n = 2 then z3x = (1, 5, 8, 6, 9)(2, 4) and G contains (z3x)5 = (2, 4), while if n = 3 then
z3x = (1, 5, 8, 11, 9, 12, 7, 10, 13)(2, 4, 3, 6) and G contains (z3x)9 = (2, 4, 3, 6); in either case
it follows as before that G = Sd. Corollary 6.1 therefore applies, giving two regular dessins
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Hi, of types (2n, 2n, 2n) and (n, 4n, 4n), with AutHi
∼= G = Sd, on the Riemann surface

X = H/K where K = ∆1 ∩ L = ∆2 ∩ L. For instance, if n = 2, so that G = S9, these
dessins have genus 45361.

If H is a smooth quotient ∆∗/M of ∆∗ with no subgroup of index 2, then L := ∆0∩M
satisfies the hypotheses of Corollary 6.1, with G = ∆∗/L = (∆0/L)× (M/L) ∼= H × C2.

Example 11. If n ≥ 2 then by Dirichlet’s Theorem there are infinitely many primes p ≡ 1
mod (8n). For any such p, let x, z and y be the images in H = L2(p) of the matrices

X =
( a b
c −a

)

, Z =
( d 0
0 1/d

)

and Y = (ZX)−1 = XZ−1 =
( a/d bd
c/d −ad

)

in SL2(p), where a2 + bc + 1 = 0 and d has multiplicative order 8n in F∗
p. Then x and

z have orders 2 and 4n, and if we put a = (d4 + 1)/(d − d3) then Y has trace d2 + d−2,
so y has order 2n. As in Example 7, Dickson’s classification of the maximal subgroups of
L2(q) [14, Ch. XII] implies that x and z generate H , so H is a smooth quotient ∆∗/M of
∆∗. Since H is simple, it follows from the preceding remark that G = L2(p)× C2 satisfies
the hypotheses of Corollary 6.1. We therefore obtain two regular dessins Hi, of types
(2n, 2n, 2n) and (n, 4n, 4n), with AutHi

∼= G, on the Riemann surface X = H/K where
K = ∆1 ∩∆2 ∩M . In the smallest case, where n = 2 and p = 17, they have genus 613.

It is tempting to try to use the group G = PGL2(p) here as in Example 7, since it
also has H = L2(p) as its unique subgroup of index 2. However, this fails when ∆∗ =
∆(2, 2n, 4n). We need to send the three canonical generators of ∆∗ to elements x, y and z
of orders 2, 2n and 4n in G, with x ∈ H and y, z ∈ G \H . However, if G has elements of
order 4n then each element y of order 2n is the square of an element of order 4n, so y ∈ H .

In Examples 10 and 11 the dessins Hi have isomorphic automorphism groups, but
as in Case 2 we can also construct examples where AutH1 6∼= AutH2. The analogue of
Corollary 5.3 as the following consequence of Lemma 5.1:

Corollary 6.2 Let G be a finite group with a unique subgroup H of index 2. Suppose that

G is a smooth quotient ∆∗/L of ∆∗ = ∆(2, 2n, 4n), with L ≤ ∆1. Then G is also a smooth

quotient ∆i/K of ∆i for i = 0, 2, where K = ∆0 ∩ L = ∆2 ∩ L. �

As in Case 2 it follows that if G 6∼= H×C2 the regular dessins Hi corresponding to the
inclusions K ≤ ∆i for i = 1, 2 have non-isomorphic automorphism groups H × C2 and G.

Example 12. We imitate Examples 9 and 10. In Sd, where d = 4n+ 1 ≥ 9, let

x = (1, 4n+ 1)(2, 2n+ 3)(4, 5), z = (1, 2, . . . , 4n)(4n+ 1).

and y = (zx)−1. Then x and z are odd permutations of orders 2 and 4n, while

y = (1, 4n+ 1, 4n, . . . , 2n+ 3)(2, 2n+ 2, 2n+ 1, . . . , 3)(4),

with cycles of lengths 2n, 2n and 1, is an even permutation of order 2n. We therefore obtain
a smooth homomorphism ∆∗ → Sd. Since x moves six points, Höchsmann’s theorem [25]
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shows that G := 〈x, z〉 = Sd provided n ≥ 3. If n = 2 then z2x = (1, 3, 4, 6, 8, 7, 9)(2, 5),
so G contains the transposition (z2x)7 and again G = Sd. Corollary 6.2 therefore gives
two regular dessins H1 and H2 of types (2n, 2n, 2n) and (n, 4n, 4n) on the same Riemann
surface X = H/K. We have AutH1

∼= Ad × C2 while AutH2
∼= Sd 6∼= AutH1.

Example 13. Here we adapt Example 7. Given n ≥ 3, let G = PGL2(p) for some prime
p ≡ 4n+1 mod (8n); as before, Dirichlet’s Theorem implies that there are infinitely many
such primes. Let x, y and z be the images in G of the matrices

X =
( a b
c −a

)

, Y =
( d 0
0 1/d

)

and Z = (XY )−1 =
( ad b/d
cd −a/d

)−1

in GL2(p), where d has multiplicative order 4n in F∗
p. Then x and y have orders 2 and 2n,

with y ∈ H = L2(p), and x ∈ G \H if a2 + bc is a non-square in Fp. If we choose X so
that a−2bc + d + d−1 = 1 then Z−1 has the same value of tr2/ det as the diagonal matrix
with eigenvalues d and 1, so z has order 4n. Now y fixes 0 and ∞, while the two points
fixed by z2 are disjoint from these provided bc 6= 0, so H = 〈y, z2〉 and hence G = 〈y, z〉.
Corollary 6.2 then gives two regular dessins of types (2n, 2n, 2n) and (n, 4n, 4n) on the
same Riemann surface, this time with non-isomorphic automorphism groups L2(p) × C2

and PGL2(p). If n = 3 and p = 13, for instance, they have genus 547.

7 Case 4

In Case 4 we have ∆1 = ∆(2n, 2n, 2n) and ∆2 = ∆(n, 4n, 4n) as in Case 3, but now ∆∗ :=
N(K) = ∆(2, 3, 4n). We have |∆∗ : ∆i| = 6 for each i, with ∆1 ⊳ ∆

∗ a normal inclusion
of type (c), and ∆2 < ∆∗ a non-normal inclusion of type (H). There is a unique normal
subgroup ∆1 of type (2n, 2n, 2n) in ∆∗, namely the kernel of the natural epimorphism onto
∆(2, 3, 2) ∼= S3. There is a unique conjugacy class of subgroups ∆2 of type (n, 4n, 4n) in ∆∗,
namely the inverse images of the three subgroups C4 < S4 under the natural epimorphism
θ : ∆∗ → ∆(2, 3, 4) ∼= S4 (equivalently, the stabilisers of faces in the action of ∆∗, through
S4, by rotations of a cube C); here ∆1 is the inverse image of the normal Klein 4-group
V4 ⊳ S4. It follows that for each of the three choices of ∆2 in ∆∗ there is a subgroup
∆◦ ∼= ∆(2, 2n, 4n) of index 3 in ∆∗, containing both ∆1 and ∆2 with index 2: these three
subgroups ∆◦ are the inverse images of the Sylow 2-subgroups of S4 (dihedral groups of
order 8), or equivalently the stabilisers of unordered pairs of opposite faces of C.

It follows from these inclusions ∆i ⊳2 ∆
◦ <3 ∆∗ that Case 4 is just a subcase of the

situation considered in Section 6, where the surface group K was normal in ∆1 and ∆2,
or equivalently in 〈∆1,∆2〉 = ∆◦ ∼= ∆(2, 2n, 4n); now it is also normal in the larger group
∆∗ ∼= ∆(2, 3, 4n). The subgroups K we need are therefore the normal surface subgroups
of ∆∗ contained in K0 := ker θ, corresponding to smooth finite quotients of ∆∗ which map
onto S4, or equivalently, to orientably regular maps which cover C, branched only over the
faces. Any such subgroup K yields regular dessins Hi of types (2n, 2n, 2n) and (n, 4n, 4n)
on the surface X = H/K, with AutHi

∼= ∆i/K. In such cases, AutHi has ∆i/K0
∼= V4
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or C4 as an epimorphic image for i = 1 or 2; this immediately excludes all the examples
constructed in Section 6, where AutHi has no normal subgroup of index 4, so thatK 6≤ K0.

As in Section 6, the inclusions of K in ∆◦ correspond to regarding the Walsh maps of
Hi (i = 1, 2) as a dual pair of uncoloured maps Mi of types {4n, 2n} and {2n, 4n}. The
further inclusion of K in ∆∗, now regarded as ∆(3, 2, 4n), corresponds to the truncation T
of M2, a map of type {4n, 3} on X formed by replacing every vertex (of valency 2n) of M2

with a small 2n-gon; equivalently, the dual of T is formed by stellating M1, joining the
centre of each face of M1 to all its incident vertices. The normality of K in ∆∗ corresponds
to the fact that T and its dual are orientably regular maps, i.e. regular dessins.

Example 14. The simplest examples are those in which K0/K is cyclic. The cyclic regular
coverings T of the cube C were classified by Surowski and the author in [36] (together with
those of the other platonic hypermaps). They are Sherk’s trivalent maps {d · 4, 3} of type
{4d, 3} and genus 2(d − 1), described in [47], where n = d := |K0 : K| divides 6; their
orientation-preserving automorphism groups ∆∗/K are d-fold central extensions of S4. If
d = 1 then T = C, giving regular dessins Hi of types (2, 2, 2) and (1, 4, 4) on the sphere with
automorphism groups V4 and C4. If d = 2 then T is the Möbius-Kantor map of genus 2,
denoted by {4+4, 3} in [13, §8.8, §8.9, Fig. 3.6c] and by R2.1 in [5]. Here ∆∗/K ∼= GL2(3),
a double covering of ∆∗/K0

∼= S4
∼= PGL2(3); the dessin H1, denoted by RPH2.4 in [5],

has type (4, 4, 4), and its automorphism group is the quaternion group Q8; the dessin
H2 has automorphism group C8, and an associate of type (8, 2, 8) appears as the regular
map R2.6 in [5]. If d = 3 then T has genus 4 and type {12, 3}, with ∆∗/K ∼= S4 × C3;
the dessins Hi have types (6, 6, 6) and (3, 12, 12), and automorphism groups V4 × C3 and
C4×C3

∼= C12; these maps and hypermaps are R4.1, RPH4.14 and RPH4.8 in [5]. If d = 6
then T has genus 10 and type {24, 3}, with ∆∗/K ∼= GL2(3) × C3; the dessins Hi have
types (12, 12, 12) and (6, 24, 24), and automorphism groups Q8 × C3 and C8 × C3

∼= C24;
these are R10.5, RPH10.38 and RPH10.29 in [5]. In all four cases the underlying surface
X is the curve yd = x5 − x, with AutX ∼= ∆∗/K; the d-sheeted covering (x, y) 7→ x of the
sphere P1(C) is branched over the face-centres ±1,±i, 0 and ∞ of C.

Example 15. Further examples, with K0/K abelian, can be constructed from quotients
K0/K of K

ab

0 = K0/K
′
0
∼= Z5

n, regarded as the homology module

H1(Y0;Zn) = H1(Y0;Z)⊗Z Zn = (π1Y0)
ab

⊗Z Zn

over Zn for the group ∆∗/K0
∼= S4, where Y0 is the punctured sphere P1(C)\{0,±1,±i,∞}.

The induced action of ∆∗/K0 by conjugation on K
ab

0 is equivalent to the action of S4 on
H1(Y0;Z) as the rotation group of C. If n is a prime p > 3, for example, then this 5-
dimensional module is a direct sum of irreducible S4-modules of dimensions 2 and 3, so we
obtain normal subgroups K of ∆∗ with K/K0 elementary abelian of order pe for e = 2, 3
and 5. If pe = 25, for instance, then T is the regular map R36.3 of genus 36 in [5].

Under the natural epimorphism from the modular group Γ = PSL2(Z) ∼= C2 ∗ C3
∼=

∆(2, 3,∞) to ∆∗ ∼= ∆(2, 3, 2n), the subgroups K in Case 4 lift back to normal subgroups
of level 4n in Γ, with ∆1 and K0 lifting back to the principal congruence subgroups Γ(2)
and Γ(4) of levels 2 and 4, and ∆2 lifting back to a conjugate of Γ0(4) (see [33, Ch. 6]).
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Example 16. We can take K to be the image in ∆∗ of the principle congruence subgroup
Γ(4n) of level 4n in Γ. We have

|Γ : Γ(m)| =
m3

2

∏

p|m

(

1−
1

p2

)

for each m > 2, with p ranging over the distinct primes dividing m, so the resulting dessins
Hi satisfy

|AutHi| = |∆i : K| =
1

6
|∆∗ : K| =

1

6
|Γ : Γ(4n)| = 4n3

∏

26=p|n

(

1−
1

p2

)

.

The Riemann surface X underlying these dessins is the modular curve X(4n) associated
with Γ(4n). By equation (2) in Case 3, it has genus

g = 1 +
(2n− 3)

4n
|∆i : K| = 1 + (2n− 3)n2

∏

26=p|n

(

1−
1

p2

)

.

More generally we could take K to be the image in ∆∗ of any normal subgroup N of Γ
such that Γ(4) ≥ N ≥ Γ(4n). These all correspond to normal subgroups of Γ/Γ(4n) ∼=
PSL2(Z4n); McQuillan [44] has classified the normal subgroups of PSL2(Zm) for all m.

Example 16 is not typical, in the sense that ‘most’ normal subgroups N of finite index
in Γ are non-congruence subgroups [28]. If N is any normal subgroup of finite index in Γ,
and l is its level, then N∩Γ(4) is a normal subgroup of finite index and level 4n = lcm (4, l)
in Γ, so we can take K to be its image in ∆∗. If Γ/N has a non-abelian composition factor
not of type L2(p) for any prime p, then N is a non-congruence subgroup, and hence so is
N ∩ Γ(4), since the non-abelian composition factors of PSL2(Zm) all have this type.

Example 17. A Hurwitz group H is a non-trivial finite quotient of ∆(2, 3, 7) (for instance,
see Examples 1, 2 and 3), and hence a quotient Γ/N of Γ where N has level l = 7. By
letting K be the image of N ∩ Γ(4) in ∆∗, we obtain pairs of hypermaps Hi of types
(14, 14, 14) and (7, 28, 28) on the same surface X = H/K, with AutHi

∼= V4 × H or
C4 ×H for i = 1, 2. For example, Ree’s family of simple groups Re (3e) for odd e > 1 are
all Hurwitz groups [29, 43], as is the Monster simple group [54]; these all correspond to
non-congruence subgroups N of Γ.

8 Appendix: counting formulae

Finding a regular dessin of type (l, m, n) with automorphism group G is equivalent to
finding a smooth epimorphism from the triangle group ∆(l, m, n) onto G, and hence to
finding a generating triple x, y, z of orders l, m and n in G, with xyz = 1. One can count
such dessins by using character theory to count solutions of this equation in G.
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More generally, ifX1, . . . , Xr are conjugacy classes in a finite groupG, then the number
of r-tuples (x1, . . . , xr) ∈ X1×· · ·×Xr such that x1 . . . xr = 1 in G is given by Frobenius’s
formula

|X1|. . . . .|Xr|

|G|

∑

χ

χ(x1) . . . χ(xr)

χ(1)r−2
,

where xi ∈ Xi and χ ranges over the irreducible complex characters of G (see [17], [30]
or [46, Theorem 7.2.1]). In the particular case r = 3 the number of triples (x, y, z) chosen
from conjugacy classes X, Y, Z, with xyz = 1, is

|X|.|Y |.|Z|

|G|

∑

χ

χ(x)χ(y)χ(z)

χ(1)
. (3)

In order to have a smooth homomorphism, we choose the conjugacy classes X, Y and
Z to consist of elements of the same orders l, m and n as the canonical generators of ∆.
If one can show that some triple (x, y, z) generates G (for instance, by showing that no
maximal subgroup contains x, y and z), then we have an epimorphism ∆ → G. A more
sophisticated approach, due to P. Hall [24], uses Möbius inversion in the subgroup lattice of
G to enumerate generating sets and hence epimorphisms; see [16, 30] for some applications.

For any groups ∆ and G, two epimorphisms ∆ → G have the same kernel if and only
if they differ by an automorphism of G; since AutG acts fixed-point-freely on generating
sets, it has orbits of length |AutG| on these epimorphisms, so one can count kernels K by
dividing the number of epimorphisms by |AutG|. Applying this to ∆ = ∆(l, m, n) gives
the number of regular dessins of type (l, m, n) with automorphism group G. See [29] for
an example of this technique, applied to the Ree groups Re(3e) as Hurwitz groups.
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