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Abstract

We give a new recurrence formula for the eigenvalues of the derangement graph. Consequently,

we provide a simpler proof of the Alternating Sign Property of the derangement graph. Moreover,

we prove that the absolute value of the eigenvalue decreases whenever the corresponding partition

decreases in the dominance order. In particular, this settles affirmatively a conjecture of Ku and

Wales (J. of Combin. Theory, Series A 117 (2010) 289–312) regarding the lower and upper bound

for the absolute values of these eigenvalues.
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1 Introduction

Let G be a finite group and S be a subset of G. The Cayley graph Γ(G,S) is the graph which has the
elements of G as its vertices and two vertices u, v ∈ G are joined by an edge if and only if uv−1 ∈ S.
We require that S is a nonempty subset of G satisfying the condition that s ∈ S =⇒ s−1 ∈ S and
1 6∈ S.

The derangement graph Γn is the Cayley graph Γ(Sn,Dn) where Sn is the symmetric group on
[n] = {1, . . . , n}, and Dn is the set of derangements in Sn. That is, two vertices g, h of Γn are joined
if and only if g(i) 6= h(i) for all i ∈ [n], or equivalently gh−1 fixes no point.

Clearly, Γn is vertex-transitive, so it is Dn-regular where Dn = |Dn|. It is well known that the
largest eigenvalue of a regular graph is its degree. However, it is generally difficult to determine
the smallest eigenvalue of a regular graph. Recently, after having derived a recurrence formula (see
Theorem 1.2 below) for the eigenvalues of Γn, Renteln [8] showed that the smallest eigenvalue µ of Γn

is − Dn

n−1 . The value of µ was also determined independently by Ellis et al. [3] in their seminal work on
intersecting families of permutations. The recurrence obtained by Renteln was later used by Ku and
Wales [4] to prove the Alternating Sign Property (ASP) of the derangement graph (Theorem 1.3). The
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purpose of this paper is to give a new recurrence formula for these eigenvalues. This new recurrence,
which follows from the property of shifted schur functions, provides a simpler proof of the ASP and
settles affirmatively a conjecture of Ku and Wales regarding the lower bound and upper bounds for
the absolute values of these eigenvalues.

Recall that a Cayley graph Γ(G,S) is normal if S is closed under conjugation. It is well known
that the eigenvalues of a normal Cayley graph Γ(G,S) can be expressed in terms of the irreducible
characters of G.

Theorem 1.1 ([1, 2, 5, 6]). The eigenvalues of a normal Cayley graph Γ(G,S) are integers given by

ηχ =
1

χ(1)

∑

s∈S

χ(s), (1)

where χ ranges over all the irreducible characters of G. Moreover, the multiplicity of ηχ is χ(1)2.

Recall that a partition λ of n, denoted by λ ⊢ n, is a weakly decreasing sequence λ1 ≥ . . . ≥ λr

with λr ≥ 1 such that λ1 + · · · + λr = n. We write λ = (λ1, . . . , λr). The size of λ, denoted by |λ|,
is n and each λi is called the i-th part of the partition. We also use the notation (µa1

1 , . . . , µas
s ) ⊢ n

to denote the partition where µi are the distinct nonzero parts that occur with multiplicity ai. For
example,

(5, 5, 4, 4, 2, 2, 2, 1) ←→ (52, 42, 23, 1).

Clearly, the derangement graph Γn is normal since the set Dn is closed under conjugation. On the
other hand, it is well known that both the conjugacy classes of Sn and the irreducible characters of
Sn are indexed by partitions λ of [n]. Therefore, the eigenvalue ηχλ

of the derangement graph can be
denoted by ηλ. Throughout, we shall use this notation.

To describe the recurrence formula of Renteln, we require some terminology. To the Young diagram
of a partition λ, we assign xy-coordinates to each of its boxes by defining the upper-left-most box to
be (1, 1), with the x axis increasing to the right and the y axis increasing downwards. Then the hook of
λ is the union of the boxes (x′, 1) and (1, y′) of the Ferrers diagram of λ, where x′ ≥ 1, y′ ≥ 1. Let ĥλ
denote the hook of λ and let hλ denote the size of ĥλ. Similarly, let ĉλ and cλ denote the first column
of λ and the size of ĉλ respectively. Note that cλ is equal to the number of rows of λ. When λ is clear
from the context, we replace ĥλ, hλ, ĉλ and cλ by ĥ, h, ĉ and c respectively. Let λ− ĥ ⊢ n− h denote
the partition obtained from λ by removing its hook. Also, let λ− ĉ denote the partition obtained from
λ by removing the first column of its Ferrers diagram, i.e. (λ1, . . . , λr)− ĉ = (λ1−1, . . . , λr−1) ⊢ n−r.

Theorem 1.2 ([8] Renteln’s Formula). For any partition λ, the eigenvalues of the derangement graph

Γn satisfy the following recurrence:

ηλ = (−1)hη
λ−ĥ

+ (−1)h+λ1hηλ−ĉ (2)

with initial condition η∅ = 1.

Theorem 1.3 ([4] The Alternating Sign Property (ASP) ). Let n > 1. For any partition λ =

(λ1, . . . , λr) ⊢ n,

sign(ηλ) = (−1)|λ|−λ1

= (−1)#cells under the first row of λ (3)

where sign(ηλ) is 1 if ηλ is positive or −1 if ηλ is negative.
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It turns out that the two terms on the right-hand side of Renteln’s formula (2) can have different
signs. This is the source of difficulty in the proof of the ASP by Ku and Wales which relies mainly on
the recurrence. Our recurrence formula does not have this problem, thus giving a ‘quicker’ proof of
the ASP.

To state our results, we need a new terminology. For a partition λ = (λ1, . . . , λr) ⊢ n, let l̂λ denote
the last row of λ and let lλ denote the size of l̂λ. Clearly, lλ = λr. Also, let λ− l̂λ denote the partition
obtained from λ by deleting the last row. When λ is clear from the context, we replace l̂λ, lλ by l̂ and
l respectively.

Theorem 1.4. Let λ = (λ1, . . . , λr) ⊢ n. The eigenvalues of the derangement graph Γn satisfy the

following recurrence:

ηλ = (−1)r−1λrηλ−ĉ + (−1)λrη
λ−l̂

(4)

with initial condition η∅ = 1.

It follows from the ASP that both of the terms on the right-hand side of (4) have the same sign.

Let λ = (λ1, . . . , λr), λ
′ = (λ′

1, . . . , λ
′
r) ⊢ n. We write λ <lex λ′, if there is a m, 1 ≤ m ≤ r such

that λi = λ′
i for all 1 ≤ i ≤ m− 1 and λm < λ′

m. Note that ‘<lex’ is the usual lexicographic ordering
on the partitions of n.

Let λ, λ′ ⊢ n with λ1 as their first part. In general, λ <lex λ′ does not imply that |ηλ| < |ηλ′ |. This
has been pointed out in [4, Remark 1.4]. One of our main contributions in this paper is to show that
such property holds with respect to the dominance order. Recall that if λ and λ′ are partitions, we
say that λ is dominated by λ′, and write λEλ′, if λ1+λ2+ · · ·+λk ≤ λ′

1+λ′
2+ · · ·+λ′

k for all positive
integer k.

We give a more intuitive interpretation of the dominance order as follows. Recall that an outside

corner of a partition λ is a box (x, y) of λ such that neither (x + 1, y) nor (x, y + 1) are boxes of λ.
On the other hand, define an inside corner of λ as a location (x, y) which is not a box of λ, such that
either y = 1 and (x− 1, y) is a box of λ, x = 1 and (x, y − 1) is a box of λ, or (x− 1, y) and (x, y − 1)
are boxes of λ. For example, in the following diagram of the partition (4, 3, 1, 1), the outside corners
are marked with an ‘o’ and the inside corners with an ‘i’:

o i

o i

i

o
i

Let λ, λ′ ⊢ n. We write λ <1 λ
′, if there are m1 and m2, 1 ≤ m1 < m2 ≤ r such that

λ = (λ1, . . . , λm1−1, λm1
, λm1+1, . . . , λm2−1, λm2

, λm2+1, . . . , λr),

λ′ = (λ1, . . . , λm1−1, λm1
+ 1, λm1+1, . . . , λm2−1, λm2

− 1, λm2+1, . . . , λr)

are partitions of n. Intuitively, λ <1 λ
′ corresponds to sliding an outside corner of λ upwards into an

inside corner of λ′.

It turns out that the dominance order can be entirely characterized in terms of the partial ordering
<1. We shall omit the proof of this standard result.
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Lemma 1.5. Let µ and λ be partitions of n. Then µ E λ if and only if there exist µ(1), . . . , µ(s) ⊢ n

such that

µ <1 µ
(1) <1 · · · <1 µ

(s) <1 λ.

Using the recurrence given by Theorem 1.4, we are able to prove Theorem 1.6 and then settle
affirmatively the conjecture of Ku and Wales regarding the lower and upper bounds for the absolute
values of the eigenvalues of Γn (Theorem 1.7).

Theorem 1.6. Let λ, λ′ ⊢ n with λ1 as their first part. If λE λ′, then

|ηλ| < |ηλ′ |.

Theorem 1.7 (The Ku-Wales Conjecture). Suppose λ∗ ⊢ n is the largest partition in lexicographic

order among all the partitions with λ1 as their first part. Then, for every λ = (λ1, . . . , λs) ⊢ n,

|η(λ1,1n−λ1 )| ≤ |ηλ| ≤ |ηλ∗ |.

Proof. It follows from Theorem 1.6 by noting that (λ1, 1
n−λ1)EλEλ∗, for all λ ⊢ n, λ 6= λ∗, (λ1, 1

n−λ1).

Note that it has been shown by Ku and Wales (see [4, Theorem 1.3]) that the lower bound holds
for all λ1 ≥ ⌊n/2⌋.

The paper is organized as follows. In Section 2, we introduce the shifted Schur functions developed
by Okounkov and Olshanski [7] and rewrite a formula of Renteln in terms of these functions. Theorem
1.4 will then follow immediately from the property of these shifted Schur functions. Using the new
recurrence formula, we provide a simpler proof of the ASP in Section 3. In Section 4, we proved
Theorem 1.6, thus settling a conjecture of Ku and Wales. For the reader’s convenience, in Section 5,
we reproduce some the eigenvalues of the derangement graphs for small n as given in [4].

2 Shifted Schur Functions

The Schur function or Schur polynomial in n variables can be defined as the ratio of two n × n
determinants

sµ(x1, . . . , xn) =
det

[
x
µj+n−j

i

]

det
[
xn−j
i

] , (5)

where µ is an arbitrary partition µ1 ≥ µ2 ≥ · · ·µn ≥ 0 of length at most n.

An important variant of the Schur polynomial are the shifted Schur polynomials that was developed
by Okounkov and Olshanski [7]:

s∗µ(x1, . . . , xn) =
det [(xi + n− i ↓ µj + n− j)]

det [xi + n− i ↓ n− j]
, (6)

where the symbol (x ↓ k) is the k-th falling factorial power of a variable x:

(x ↓ k) =

{
x(x− 1) · · · (x− k + 1), if k = 1, 2, . . .
1, if k = 0.

(7)
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Just like the ordinary Schur polynomials, the shifted Schur polynomials also satisfy the stability prop-

erty:

s∗µ(x1, . . . , xn, 0) = s∗µ(x1, . . . , xn). (8)

The stability property allow us to define the functions s∗µ(x1, x2, . . .) in infinitely many variables that
form a basis in the algebra of shifted symmetric functions, denoted by Λ∗. Every element of Λ∗ may
be viewed as a function f(x1, x2, . . .) on an infinite sequence of arguments such that xm = 0 for all
sufficiently large m. We refer the reader to [7] for basic results on shifted symmetric functions.

For the application we have in mind, the following formula for the dimension of skew Young
diagrams will be useful.

Theorem 2.1 ([7]). Let µ ⊢ k and λ ⊢ n be two partitions, where k ≤ n and µ ⊆ λ. Let dim λ/µ

denote the number of standard tableaux of shape λ/µ; in particular, dim λ = dim λ/∅. Then

dim λ/µ

dim λ
=

s∗µ(λ)

(n ↓ k)
, (9)

where s∗µ(λ) = s∗µ(λ1, λ2, . . .).

Theorem 2.2 ([7] Vanishing Theorem). We have

s∗µ(λ) = 0 unless µ ⊆ λ, (10)

s∗µ(µ) = H(µ), (11)

where H(µ) =
∏

α∈µ h(α) is the product of the hook lengths of all boxes of µ.

As an example of shifted symmetric functions, set h∗k = s∗(k) where (k) is the partition of k whose
Young diagram consists of just one row. These are called the complete shifted symmetric functions.
They are shifted analogues of the complete homogeneous symmetric functions. We shall require the
following properties of h∗k.

Proposition 2.3 ([7]). The complete shifted symmetric functions h∗k can be written as

h∗k(x1, x2, . . .) =
∑

1≤i1≤···≤ik<∞

(xi1 − k + 1)(xi2 − k + 2) · · · xik . (12)

Corollary 2.4. The complete shifted symmetric functions h∗k satisfy the following recurrence:

h∗k(x1, . . . , xn) = xnh
∗
k−1(x1 − 1, . . . , xn − 1) + h∗k(x1, . . . , xn−1). (13)

Proof. In view of the stability property and Proposition 2.3, we have

h∗k(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n

(xi1 − k + 1)(xi2 − k + 2) · · · xik .

Therefore,

h∗k(x1, . . . , xn) = xn


 ∑

1≤i1≤···≤ik−1≤n

(xi1 − k + 1)(xi2 − k + 2) · · · (xik − 1)




+
∑

1≤i1≤···≤ik≤n−1

(xi1 − k + 1)(xi2 − k + 2) · · · xik

= xnh
∗
k−1(x1 − 1, . . . , xn − 1) + h∗k(x1, . . . , xn−1).
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Recall the following formula due to Renteln [8, Theorem 3.2].

Theorem 2.5 ([8]). The eigenvalues of the derangement graph Γn are given by

ηλ =
n∑

k=0

(−1)n−k(n ↓ k)
dim λ/(k)

dim λ
(14)

Therefore, it follows immediately from Theorem 2.1 and Theorem 2.5 that

Corollary 2.6. The eigenvalues of the derangement graph Γn are given by

ηλ =

n∑

k=0

(−1)n−ks∗(k)(λ)

=

n∑

k=0

(−1)n−kh∗k(λ). (15)

Proof of Theorem 1.4.

Set η′λ =
∑n

k=0(−1)
kh∗k(λ). By the Vanishing Theorem (Theorem 2.2) and Corollary 2.6, we can write

η′λ =

∞∑

k=0

(−1)kh∗k(λ)

so that
η′λ = (−1)|λ|ηλ.

By (13),

η′λ =

∞∑

k=0

(
(−1)k

(
λrh

∗
k−1(λ1 − 1, . . . , λr − 1) + h∗k(λ1, . . . , λr−1)

))

= −λr

∞∑

k=0

(−1)k−1h∗k−1(λ1 − 1, . . . , λr − 1) +

∞∑

k=0

(−1)kh∗k(λ1, . . . , λr−1)

= −λrη
′
λ−ĉ + η′

λ−l̂

= −λr(−1)
|λ−ĉ|ηλ−ĉ + (−1)|λ−l̂|η

λ−l̂

(−1)|λ|ηλ = λr(−1)
1+|λ|−rηλ−ĉ + (−1)|λ|−λrη

λ−l̂

ηλ = (−1)r−1λrηλ−ĉ + (−1)λrη
λ−l̂

.

�

3 A simpler proof of the Alternating Sign Property

We prove by induction on |λ|. Obviously, the property holds for all small partitions. By the inductive
hypothesis,

sign
(
(−1)r−1ηλ−ĉ

)
= (−1)r−1(−1)|λ−ĉ|−(λ1−1)

= (−1)r−1+|λ|−r−λ1+1

= (−1)|λ|−λ1 .
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Similarly,

sign
(
(−1)λrη

λ−l̂

)
= (−1)λr (−1)|λ−l̂|−λ1

= (−1)λr+|λ|−λr−λ1

= (−1)|λ|−λ1 .

By the recurrence formula (4), we deduce that

sign(ηλ) = (−1)|λ|−λ1 .

�

4 Some preliminary lemmas

For convenience, let us write
f(λ1, λ2, . . . , λr) = |η(λ1,λ2,...,λr)|.

Then by Theorem 1.3 and Theorem 1.4, we have

f(λ1, λ2, . . . , λr) = λrf(λ1 − 1, λ2 − 1, . . . , λr − 1) + f(λ1, λ2, . . . , λr−1). (16)

By abuse of notation, in this section we shall use the symbol λ to denote a positive integer instead
of a partition.

Lemma 4.1.

h∗0(λ) = 1,

h∗1(λ) = λ,

h∗k(λ) = (λ− k + 1)(λ− k + 2) · · · (λ− 1)(λ), for k ≥ 2.

Proof. It follows easily from Proposition 2.3.

Lemma 4.2. For any 1 < m ≤ r,

f(λ1, λ2, . . . , λr) =

λm∑

k=0

h∗k(λm, . . . , λr)f(λ1 − k, λ2 − k, . . . , λm−1 − k).

7



Proof. Repeatedly applying equation (16) and by Lemma 4.1, we obtain

f(λ1, λ2, . . . , λr)

= h∗1(λr)f(λ1 − 1, λ2 − 1, . . . , λr − 1) + h∗0(λr)f(λ1, λ2, . . . , λr−1)

= (λr)(λr − 1)f(λ1 − 2, λ2 − 2, . . . , λr − 2) +

1∑

k=0

h∗k(λr)f(λ1 − k, λ2 − k, . . . , λr−1 − k)

= (λr)(λr − 1)(λr − 2)f(λ1 − 3, λ2 − 3, . . . , λr − 3) +

2∑

k=0

h∗k(λr)f(λ1 − k, λ2 − k, . . . , λr−1 − k)

...

=

λr∑

k=0

h∗k(λr)f(λ1 − k, λ2 − k, . . . , λr−1 − k). (17)

Thus the lemma holds for m = r. Assume that it holds for some m0, 2 < m0 ≤ r. We shall show that

it also holds for m0 − 1.

By assumption, the following equation holds:

f(λ1, λ2, . . . , λr) =

λm0∑

k=0

h∗k(λm0
, . . . , λr)f(λ1 − k, λ2 − k, . . . , λm0−1 − k). (18)

By applying equation (17),

f(λ1, λ2, . . . , λr)

=

λm0∑

k=0

h∗k(λm0
, . . . , λr)




λm0−1−k∑

j=0

h∗j (λm0−1 − k)f(λ1 − k − j, λ2 − k − j, . . . , λm0−2 − k − j)




=

λm0∑

k=0

λm0−1−k∑

j=0

h∗k(λm0
, . . . , λr)h

∗
j (λm0−1 − k)f(λ1 − k − j, λ2 − k − j, . . . , λm0−2 − k − j). (19)

Now by collecting all the terms with k + j = j0, equation (19) becomes

f(λ1, λ2, . . . , λr)

=

λm0−1∑

j0=0




∑

k+j=j0,
0≤k≤λm0

h∗j (λm0−1 − k)h∗k(λm0
, . . . , λr)


 f(λ1 − j0, λ2 − j0, . . . , λm0−2 − j0). (20)

By Proposition 2.3,

h∗j0(λm0−1, λm0
, . . . , λr) =

∑

k+j=j0,
0≤k≤λm0

h∗j (λm0−1 − k)h∗k(λm0
, . . . , λr).

Thus, by induction the lemma follows.
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Lemma 4.3.

h∗0(λ1, λ2, . . . , λr) = 1,

h∗1(λ1, λ2, . . . , λr) = λ1 + λ2 + · · ·+ λr.

Proof. It follows easily from Proposition 2.3.

Lemma 4.4. If λs ≤ λ and 2 ≤ k ≤ λ, then

h∗k(λ, λs) < h∗k(λ+ 1, λs − 1).

Proof. By Proposition 2.3,

h∗k(x, y) =

k∑

j=0

(x− j ↓ k − j)(y ↓ j).

Therefore,

h∗k(λ+ 1, λs − 1)− h∗k(λ, λs − 1) =

k−1∑

j=0

(k − j)(λ− j ↓ k − j − 1)(λs − 1 ↓ j), (21)

and

h∗k(λ, λs)− h∗k(λ, λs − 1) =

k∑

j=1

j(λ− j ↓ k − j)(λs − 1 ↓ j − 1).

=

k−1∑

j=0

(j + 1)(λ− j − 1 ↓ k − j − 1)(λs − 1 ↓ j). (22)

We shall compare equation (21) with equation (22). For 0 ≤ j < k−1
2 , the j-th and (k − 1− j)-th

term of the right side of equation (21) are

(k − j)(λ − j ↓ k − j − 1)(λs − 1 ↓ j), (23)

(j + 1)(λ− k + 1 + j ↓ j)(λs − 1 ↓ k − 1− j). (24)

On the other hand, the j-th and (k − 1− j)-th term of the right side of equation (22) are

(j + 1)(λ− j − 1 ↓ k − j − 1)(λs − 1 ↓ j), (25)

(k − j)(λ − k + j ↓ j)(λs − 1 ↓ k − 1− j). (26)

When j = 0, the sum (23) + (24) − (25) − (26) is

k(λ ↓ k − 1) + (λs − 1 ↓ k − 1)− (λ− 1 ↓ k − 1)− k(λs − 1 ↓ k − 1)

= ((λ ↓ k − 1)− (λ− 1 ↓ k − 1)) + (k − 1)((λ ↓ k − 1) − (λs − 1 ↓ k − 1))

= ((k − 1)(λ− 1 ↓ k − 2)) + (k − 1)((λ ↓ k − 1)− (λs − 1 ↓ k − 1))

> 0, (27)
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where the last inequality follows from k ≥ 2 and λ ≥ λs > λs − 1.

Now for 1 ≤ j < k−1
2 , (23) − (25) is

((k − j)(λ− j)− (j + 1)(λ − k + 1)) (λ− j − 1 ↓ k − j − 2)(λs − 1 ↓ j), (28)

and (24) − (26) is

((j + 1)(λ − k + 1 + j)− (k − j)(λ − k + 1)) (λ− k + j ↓ j − 1)(λs − 1 ↓ k − 1− j). (29)

Since λ ≥ λs and j < k−1
2 ,

(k − j)(λ − j)− (j + 1)(λ− k + 1) = (k − (2j + 1))λ+ (k − 1) + j(j − 1) > 0,

(λ− j − 1 ↓ k − j − 2)(λs − 1 ↓ j) ≥ (λ− k + j ↓ j − 1)(λs − 1 ↓ k − 1− j).

Therefore the sum (28)+(29) is at least

((k − j)(k − j − 1) + (j + 1)j)(λ − k + j ↓ j − 1)(λs − 1 ↓ k − 1− j) > 0. (30)

If k is odd, then j can take value k−1
2 . The k−1

2 -th term on the right side of (21) is

k + 1

2

(
λ−

k − 1

2

y
k − 1

2

)(
λs − 1

y
k − 1

2

)
, (31)

and the k−1
2 -th term on the right side of (22) is

k + 1

2

(
λ−

k + 1

2

y
k − 1

2

)(
λs − 1

y
k − 1

2

)
. (32)

Note that (31) − (32) is

k + 1

2

k − 1

2

(
λ−

k + 1

2

y
k − 1

2
− 1

)(
λs − 1

y
k − 1

2

)
> 0. (33)

From equations (27), (30) and (33), we deduce that

h∗k(λ+ 1, λs − 1)− h∗k(λ, λs)

= (h∗k(λ+ 1, λs − 1)− h∗k(λ, λs − 1))

− (h∗k(λ, λs)− h∗k(λ, λs − 1))

> 0.

Lemma 4.5. Let l ≥ 1 and

h∗k(λ, λ
l, λ) = h∗k(λ, λ, . . . , λ︸ ︷︷ ︸

l times

, λ).

If 2 ≤ k ≤ λ, then

h∗k(λ, λ
l, λ) < h∗k(λ+ 1, λl, λ− 1).

10



Proof. By Proposition 2.3,

(x− j − r ↓ k − j − r)(λ− j ↓ r)(y ↓ j)

= (x− k + 1) · · · (x− j − r)(λ− j − r + 1) · · · (λ− j)(y − j + 1) · · · (y),

is a term in the sum of h∗k(x, λ
l, y). In fact, there are

(
r+l−1
l−1

)
such terms. Therefore

h∗k(x, λ
l, y) =

k∑

j=0

k−j∑

r=0

(
r + l − 1

l − 1

)
(x− j − r ↓ k − j − r)(λ− j ↓ r)(y ↓ j). (34)

From (34),

h∗k(x+ 1, λl, y)− h∗k(x, λ
l, y)

=
k−1∑

j=0

k−1−j∑

r=0

(k − j − r)

(
r + l − 1

l − 1

)
(x− j − r ↓ k − 1− j − r)(λ− j ↓ r)(y ↓ j). (35)

Now replacing x with λ and y with λ− 1 in (35), we obtain

h∗k(λ+ 1, λl, λ− 1)− h∗k(λ, λ
l, λ− 1)

=

k−1∑

j=0

k−1−j∑

r=0

(k − j − r)

(
r + l − 1

l − 1

)
(λ− j ↓ k − 1− j)(λ − 1 ↓ j)

=

k−1∑

j=0

(
k − j + l

l + 1

)
(λ− j ↓ k − 1− j)(λ− 1 ↓ j)

=

k−1∑

j=0

(
k − j + l

l + 1

)
(λ− j)(λ − 1 ↓ k − 2)

>
k−1∑

j=0

(
k − j + l

l + 1

)
(λ− k + 1)(λ − 1 ↓ k − 2)

=
k−1∑

j=0

(
k − j + l

l + 1

)
(λ− 1 ↓ k − 1)

=

(
k + l + 1

l + 2

)
(λ− 1 ↓ k − 1). (36)

From (34),

h∗k(x, λ
l, y)− h∗k(x, λ

l, y − 1)

=
k∑

j=1

k−j∑

r=0

j

(
r + l − 1

l − 1

)
(x− j − r ↓ k − j − r)(λ− j ↓ r)(y − 1 ↓ j − 1). (37)
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Now replacing x with λ and y with λ in (37), we obtain

h∗k(λ, λ
l, λ)− h∗k(λ, λ

l, λ− 1)

=

k∑

j=1

k−j∑

r=0

j

(
r + l − 1

l − 1

)
(λ− j ↓ k − j)(λ − 1 ↓ j − 1)

=

k∑

j=1

k−j∑

r=0

j

(
r + l − 1

l − 1

)
(λ− 1 ↓ k − 1)

=
k∑

j=1

j

(
k − j + l

l

)
(λ− 1 ↓ k − 1)

=

(
k + l + 1

l + 2

)
(λ− 1 ↓ k − 1). (38)

By equations (36) and (38), we deduce that

h∗k(λ+ 1, λl, λ− 1)− h∗k(λ, λ
l, λ) > 0.

Lemma 4.6. Let r ≥ 3. If

(λ1, . . . , λr−2, λr−1, λr),

(λ1, . . . , λr−2, λr−1 + 1, λr − 1),

are two partitions of n, then

f(λ1, . . . , λr−2, λr−1, λr) < f(λ1, . . . , λr−2, λr−1 + 1, λr − 1).

Proof. By Lemma 4.2,

f(λ1, . . . , λr−2, λr−1, λr) =

λr−1∑

k=0

h∗k(λr−1, λr)f(λ1 − k, λ2 − k, . . . , λr−2 − k),

and

f(λ1, . . . , λr−2, λr−1 + 1, λr − 1) =

λr−1+1∑

k=0

h∗k(λr−1 + 1, λr − 1)f(λ1 − k, λ2 − k, . . . , λr−2 − k)

≥

λr−1∑

k=0

h∗k(λr−1 + 1, λr − 1)f(λ1 − k, λ2 − k, . . . , λr−2 − k).

The lemma then follows from Lemma 4.3 and Lemma 4.4.

Lemma 4.7. If l ≥ 1 and

(λ1, . . . , λr, λ, λ
l, λ),

(λ1, . . . , λr, λ+ 1, λl, λ− 1),

are two partitions of n, then

f(λ1, . . . , λr, λ, λ
l, λ) < f(λ1, . . . , λr, λ+ 1, λl, λ− 1).
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Proof. By Lemma 4.2,

f(λ1, . . . , λr, λ, λ
l, λ) =

λ∑

k=0

h∗k(λ, λ
l, λ)f(λ1 − k, λ2 − k, . . . , λr − k),

and

f(λ1, . . . , λr, λ+ 1, λl, λ− 1) =

λ+1∑

k=0

h∗k(λ+ 1, λl, λ− 1)f(λ1 − k, λ2 − k, . . . , λr − k)

≥
λ∑

k=0

h∗k(λ+ 1, λl, λ− 1)f(λ1 − k, λ2 − k, . . . , λr − k).

The lemma then follows from Lemma 4.3 and Lemma 4.5.

5 Proof of Theorem 1.6

Proof. By Lemma 1.5, it is sufficient to show that the inequality holds for λ <1 λ
′, i.e. if λ <1 λ

′ then

|ηλ| < |ηλ′ |.

Let 2 ≤ m1 < m2 ≤ r be such that

λ = (λ1, . . . , λm1−1, λm1
, λm1+1, . . . , λm2−1, λm2

, λm2+1, . . . , λr)

λ′ = (λ1, . . . , λm1−1, λm1
+ 1, λm1+1, . . . , λm2−1, λm2

− 1, λm2+1, . . . , λr).

We shall prove by induction on n. Clearly, Theorem 1.6 holds for small values of n. We shall distinguish

two cases.

Case 1. m2 6= r. Then by Theorem 1.3 and Theorem 1.4,

|ηλ| = λr|ηλ−ĉ|+ |ηλ−l̂
|.

Note that λ− ĉ <1 λ
′ − ĉ and λ− l̂ <1 λ

′ − l̂. So, by induction,

|ηλ| = λr|ηλ−ĉ|+ |ηλ−l̂
| < λr|ηλ′−ĉ|+ |ηλ′−l̂

| = |ηλ′ |.

Case 2. m2 = r. If m1 = r−1, then it follows from Lemma 4.6 that |ηλ| < |ηλ′ |. Suppose m1 < r−1.

Let m3 be the largest integer such that

λ′′ = (λ1, . . . , λm3−1, λm3
+ 1, λm3+1, . . . , λr − 1),

is a partition of n. Note that m1 ≤ m3. By the choice of m3, we must have

λm3−1 > λm3
= λm3+1 = · · · = λr−1.

If λr = λr−1, then by Lemma 4.7, |ηλ| < |ηλ′′ |. If λr < λr−1, then by Case 1, |ηλ| < |ηλ′′′ |, where

λ′′′ = (λ1, . . . , λm3−1, λm3
+ 1, λm3+1, . . . , λr−1 − 1, λr).

By Lemma 4.6, |ηλ′′′ | < |ηλ′′ |. Thus |ηλ| < |ηλ′′ |.

In either case, |ηλ| < |ηλ′′ |. Ifm1 = m3, then we are done. Ifm1 < m3, then by Case 1, |ηλ′′ | < |ηλ′ |.

Hence |ηλ| < |ηλ′ |. This completes the proof of the theorem.
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6 Some Values of ηλ

In this section we reproduce some of the eigenvalues of Γn for small n as given in [4].

n = 2

λ ηλ
2 1

12 −1

n = 3

λ ηλ
3 2

2, 1 −1

13 2

n = 4

λ ηλ λ ηλ
4 9 2, 12 1

3, 1 −3 14 −3

2, 2 3

n = 5

λ ηλ λ ηλ
5 44 22, 1 −4

4, 1 −11 2, 13 −1

3, 2 4 15 4

3, 12 4

n = 6

λ ηλ λ ηλ
6 265 3, 13 −5

5, 1 −53 23 7

4, 2 15 22, 12 5

4, 12 13 2, 14 1

32 −11 16 −5

3, 2, 1 −5

n = 7

λ ηλ λ ηλ
7 1854 3, 22 6

6, 1 −309 3, 2, 12 6

5, 2 66 3, 14 6

5, 1, 1 62 23, 1 −9

4, 3 −21 22, 13 −6

4, 2, 1 −18 2, 15 −1

4, 13 −15 17 6

32, 1 14

n = 8

λ ηλ λ ηλ
8 14833 4, 14 17

7, 1 −2119 32, 2 −19

6, 2 371 32, 12 −17

6, 12 353 3, 22, 1 −7

5, 3 −89 3, 2, 13 −7

5, 2, 1 −77 3, 15 −7

5, 13 −71 24 13

42 53 23, 12 11

4, 3, 1 25 22, 14 7

4, 22 23 2, 16 1

4, 2, 12 21 18 −7

n = 9

λ ηλ λ ηλ
9 133496 4, 22, 1 −27

8, 1 −16687 4, 2, 13 −24

7, 2 2472 4, 15 −19

7, 12 2384 33 32

6, 3 −463 32, 2, 1 23

6, 2, 1 −424 32, 13 20

6, 13 −397 3, 23 8

5, 4 128 3, 22, 12 8

5, 3, 1 104 3, 2, 14 8

5, 22 92 3, 16 8

5, 2, 12 88 24, 1 −16

5, 14 80 23, 13 −13

42, 1 −64 22, 15 −8

4, 3, 2 −31 2, 17 −1

4, 3, 12 −29 19 8

14



n = 10

λ ηλ λ ηλ λ ηλ λ ηλ
10 1334961 6, 14 441 4, 3, 2, 1 36 3, 22, 13 −9

9, 1 −148329 5, 5 −309 4, 3, 13 33 3, 2, 15 −9

8, 2 19071 5, 4, 1 −149 4, 23 33 3, 17 −9

8, 12 18541 5, 3, 2 −125 4, 22, 12 31 25 21

7, 3 −2967 5.3.12 −119 4, 2, 14 27 24, 12 19

7, 2, 1 −2781 5, 22, 1 −105 4, 16 21 23, 14 15

7, 13 −2649 5, 2, 13 −99 33, 1 −39 22, 16 9

6, 4 621 5, 15 −89 32, 22 −29 2, 18 1

6, 3, 1 529 42, 2 81 32, 2, 12 −27 110 −9

6, 22 495 42, 12 75 32, 14 −23

6, 2, 12 477 4, 32 39 3, 23, 1 −9

n = 11, λ1 ≥ 5

λ ηλ λ ηλ λ ηλ λ ηλ
11 14684570 7, 3, 1 3338 6, 22, 1 −557 5, 3, 13 134

10, 1 −1468457 7, 22 3178 6, 2, 13 −530 5, 23 122

9, 2 166870 7, 2, 12 3090 6, 15 −485 5, 22, 12 118

9, 12 163162 7, 14 2914 52, 1 362 5, 2, 14 110

8, 3 −22249 6, 5 −905 5, 4, 2 178 5, 16 98

8, 2, 1 −21190 6, 4, 1 −710 5, 4, 12 170

8, 13 −20395 6, 3, 2 −617 5, 32 158

7, 4 3706 6, 3, 12 −595 5, 3, 2, 1 143

n = 12, λ1 ≥ 6

λ ηλ λ ηλ λ ηλ λ ηλ
12 176214841 8, 3, 1 24721 7, 22, 1 −3531 6, 3, 2, 1 694

11, 1 −16019531 8, 22 23839 7, 2, 13 −3399 6, 3, 13 661

10, 2 1631619 8, 2, 12 23309 7, 15 −3179 6, 23 637

10, 12 1601953 8, 14 22249 62 2119 6, 22, 12 619

9, 3 −190709 7, 5 −4959 6, 5, 1 1033 6, 2, 14 583

9, 2, 1 −183557 7, 4, 1 −4169 6, 4, 2 829 6, 16 529

9, 13 −177995 7, 3, 2 −3815 6, 4, 12 799

8, 4 26701 7, 3, 12 −3709 6, 32 739

n = 13, λ1 ≥ 6

λ ηλ λ ηλ λ ηλ λ ηλ
13 2290792932 9, 14 192828 7, 4, 12 4632 6, 4, 3 −996

12, 1 −190899411 8, 5 −33363 7, 32 4452 6, 4, 2, 1 −933

11, 2 17621484 8, 4, 1 −29668 7, 3, 2, 1 4239 6, 4, 13 −888

11, 12 17354492 8, 3, 2 −27811 7, 3, 13 4080 6, 32, 1 −831

10, 3 −1835571 8, 3, 12 −27193 7, 23 3972 6, 3, 22 −793

10, 2, 1 −1779948 8, 22, 1 −26223 7, 22, 12 3884 6, 3, 2, 12 −771

10, 13 −1735449 8, 2, 13 −25428 7, 2, 14 3708 6, 3, 14 −727

9, 4 222492 8, 15 −24103 7, 16 3444 6, 23, 1 −708

9, 3, 1 209780 7, 6 7284 62, 1 −2428 6, 22, 13 −681

9, 22 203952 7, 5, 1 5580 6, 5, 2 −1203 6, 2, 15 −636

9, 2, 12 200244 7, 4, 2 4764 6, 5, 12 −1161 6, 17 −573
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n = 15

λ ηλ λ ηλ λ ηλ λ ηλ
15 481066515734 72, 1 18806 6, 2, 17 −742 4, 32, 22, 1 −77

14, 1 −34361893981 7, 6, 2 9350 6, 19 −661 4, 32, 2, 13 −74

13, 2 2672591754 7, 6, 12 9094 53 1214 4, 32, 15 −69

13, 12 2643222614 7, 5, 3 7446 52, 4, 1 859 4, 3, 24 −73

12, 3 −229079293 7, 5, 2, 1 7089 52, 3, 2 742 4, 3, 23, 12 −71

12, 2, 1 −224273434 7, 5, 13 6822 52, 3, 12 714 4, 3, 23, 14 −67

12, 13 −220268551 7, 42 6662 52, 22, 1 662 4, 3, 2, 16 −61

11, 4 22026854 7, 4, 3, 1 6174 52, 2, 13 629 4, 3, 18 −53

11, 3, 1 21211046 7, 4, 22 5954 52, 15 574 4, 25, 1 −66

11, 22 20825390 7, 4, 2, 12 5822 5, 42, 2 374 4, 24, 13 −63

11, 2, 12 20558398 7, 4, 14 5558 5, 42, 12 362 4, 23, 15 −58

11, 14 20024414 7, 32, 2 5566 5, 4, 32 350 4, 22, 17 −51

10, 5 −2447421 7, 32, 12 5442 5, 4, 3, 2, 1 329 4, 2, 19 −42

10, 4, 1 −2288506 7, 3, 22, 1 5246 5, 4, 3, 13 314 4, 111 −31

10, 3, 2 −2202685 7, 3, 2, 13 5087 5, 4, 23 302 35 134

10, 3, 12 −2169311 7, 3, 15 4822 5, 4, 22, 12 294 34, 2, 1 119

10, 22, 1 −2121105 7, 24 4854 5, 4, 2, 14 278 34, 13 110

10, 2, 13 −2076606 7, 23, 12 4766 5, 4, 16 254 33, 23 98

10, 15 −2002441 7, 22, 14 4590 5, 33, 1 290 33, 22, 12 94

9, 6 333674 7, 2, 16 4326 5, 32, 22 274 33, 2, 14 86

9, 5, 1 293702 7, 18 3974 5, 32, 2, 12 266 33, 16 74

9, 4, 2 271934 62, 3 −3430 5, 32, 14 250 32, 24, 1 62

9, 4, 12 266990 62, 2, 1 −3205 5, 3, 23, 1 239 32, 23, 13 59

9, 32 262226 62, 13 −3046 5, 3, 22, 13 230 32, 22, 15 54

9, 3, 2, 1 254279 6, 5, 4 −1789 5, 3, 2, 15 215 32, 2, 17 47

9, 3, 13 247922 6, 5, 3, 1 −1617 5, 3, 17 194 32, 19 38

9, 23 244742 6, 5, 22 −1543 5, 25 194 3, 26 14

9, 22, 12 241034 6, 5, 2, 12 −1501 5, 24, 12 190 3, 25, 12 14

9, 2, 14 233618 6, 5, 14 −1417 5, 23, 14 182 3, 24, 14 14

9, 16 222494 6, 42, 1 −1411 5, 22, 16 170 3, 23, 16 14

8, 7 −65821 6, 4, 3, 2 −1282 5, 2, 18 154 3, 22, 18 14

8, 6, 1 −49546 6, 4, 3, 12 −1246 5, 110 134 3, 2, 110 14

8, 5, 2 −41701 6, 4, 22, 1 −1181 43, 3 −331 3, 112 14

8, 5, 12 −40775 6, 4, 2, 13 −1141 43, 2, 1 −298 27, 1 −49

8, 4, 3 −38146 6, 4, 15 −1066 43, 1, 1, 1 −277 26, 13 −46

8, 4, 2, 1 −36715 6, 33 −1105 42, 32, 1 −226 25, 15 −41

8, 4, 13 −35602 6, 32, 2, 1 −1054 42, 3, 22 −210 24, 17 −34

8, 32, 1 −34961 6, 32, 13 −1015 42, 3, 2, 12 −202 23, 19 −25

8, 3, 22 −33991 6, 3, 23 −991 42, 3, 14 −186 22, 111 −14

8, 3, 2, 12 −33373 6, 3, 22, 12 −969 42, 23, 1 −175 2, 113 −1

8, 3, 14 −32137 6, 3, 2, 14 −925 42, 22, 13 −166 115 14

8, 23, 1 −31786 6, 3, 16 −859 42, 2, 15 −151

8, 22, 13 −30991 6, 24, 1 −877 42, 17 −130

8, 2, 15 −29666 6, 23, 13 −850 4, 33, 2 −81

8, 17 −27811 6, 22, 15 −805 4, 33, 12 −79
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