MULTIPLY UNION FAMILIES IN N"
PETER FRANKL, MASASHI SHINOHARA, AND NORIHIDE TOKUSHIGE

ABSTRACT. Let A C N™ be an r-wise s-union family, that is, a family of sequences
with n components of non-negative integers such that for any r sequences in A the
total sum of the maximum of each component in those sequences is at most s. We
determine the maximum size of A and its unique extremal configuration provided
(i) n is sufficiently large for fixed r and s, or (ii) n =r + 1.

1. INTRODUCTION

Let N := {0,1,2,...} denote the set of non-negative integers, and let [n] :=
{1,2,...,n}. Intersecting families in 2" or {0,1}" are one of the main objects
in extremal set theory. The equivalent dual form of an intersecting family is a union
family, which is the subject of this paper. In [B] Frankl and Tokushige proposed to
consider such problems not only in {0,1}" but also in [¢]". They determined the
maximum size of 2-wise s-union families (i) in [¢]" for n > ng(q, s), and (ii) in N3
for all s (the definitions will be given shortly). In this paper we extend their results
and determine the maximum size and structure of r-wise s-union families in N for
the following two cases: (i) n > ng(r,s), and (ii) n =r + 1.

For a vector x € R™, we write x; or (x); for the ith component, so x = (z1,x2, ..., x,).
Define the weight of a € N™ by

la| := Z a;.
i=1

For a finite number of vectors a, b, ...,z € N” define the join aVbV---Vz by
(avVbV---Vz); :=max{a;b;, ..., 2z},
and we say that A C N" is r-wise s-union if
lay Vag V- --Va,| <sforall aj,ay,...,a, € A.

The width of A C N" is defined to be the maximum s such that A is s-union. In
this paper we address the following problem.

Problem. For given n,r and s, determine the maximum size |A| of r-wise s-union

families A C N™.

To describe candidates A that give the maximum size to the above problem, we
need some more definitions. Let us introduce a partial order < in R™. For a,b € R"
we let a < b iff a; < b; for all 1 <7 < n. Then we define a down set for a € N” by

D(a) :={ceN":c < a},
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= | D(a)

acA
Similarly, we define an up set at distance d from a € N" by

Ua,d) ={a+eecN':ecN" |¢| =d}.

We say that a € N” is an equitable partition, if all a;’s are as close to each other as
possible, more precisely, |a; —a;| <1 for all 4,j. Let 1 :=(1,1,...,1) € N™.
For r,n € N and a € N" define a family K by

and for A C N” let

K = K(r,n,a,d) UD (a+11,d — ui)),

where u =n —r+ 1. We will show that thls is an r-wise s-union family, see Claim B
in the next section.

Conjecture. If A C N” is r-wise s-union, then

Al max |K(rn,a,d),
0<d<| %]

where a € N" is an equitable partition with |a| = s — rd. Moreover if equality holds,
then A = K(r,n,a,d) for some 0 <d < |2].

We first verify the conjecture when n is sufficiently large for fixed r,s. Let e; be
the i-th standard base of R", that is, (e;); = 6;;. Let € =0, and €; = Z;Zl e; for
1<i1<n,eg.,e,=1.

Theorem 1. Let r and s be fized positive integers. Write s = dr + p where d and
p are non-negative integers with 0 < p < r. Then there exists no(r,s) such that if
n > ng(r,s) and A C N" is r-wise s-union, then

Al < [DU(e,, d))] -
Moreover if equality holds, then A is isomorphic to D(U(€,,d)) = K(r,n,€,,d).

We mention that the case A C {0,1}" of Theorem [ is settled in [?], and the case
r = 2 of Theorem O is proved in [B] in slightly stronger form. We also notice that
if A C {0,1}"is 2-wise (2d + p)-union, then the Katona’s ¢t-intersection theorem [B]
states that |A| < |D(U(€,,d) N{0,1}")| for all n > s.

Next we show that the conjecture is true if n = r+41. We also verify the conjecture
or general n if A satisfies some additional properties described below.

Let A C N™ be r-wise s-union. For 1 <7 < n let

m; = max{x; : x € A}.
If n —r divides |m| — s, then we define

m| — s

d:= >0

)
n—r

and for 1 <4 <n let
a; :=m; —d,
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and we assume that a; > 0. In this case we have |a| = s—rd. Since |a| > 0 it follows
that d < |2]. For 1 <14 < n define P; € N" by

P, :=a+de,,
where e; denotes the ith standard base, for example, P, = (ay, a2 + d, as, ..., a,).

Theorem 2. Let A C N" be r-wise s-union. Assume that P;’s are well-defined and

{P,...,P,} C A (1)
Then it follows that
|A| < max |K(r,n,a’,d)|,
0<d’<[ 7]
where a’ € N™ is an equitable partition with |a'| = s—rd'. Moreover if equality holds,

then A= K(r,n,a’,d’) for some 0 < d' < [2].
We will show that the assumption (0) is automatically satisfied when n = r + 1.
Corollary. If n =r 41, then Conjecture is true.

Notation: For a,b € N" we define a\ b € N” by (aV b) — b, in other words,
(a\ b); := max{a; — b;,0}. The support of a is defined by supp(a) := {j : a; > 0}.
2. PROOF OF THEOREM 0l — THE CASE WHEN 71 IS LARGE

Let r,s be given, and let s =dr +p, 0 <p <r.

Claim 1. |D(U(&,,d))| = 2*("19).
Proof. By definition we have

D(”(élhd)) = {X + Yy € N™: |X| S d7 y = ep}'
The number of x € N with |x| < d is equal to the number of non-negative integer
solutions of x; + --- + x, < d, which is (”;d). It is 2P that the number of y € N"
satisfying y < €,. O

Let A C N” be r-wise s-union with maximal size. So A is a downset. We will
show that [A| < 27("19). Notice that this RHS is ©(n?) for fixed 7, s.

First suppose that there is ¢ with 2 < ¢ < r such that A is t-wise (dt + p)-union,
but not (¢t — 1)-wise (d(t — 1) + p)-union. In this case, by the latter condition, there
are by,...,b;1 € A such that |b| > d(t —1) +p+ 1, where b = by V -+ V b;_;.
Then, by the former condition, for every a € A it follows that |a VvV b| < dt + p, so
la\ b| < d— 1. This gives us

A={x+yeN':|x|<d-1,y <b}.

There are (”er(‘_izl)) choices for x satisfying |x| < d — 1. On the other hand, the
number of y with y < b is independent of n (so it is a constant depending on r and
s only). In fact |b| < (t — 1)s < rs, and there are less than 2" choices for y. Thus
we get |A| < ("er(‘_izl))?s = O(n® ') and we are done.

Next we suppose that
A is t-wise (dt + p)-union for all 1 <¢ <r. (2)
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The case t = 1 gives us |a| < d + p for every a € A. If p = 0, then this means that
A C D(U(0,d)), which finishes the proof for this case. So, from now on, we assume
that 1 < p < r. Then there is v with u > 1 such that there exist by,...,b, € A
satisfying

bl = u(d+ 1), 3)
where b := by V---Vb,. In fact we have (B) for u = 1, if otherwise A C D(U(0,d)).
If w =p+1 then (B) fails. In fact setting t = p+1 in (B) we see that A is (p+1)-wise
((p+ 1)(d+ 1) — 1)-union. We choose maximal v with 1 < u < p satisfying (),
and fix b = by V ---V b,. By this maximality, for every a € A, it follows that
lavb| < (u+1)(d+1)—1, and

a\bl <d @
Using (@) we partition A into |_|‘Z:0 A;, where
Ai={x+ye€eA: |x|l=iy<b}
Then we have |A;] < ("F")2PPl. Noting that |b| < (d + p)u = O(1) it follows

Z?:_Ol |A4;] = O(n?1). So the size of A, is essential as we will see below.
We naturally identify a € A; with a subset of [n] x {1,...,d+ p}. Formally let

oa) ={(,j):1<i<n, 1<j<a}
We say that b’ < b is rich if there exist vectors cy,...,cgy. of weight d such that
b’V ¢; € A for every j, and the dr + 1 subsets ¢(cq),...,¢(car), p(b) are pairwise
disjoint. Informally, b’ is rich if it can be extended to a (|b’| + d)-element subset of
A'in dr ways disjointly outside b. We are comparing our family A with the reference
family D(U(€,),d), and we define b which plays a role of €, in our family, namely,

let us define )
b= \/{b' < b: b isrich}.

Claim 2. |b| < p.

Proof. Suppose the contrary, then there are distinct rich b, . . ., b;7+1' Let cgi), e cg)
support the richness of b;. Let a; := b}V cﬁ) € A, say, j; = 1. Then choose
as == bV cg? so that ¢(a;) and ¢(ag) are disjoint. If ¢ < p, then having ay,...,a;

chosen, we only used id elements as |Ji_, gzﬁ(cgf)), which intersect at most id of

cgiﬂ), e ,cffjl), and since id < pd < rd we still have some cyﬁ) disjoint from

any already chosen vectors. So we can continue this procedure until we get a,; :=

bl \/Cgﬁf) € Asuch that all ¢(ay), ..., ¢(a,+1) are disjoint. However, these vectors

yield |a; V -+ Vayq1]| > (p+ 1)(d + 1), which contradicts (B) at ¢t = p + 1. O
If y < b is not rich, then
{p(x+y)\o(b) : x+y € Ay |x|=d}

is a family of d-element subsets on (d+p)n vertices, which has no dr pairwise disjoint
subsets (so the matching number is dr — 1 or less). Thus, by the Erdés matching
theorem [I], the size of this family is O(n?~!). There are at most 2/°l = O(1) choices
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for non-rich y < b, and we can conclude that the number of vectors in Ay coming
from non-rich y is O(n?~!). Then the remaining vectors in A4 comes from rich y < b,

and the number of such vectors is at most 2/P! (n;d)

Lagzﬁ(”§f>+om*5.

. Consequently we get

Recall that the reference family is of size 27 (%), and |b| < p from Claim B. So we
only need to deal with the case when there are exactly 27 rich sets, in other words,
b = &, (by renaming coordinates if necessary). We show that A C D(U(&,,d)).
Suppose the contrary, then there is a € A such that |a\ €,] > d + 1. Since ¢,
is rich there are pairwise disjoint vectors cy,...,c,_; of weight d, outside b. Let

a; :=¢€,Vc; € Ay. Then we get
lav(aiV---Va,_1)|>(d+1)+p+(r—Dd=dr+p+1=s5+1,

which contradicts that A is r-wise s-union. This completes the proof of Theorem [I.

3. THE POLYTOPE P AND PROOF OF THEOREM B

We introduce a convex polytope P C R", which will play a key role in our proof.
This polytope is defined by the following n+ () + (5) +---+ (, " +1) inequalities:

>0 if 1 <i<n, (5)
Z%SZ@H—CZ if1<|I|<n—r+1,1C]|nl. (6)
iel i€l

Namely,

P := {x € R" : x satisfies (H) and (B)}.
Let L denotes the integer lattice points in P:

L= L(r,n,a,d):={xeN':xeP}.
Lemma 1. The two sets K and L are the same, and r-wise s-union.
Proof. This lemma is a consequence of the following three claims.
Claim 3. The set K s r-wise s-union.

Proof. Let x1,Xg,...,%, € K. We show that |x;VxyV---Vx,| < s. We may
assume that x; € U(a+1i;1,d —ui;), where u = n —r+ 1. We may also assume that
iy > i > -+- >1i,. Let b:=a+ ;1. Then, informally, [bV x — b| counts the excess
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of x above b, more precisely, it is Zje[n] max{0,z; — b;}. Thus we have

s
|x1 VX V- Vx| < |b —i—Z\b\/xj — b
j=1

< |a| + niy + Z —wi;) — (i1 — z]))

r

:a+dr+(n—r)i1—2(u—1)z’j

Jj=1
,
=S5 Z]j S S,
Jj=2
as required. |

Claim 4. K C L.

Proof. Let x € K. We show that x € L, that is, x satisfies (B) and (B). Since
(B) is clear by definition of K, we show that (B). To this end we may assume that
x € U(a+il,d—ui), whereu =n—r+1and i < [2]. Let I C [n] with 1 < |I] < w.
Then ¢|/| < wi. Thus it follows

Zx] < Za3+z|f|+ —ui) < Za]—l—d

J€el Jel Jel

which confirms (B). O
Claim 5. K D L.

Proof Let x € L. We show that x € K, that is, there exists some i’ such that
0<i <[~ | and

r+1
x\ (a+1i1)] <d—(n—r+1).
We write x as
x = (a1 + i1, a2 + d9, ..., a4y + in),
where we may assume that d > i > iy > --- > 4,. We notice that some i; can

be negative. Since x € L it follows from (B) (a part of the definition of L) that if
1<|I|<n—r+1and I C [n], then

> i <d.
jel
Let J:={j : x; > a;} and we argue separately by the size of |J|.
If |J] <n—r+1, then we may choose ' = 0. In fact,

1x \ a] = max{0,i;} + max{0,i2} + - - - + max{0,¢p_r11}

= max { Zij I C 2[”_T+1]} <d.

jel
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If |J| > n—r+2, then we may choose i’ = i,,_,5. In fact, by letting i' := 4,,_, 1o,
we have
Ix\ (a+ 1) = (i1 — &)+ (ia =)+ + (lp—ysy1 — 7)
<d-(n—r+1).

We need to check 0 < ¢ < Ln_d |. Tt follows from |J| > n —r + 2 that i > 0. Also

d>101 > 09> > lpy_pio andr;'rll—i- bo+ - +ini,—1 < dyield 7 < L%MJ O
This completes the proof of Lemma 0. O
Let

or(a) = Z H a;
Ke() ek
be the kth elementary symmetric polynomial of ay, ..., a,.

Lemma 2. The size of K(r,n,a,d) is given by

K(rmad) =Y (* ot

§=0
L] = d—ui+j d—ui+u
+Z Z (( . )—( . ))Jn_j(a+i1),
i=1 j=u+1 J J
where u =n —r+ 1. Moreover, for fired n,r,d and |a|, this size is mazximized if and
only if a is an equitable partition.

Proof. For J C [n] let x|; be the restriction of x to J, that is, (x|;); is a; if i € J
and 0 otherwise.

First we count the vectors in the base layer D(U(a,d)). To this end we partition
this set into | |, Ao(J), where

Ao(J)={al;+e+Db:supp(e) C J, |e|] < d, supp(b) C [n]\ J, b; < a; for i & J}.

The number of vectors e with the above property is equal to the number of non-

negative integer solutions of the inequality x1 + zo + - -+ + x5 < d, which is (dTJ"Jl).

The number of vectors b is clearly qun]\ s a;. Thus we get
d+|J| d+j
> = X (51 T a= (" )o@,
JE<[?]) JE([?]) le[n]\J

and [D(U(a, d))| = Y7, (") 0u—s(a).
Next we count the vectors in the ith layer:

DU(a+il,d— ui))\ (O DU(a+ j1,d — uj))> .
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For this we partition the above set into | |;c(, Ai(/), where

Ai(J)={(a+1il)|;+e+Db:supple) C J,d—u(i —1) —|J| < |e|] < d— ui,
supp(b) C [n]\ J, by < a; +i for | & J}.
In this case we need d—u(i—1) < |J|+|e| because the vectors satisfying the opposite
inequality are already counted in the lower layers J;_; A;(J). We also notice that
d—u(i—1) —|J| < d—ui implies that |J| > u. So A;(J) =0 for |J| < u. Now we
count the number of vectors e in A;(J), or equivalently, the number of non-negative
integer solutions of

d—u(i—1)—|J| <z +zo+- -+ < d-—ui

This number is (d_qj,”j) - (d_i.”“), where j = |J|. On the other hand, the number

of vectors b in 4;(J) is [];c(,s(a +4). Consequently we get

Sani= Y ((d 1;?“) - (d ‘;”“))an_j(aﬂn.

JC[n] j=u+1
Summing this term over 1 < i < |4] we finally obtain the second term of the
RHS of |K| in the statement of this lemma. Then, for fixed |a|, the size of K
is maximized when o,_;(a) and o,_1(a + 1) are maximized. By the property of
symmetric polynomials, this happens if and only if a is an equitable partition.  [J

Proof of Theorem B. Let A C N" be an r-wise s-union with (). For I C [n] let

mr = max{ZJ:i:XEA}.

icl
Claim 6. IfI C[n| and 1 < |I| <n —r+1, then
mrp = Z a; + d.
icl
Proof. Choose j € I. By () we have P; € A and
mr> Y (P)i=) a;+d. (7)
il icl
We need to show that this inequality is actually an equality. Let [n] = LULL,U---UI,
be a partition of [n|. Then it follows that

szmh—i—mb—i—---—kmhEZai—i—rd:s,

i€[n]

where the first inequality follows from the r-wise s-union property of A, and the
second inequality follows from (@). Since the left-most and the right-most sides are

the same s, we see that all inequalities are equalities. This means that (@) is equality,
as needed. O
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By this claim if x € A and 1 < |I| <n —r + 1, then we have

Zl‘i ng:Zaﬁ—d.

i€l iel
This means that A C L. Finally the theorem follows from Lemmas 0 and B. U

Proof of Corollary. Let n = r + 1 and we show that (I) is satisfied. Let A C N+
be r-wise s-union with maximum size.

We first check that P,’s are well-defined. For this, we need (i) (n — r)|(Jm| — s),
and (ii) a; > 0 for all 7. Since n —r =1 we have (i). To verify (ii) we may assume
that m; > mg > -+ > m,y;. Then a; > a1 = m,,1 — d, so it suffices to show
myy1 > d. Since A is r-wise s-union it follows that m; + mq + --- +m, < s. This
together with the definition of d implies d = |[m| — s < m, 1, as needed.

Next we check that x € A satisfies (H) and (B). By definition we have z; < m; =
a; + d, so we have (B). Since A is r-wise s-union, we have

(:U1+x2)+m3+---+mr+1 < S,
or equivalently,
(x1 +22) + (ag +d) + -+ + (arp1 +d) < s =|a] +rd.

Rearranging we get 1 +x2 < a; + as + d, and we get the other cases similarly, so we
obtain (B). Thus A C L. But by the maximality of |A| we have A = L. Now noting
that every P; satisfies (B) and (B), namely, P, is in L, and thus (I) is satisfied. O
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