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Abstract. For a family of graphs F , an F-transversal of a graph G is a subset
S ⊆ V (G) that intersects every subset of V (G) that induces a subgraph iso-
morphic to a graph in F . Let tF (G) be the minimum size of an F-transversal
of G, and ctF (G) be the minimum size of an F-transversal of G that induces
a connected graph. For a class of connected graphs G, we say that the price of
connectivity of F-transversals is multiplicative if, for all G ∈ G, ctF (G)/tF (G)
is bounded by a constant, and additive if ctF (G) − tF (G) is bounded by a
constant. The price of connectivity is identical if tF (G) and ctF (G) are always
equal and unbounded if ctF (G) cannot be bounded in terms of tF (G). We
study classes of graphs characterized by one forbidden induced subgraph H
and F-transversals where F contains an infinite number of cycles and, possi-
bly, also one or more anticycles or short paths. We determine exactly those
classes of connected H-free graphs where the price of connectivity of these F-
transversals is unbounded, multiplicative, additive, or identical. In particular,
our tetrachotomies extend known results for the case when F is the family of
all cycles.
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1 Introduction

Let F be a family of graphs. A graph is F-free if it contains no induced subgraph
isomorphic to some graph in F (if F = {F} for some graph F then we write F -free
instead). An F-transversal of a graph G = (V,E) is a subset S ⊆ V such that G− S
is F-free; that is, S intersects every subset of V that induces a subgraph isomorphic
to a graph in F . In certain cases, F-transversals are well studied. For example, a
vertex cover is a {P2}-transversal (here, Pk is the path on k vertices). Note that,
for any {P2}-transversal S of a graph G, the graph G − S is an independent set. To
give another example, a feedback vertex set is an F-transversal for the infinite family
F = {C3, C4, C5, . . .} (where Ck is the cycle on k vertices). In this case, for any F-
transversal S of a graph G, the graph G−S is a forest. As the examples suggest, it is
natural to study minimum size F-transversals.

We can put an additional constraint on an F-transversal S of a connected graph G
by requiring that the subgraph ofG induced by S is connected. Minimum size connected
F-transversals of a graph have also been investigated. In particular, minimum size
connected vertex covers are well studied (see, for example, [4, 6, 8, 11, 14, 17, 21, 23])
and minimum size connected feedback vertex sets have also received attention (see,
for example, [2, 10,18,20,22]). We study the following question:

What is the effect of adding the connectivity constraint on the minimum size
of an F-transversal for a graph family F?

We first give two definitions: for a connected graph G, let tF (G) denote the minimum
size of an F-transversal of G, and let ctF (G) denote the minimum size of a connected
F-transversal of G. So our aim is to find relationships between ctF (G) and tF (G);
more particularly, we ask for a class of connected graphs G, whether we can find a
bound for ctF (G) in terms of tF (G) that holds for all G ∈ G.

We briefly survey existing work starting with a number of results on vertex cover,
that is, for F = {P2}. Cardinal and Levy [8] proved that for every ε > 0 there is
a multiplicative bound of 2/(1 + ε) + o(1) in the class of connected n-vertex graphs
with average degree at least εn; that is, ctF (G) ≤ (2/(1 + ε) + o(1))tF (G) for such
graphs G. Camby et al. [6] proved that for the class of all connected graphs, there
is a multiplicative bound of 2 and that this bound is asymptotically sharp for paths
and cycles. They also gave forbidden induced subgraph characterizations of classes of
graphs such that for every connected induced subgraph there is a multiplicative bound
of t, for each t ∈ {1, 4/3, 3/2}.

Belmonte et al. [2, 3] studied feedback vertex sets, that is, F-transversals where
F = {C3, C4, C5 . . .}. They determined all finite families of graphs H such that for
all connected graphs G in the class of H-free graphs, ctF (G)/tF (G) is bounded by a
constant [3]. They also determined exactly those graphs classes G of H-free graphs for
which, for all connected G ∈ G, ctF (G) − tF (G) is bounded by a constant (and they
found exactly when that constant is zero) [2].

We also give two other examples of graph properties where the effect of requiring
connectivity has been studied. A result of Duchet and Meyniel [13] implies that for
all connected graphs the minimum size of a connected dominating set is at most 3
times the size of a minimum size dominating set. A result of Zverovich [24] implies
that for connected (P5, C5)-free graphs this bound is exactly 1. Camby and Schaudt [7]
showed that the equivalent multiplicative bound for connected (P8, C8)-free graphs is
2 and for connected (P9, C9)-free graphs it is 3; both bounds were shown to be sharp.
They also proved that the problem of deciding whether, for a given class of graphs this
bound is at most r is PNP[log]-complete for every fixed rational r with 1 < r < 3. The
same authors also found an example of an additive bound: they proved that for every
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connected (P6, C6)-free graph, a minimum size connected dominating set contains at
most one more vertex than a minimum size dominating set. Grigoriev and Sitters [18]
proved that for connected planar graphs of minimum degree at least 3, a minimum size
connected face hitting set is at most 11 times larger than a minimum size face hitting
set. Schweitzer and Schweitzer [22] reduced this bound to 5 and proved tightness.

In this paper we consider a number of families F that contain cycles, paths and
complements of cycles. We study F-transversals for graph classes characterized by one
forbidden induced subgraph and ask whether the size of a minimum size connected
F-transversal can be bounded in terms of the size of a minimum size F-transversal.
Before we can present our results we need to introduce some additional terminology
and notation.

1.1 Terminology

We start by giving the following definition.

Definition 1. Let H be a graph and let G be the class of connected H-free graphs. Let
F be a family of graphs. We say that G is:

(a) F-unbounded if for every function f : N → N there exists a graph G ∈ G such
that ctF (G) > f(tF (G));

(b) F-multiplicative if ctF (G) ≤ cHtF (G) for some constant cH and for every G ∈ G;
(c) F-additive if ctF (G) ≤ tF (G) + dH for some constant dH and for every G ∈ G;

and
(d) F-identical if ctF (G) = tF (G) for every G ∈ G.

If a graph class G is F-unbounded, F-multiplicative, F-additive or F-identical, re-
spectively, for a family of graphs F , then we say that the price of connectivity of
F-transversals for G is unbounded, multiplicative, additive, or identical, respectively.
Note that this definition can also be introduced for graph properties other than F-
transversals. We note that our definition is a refinement of the term price of connec-
tivity as it was used when first introduced by Cardinal and Levy [8] in their study of
vertex cover. They were concerned only with multiplicative bounds.

For graphs F and G, we write F ⊆i G to denote that F is an induced subgraph of
G. We let Cn, Kn and Pn denote the cycle, complete graph, and path on n vertices,
respectively. The disjoint union of two vertex-disjoint graphs G and H is the graph
G+H that has vertex set V (G)∪V (H) and edge set E(G)∪E(H) where V (G)∩V (H) =
∅. We denote the disjoint union of r copies of G by rG. A graph is a linear forest if it
is the disjoint union of a set of paths.

The complement G of a graph G has the same vertex set as G and an edge between
two distinct vertices if and only if these vertices are not adjacent in G. A hole is a
cycle of length at least 4. An antihole is the complement of a hole. A cycle, hole or
antihole is even if it contains an even number of vertices; otherwise it is odd. A hole is
long if it is of length at least 5, and a long antihole is the complement of a long hole.

A graph is odd-hole-free or odd-antihole-free if it contains no induced odd holes or
no induced odd antiholes, respectively. An even-hole-free graph is defined similarly. A
graph is chordal if it has no induced hole, that is, if it has no induced cycles of length
at least 4. A graph is weakly chordal if it has no induced long hole and no induced long
antihole. A graph is perfect if the chromatic number of every induced subgraph equals
the size of a largest clique in that subgraph. By the Strong Perfect Graph Theorem [9],
a graph is perfect if and only if it is odd-hole-free and odd-antihole-free. A graph is
a split graph if its vertex set can be partitioned into a clique and an independent set.
Split graphs coincide with the (C4, C5, 2P2)-free graphs [16]. A graph is threshold if
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it is (C4, 2P2, P4)-free, trivially perfect if it is (C4, P4)-free, cotrivially perfect if it is
(2P2, P4)-free and a cograph if it is P4-free.

1.2 Our Results

Table 1 summarizes our results together with related previous work. Results can be
seen both according to the family F and the corresponding property of the graph
G − S, where S is an F-transversal of G. We note that when F is the family of
even cycles or of holes there is an open case. In all other cases, the stated conditions
in Table 1 are both necessary and sufficient for F-multiplicativity (F-boundedness),
F-additivity, and F-identity, respectively, in the class of connected H-free graphs.

Property Condition for Condition for Condition for
F of G− S F-multiplicativity F-additivity F-identity

(for F-boundedness)

cycles forest H is a linear forest [2] H ⊆i P5 + sP1 or H ⊆i P3 [2]
H ⊆i sP3 [2]

odd cycles bipartite H is a linear forest H ⊆i P5 + sP1 or H ⊆i P3

H ⊆i sP3

even cycles† even-hole-free H is a linear forest H ⊆i P4 + sP1
† H ⊆i P3

(equiv.: even holes)

holes† chordal H is a linear forest H ⊆i P4 + sP1
† H ⊆i P3

odd holes odd-hole-free H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

odd holes and perfect H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

odd antiholes

long holes long-hole-free H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

long holes and weakly chordal H is a linear forest H ⊆i P4 + sP1 H ⊆i P4

long antiholes

cycles and P2 edgeless no restriction [6] H ⊆i P5 + sP1 or H ⊆i P3

(equiv.: {P2}) H ⊆i sP3

holes and 2P2 split no restriction H ⊆i P4 + sP1 or H ⊆i P3

(equiv.:
{C4, C5, 2P2})

H ⊆i P3 + sP2

holes and 2P2, P4 threshold no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.:
{C4, 2P2, P4})
holes and P4 trivially perfect no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.: {C4, P4})
long holes and 2P2 (C5, 2P2)-free no restriction H ⊆i P4 + sP1 H ⊆i P3

(equiv.: {C5, 2P2}) H ⊆i P2 +P1

long holes and 2P2, P4 cotrivially perfect no restriction H ⊆i P4 + sP1 H ⊆i P3 or
(equiv.: {2P2, P4}) H ⊆i P2 +P1

long holes and P4 cograph no restriction H ⊆i P4 + sP1 H ⊆i P4

(equiv.: {P4})

Table 1. Conditions on the graph H for the price of connectivity of F-transversal for the
class of H-free graphs to be multiplicative, additive or identical, respectively, when F is a
family of graphs that contains the specified infinite family of cycles and possibly some other
small graphs. The results on cycles in the first row are due to Belmonte et al. [2] and the
multiplicativity result on cycles and P2 in the ninth row is due to Camby et al. [6]. All other
results are new and presented in this paper. All conditions are necessary and sufficient except
for even cycles and holes, as in these two cases (marked by a † in the table) we do not know
if H-free graphs are F-additive for H ⊆i P3 + P2 + sP1.
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From Table 1 we can draw a number of conclusions. If a transversal that intersects
(small) paths is wanted, we obtain multiplicative bounds for any class of H-free graphs.
In all other cases, H may not contain a cycle or a claw (so is a linear forest). We also
see that when we add a requirement that all triangles are intersected, there is always
a jump from H = P4 + sP1 to H = P5 + sP1 for the additive bound. In general, it can
be noticed that adding small graphs to F has differing effects. We say that a family of
graphs F or a graph F positively (negatively) influences a family of graphs F ′ if the
row in the table for their union contains more (fewer) bounded cases than the row for
F ′. So, for example, 2P2 does not influence {C4, C5, C6, . . .} ∪ {P4}, and P4 does not
influence the family of long holes. Moreover, odd holes do not influence even holes,
whereas even holes influence odd holes positively.

In the remainder of our paper, after presenting some known and new basic results in
Section 2, we present a number of general theorems, from which the results in Table 1
directly follow. We emphasize that all proofs of these theorems are algorithmic in
nature, that is, they can be translated directly into polynomial-time algorithms that
modify an F-transversal into a connected F-transversal of appropriate cardinality.

We provide a brief guide to the proof of Table 1. Theorem 2 implies the second
row. Theorem 3 implies the third and fourth row, and Theorem 4 implies the next
four rows. The ninth row follows from Theorem 5 and the tenth from Theorem 6.
Theorem 7 implies the eleventh and twelfth rows. The final three rows follow from
Theorems 8, 9 and 10, respectively.

2 Initial Results

In this section we present a number of known results, along with some new ones, that
we need as lemmas in order to prove our results. We also state some more terminology.
Throughout the paper we consider finite undirected graphs with no multiple edges and
no self-loops. We refer to the textbook of Diestel [12] for any undefined terms.

Let G = (V,E) be a connected graph. For a subset S ⊆ V , we let G[S] denote
the subgraph of G induced by S (that is, the graph with vertex set S and edge set
{uv ∈ E(G) | u, v ∈ S}). Two vertex-disjoint subgraphs (or vertex subsets) F1 and
F2 of a graph G are adjacent if there is at least one edge in G between a vertex in F1

and a vertex in F2. Similarly, a vertex u not in F1 is adjacent to F1 if {u} and F1 are
adjacent. A set D ⊆ V dominates G if every vertex u ∈ V \D is adjacent to D. We
also say that G[D] dominates G. If D = {u, v} for two adjacent vertices u, v, then uv
is called a dominating edge of G. A set D ⊆ V dominates a set S ⊆ V \ D if every
vertex in S is adjacent to D.

2.1 Some Structural Results

We give four structural results (three known ones and one observation). The first result
is well known (see, for example, [5]).

Lemma 1. Every connected P4-free graph on two or more vertices has a dominating
edge.

We will need the following result of Bacsó and Tuza [1] for the class of connected
P5-free graphs.

Lemma 2 (Bacsó and Tuza [1]). Every connected P5-free graph has a dominating
P3 or a dominating clique.

We also need a lemma due to Duchet and Meyniel [13].
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Lemma 3 (Duchet and Meyniel [13]). Let G be a connected graph. Let β be the
size of a minimum dominating set of G. Then G has a connected dominating set of
size at most 3β − 2.

The distance between two vertices u and v in a graph G is the length of a shortest
path between them. The maximum distance in G is called the diameter of G.

Lemma 4. Let G be a connected graph with diameter d. Let A be a subgraph of G
consisting of r ≥ 1 components. Then G has a connected subgraph A′ that contains A
and that has less than |V (A)|+ (r − 1)d vertices.

Proof. Let the components of A be D1, . . . , Dr. We need to add less than d vertices
to A in order to connect D1 to each other Di (i 6= 1). The resulting graph A′ has size
less than |V (A)|+ (r − 1)d. ut

For later use, we also state and prove five observations on linear forests.

Lemma 5. Let H be a linear forest. Then, the following five statements hold:

(i) If H 6⊆i P4, then 2P2 ⊆i H or 3P1 ⊆i H.
(ii) If H 6⊆i P4 + sP1 for any s ≥ 0, then 2P2 ⊆i H.

(iii) If H 6⊆i P4 + sP1 and H 6⊆i P3 + P2 + sP1 for any s ≥ 0, then P5 ⊆i H,
P4 + P2 ⊆i H, 2P3 ⊆i H, or 3P2 ⊆i H.

(iv) If H 6⊆i P4 +sP1 and H 6⊆i P3 +sP2 for any s ≥ 0, then P5 ⊆i H, P4 +P2 ⊆i H,
or 2P3 ⊆i H.

(v) If H 6⊆i P5 + sP1 and H 6⊆i sP3 for any s ≥ 0, then P6 ⊆i H or P4 + P2 ⊆i H.

Proof. Let P be a longest path in H.

(i) If |V (P )| ≥ 5, then 2P2 ⊆i P and thus 2P2 ⊆i H. Hence we may assume that
|V (P )| ∈ {1, 2, 3, 4}. First suppose that |V (P )| = 1. Then every component of
H consists of exactly one vertex. As H 6⊆i P4, this means that H has at least
three components. Therefore, 3P1 ⊆i H. Now suppose that |V (P )| = 2. If H
has only one further component and this is isomorphic to P1, then H ⊆i P4, a
contradiction. Hence H contains either at least two further components, in which
case 3P1 ⊆i H, or one further component which is isomorphic to P2, in which
case 2P2 ⊆i H. Finally, if |V (P )| ∈ {3, 4}, then H must have at least one more
component (else H ⊆i P4), and thus 3P1 ⊆i H.

(ii) Note first that |V (P )| > 1, or otherwise H ⊆i P4 + sP1 for some s ≥ 0. If
|V (P )| ≥ 5, then 2P2 ⊆i H. Therefore we may assume that |V (P )| ∈ {2, 3, 4}.
In each case, there must be a component of H with at least two vertices other
than P , or we would have H ⊆i P4 + sP1, and thus 2P2 ⊆i H.

(iii) Since H 6⊆i P4 + sP1 for any s ≥ 0, we infer that |V (P )| > 1. If |V (P )| ≥ 5,
then P5 ⊆i H. So we may assume that |V (P )| ∈ {2, 3, 4}. If |V (P )| = 2, there
must exist at least two more components in H isomorphic to P2 (since otherwise
H ⊆i P3 + P2 + sP1 for some s ≥ 0) and therefore 3P2 ⊆i H. Suppose now that
|V (P )| = 3. If, of the other components of H, zero or one is isomorphic to P2,
and the others are each isomorphic to P1, then H ⊆i P3 + P2 + sP1 for some
s ≥ 0. Thus, either H contains at least two components isomorphic to P2, in
which case 3P2 ⊆i H, or it contains at least one more component isomorphic to
P3, in which case 2P3 ⊆i H. Finally, if |V (P )| = 4, then H has a component
with at least two vertices other than P , or else H ⊆i P4 + sP1 for some s ≥ 0,
and thus P4 + P2 ⊆i H.
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(iv) Since H 6⊆i P3 + sP2 for any s ≥ 0, we infer that |V (P )| > 2. If |V (P )| ≥ 5,
then P5 ⊆i H. Therefore we may assume that |V (P )| ∈ {3, 4}. Suppose that
|V (P )| = 3. If all other components of H are isomorphic to P1 or P2, then
H ⊆i P3 + sP2. Therefore there must exist another component of H isomorphic
to P3, and thus 2P3 ⊆i H. Now, if |V (P )| = 4, H must contain a component
with at least two vertices other than P (else H ⊆i P4 + sP1 for some s ≥ 0) in
which case P4 + P2 is an induced subgraph of H.

(v) Since H 6⊆i sP3 for any s ≥ 0, we infer that |V (P )| ≥ 4. If |V (P )| ≥ 6, then
P6 ⊆i H. Suppose |V (P )| ∈ {4, 5}. Then, since H *i P5 + sP1 for any s ≥ 0,
we find that H contains a component with at least two vertices other than P .
Therefore P4 + P2 ⊆i H.

ut

2.2 Some Results on the Price of Connectivity

We now give five results that are directly related to the concept of price of connectivity
and that we will need in our later proofs. All results, except the first one, which follows
from Lemma 1, can be found in the papers of Belmonte et al. [2,3] or follow from results
in these papers after a straightforward generalization (which we need).

Lemma 6. For every family F of graphs, the class of connected P4-free graphs is
F-additive.

Proof. Let G be a connected P4-free graph with two or more vertices, with a minimum
F-transversal S. By Lemma 1, G has a dominating edge, say uv. So S ∪ {u, v} is a
connected F-transversal of G, implying that ctF (G) ≤ tF (G) + 2. Since the above
inequality trivially holds for the one-vertex graph, we conclude that the class of con-
nected P4-free graphs is F-additive, with dP4

≤ 2. ut

The second result has been proven by Belmonte et al. [2] for the special case when
the family F consists of all cycles.

Lemma 7. For any family of graphs F with Kr ∈ F for some integer r ≥ 1, the class
of connected P5-free graphs is F-additive.

Proof. Let G be a connected P5-free graph. Let S be a minimum F-transversal of G.
By Lemma 2, G has a dominating set D that induces a P3 or a complete graph. In
the first case, S ∪D is a connected F-transversal of G of size at most |S|+ 3. In the
second case, |D \ S| ≤ r − 1. So in this case S ∪D is a connected F-transversal of G
of size at most |S|+ r − 1. ut

We also need to generalize a result that was proved by Belmonte et al. [2] for the
graph H = P5. The proof for the general case is the same and we state it here for
completeness.

Lemma 8. For a family of graphs F and a graph H, if the class of connected H-free
graphs is F-additive, then so is the class of connected (H + sP1)-free graphs for all
s ≥ 1.

Proof. Let G be a connected (H + sP1)-free graph for some s ≥ 0. We prove that
ctF (G) ≤ tF (G) + dH+sP1 for some constant dH+sP1 by induction on s. If s = 0 the
statement holds by assumption. Now let s ≥ 1. If G is (H + (s− 1)P1)-free, then the
statement holds by the induction hypothesis. Suppose G is not (H+(s−1)P1)-free. Let
F be an induced subgraph of G isomorphic to H + (s− 1)P1. Because G is (H + sP1)-
free, F dominates G. By Lemma 3 we find that G has a connected dominating set D
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of size at most 3|V (F )| − 2. Let S be a minimum F-transversal of G. Then S ∪D is a
connected F-transversal of G of size at most tF (G) + 3|V (F )| − 2. Hence, we can take
dH+sP1

= 3|V (H)|+ 3s− 5. ut

Belmonte et al. [2] proved that the class of connected (P2 + P4, P6)-free graphs is
not F-additive if F is the class of all cycles. To prove this result they showed that
the family {Lk : k ≥ 1} of connected (P2 + P4, P6)-free graphs displayed in Figure 1
is not F-additive. Using the observation made in the caption of Figure 1 leads to the
following more general result.

Lemma 9. For any family of cycles F with C3 ∈ F , the class of connected (P2 +
P4, P6)-free graphs is not F-additive.

As a consequence of Lemma 9, any class of connected graphs that contains all
connected (P2 + P4, P6)-free graphs is not F-additive either. More generally, if G and
G′ are two classes of connected graphs such that G ⊆ G′ and G is not F-additive, then
neither is G′. We will use this fact implicitly throughout the paper.

x

y1 y2 yk

Fig. 1. The graph Lk, defined by Belmonte et al. [2] for every k ≥ 1; note that {y1, . . . , yk, x}
is the unique minimum F-transversal whenever F is any family of cycles with C3 ∈ F and
that any minimum connected F-transversal has size 2k + 1.

Finally, the following technical lemma of Belmonte et al. [2] will also be useful for
proving our results.

Lemma 10 (Belmonte et al. [2]). Let s ≥ 1 be an integer and let G be a connected
sP3-free graph with a subset S ⊆ V (G) and an independent set U ⊆ V (G) \S. If there
exists a component Z of G[S] that contains an induced copy of (s − 1)P3, then there
exists a set S′ with S ⊆ S′ of size at most |S|+ 2s− 2 such that

(i) G[S′] has a component Z ′ containing all vertices of V (Z) ∪ (S′ \ S);
(ii) every vertex of U ′ = U \ S′ is adjacent to at most one component of G[S′] that is

not equal to Z ′;
(iii) every component of G[S′] not equal to Z ′ is adjacent to at most one vertex of U ′.

2.3 A New General Theorem

For r ≥ 1, s ≥ 1, the complete bipartite graph Kr,s is a bipartite graph whose vertex
set can be partitioned into two sets of sizes r and s such that there is an edge joining
each pair of vertices from distinct sets. The graph K1,3 is also called a claw.

The following theorem is used in all our tetrachotomies. The third part was shown
by Belmonte et al. [2] for the case when F is the family of all cycles, and our proof for
that part is a modification of theirs.
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Theorem 1. Let F be a family of graphs and let H be a graph. Then, the following
three statements hold:

(i) If F contains a linear forest, then the class of all connected graphs is F-multiplicative.

(ii) If H is a linear forest, then the class of connected H-free graphs is F-multiplicative.

(iii) If F contains an infinite number of cycles and no linear forests and H is not a
linear forest, then the class of connected H-free graphs is F-unbounded.

Proof. We start with (i). First suppose that F contains a linear forest F ; that is, it
is, say, the disjoint union of p paths. Let G be a connected graph, and let S be a
minimum F-transversal of G with components D1, . . . , Dr for some integer r ≥ 1.
Because G is connected, we can connect the components of S by r − 1 paths using
vertices of G−S only. Let S′ be the resulting connected F-transversal. Because G−S
is F-free, G − S is F -free. Let q be the length of a longest path in F . As the path
Pp(q+2) contains F as an induced subgraph and G−S is F -free, G−S is Pp(q+2)-free.
Hence, each of the r − 1 paths contains less than p(q + 2) vertices. Thus we find that
|S′| ≤ |S| + rp(q + 2) ≤ |S| + |S|(p(q + 2)) = (p(q + 2) + 1)|S|, and we can take
cF = (p(q + 2) + 1).

Now we prove (ii). Suppose that H is a linear forest; that is, it is, say, the union of k
paths, each of length at most `. Let G = (V,E) be a connected H-free graph. Then, as
G is H-free, we find that G has diameter less than k(`+ 2). Let S ⊆ V be a minimum
F-transversal of G. Let D1, D2, . . . , Dr (r ≥ 1) be the components of G[S]. In order to
make S connected we need to add less than (r− 1)k(`+ 2) ≤ (|S| − 1)k(`+ 2) vertices
by Lemma 4. Hence we can take cH = k(`+ 2).

Finally, we prove (iii). Suppose that F contains an infinite number of cycles and
no linear forests and that H is not a linear forest.

Let p′ be an integer greater than the maximum length of a cycle in H; if H has no
cycle, let p′ = 5. Let p be an integer such that p ≥ p′ and Cp ∈ F (such an integer p
exists because F contains infinitely many cycles).

First suppose that H is C3-free. We construct the following graph. Take two cycles
C = u1 · · ·up+1u1 and C ′ = u′1 · · ·u′p+1u

′
1. Connect u1 and u′1 via a path u1v1 . . . vku

′
1

for some k ≥ 1. Add the edges u2up+1 and u′2u
′
p+1. Denote the resulting graph by Gk;

see Figure 2 for an example. Note that Gk is connected and K1,3-free and that it has
four induced cycles, two of which have length p and two of which have length 3.

As H is not a linear forest, H either contains an induced K1,3 or an induced cycle,
which has length between 4 and p− 1 by our choice of p and our assumption that H
is C3-free. Hence, every Gk is H-free. Let S = {u2, u′2}. As Gk − S is a path and F
contains no linear forests, S is an F-transversal. Because Gk has two induced copies
of Cp at distance more than k and Cp ∈ F , the family {Gk} is F-unbounded.

Now suppose that H contains an induced C3. Take two cycles C = u1 · · ·upu1
and C ′ = u′1 · · ·u′pu′1. Connect u1 and u′1 via a path u1v1 . . . vku

′
1 for some k ≥ 1.

The resulting graph G∗k is connected and H-free, as it is C3-free. We repeat the above
arguments and find that the family {G∗k} is F-unbounded. ut

Parts (ii) and (iii) of Theorem 1 imply the following.

Corollary 1. For any graph H and for any family of graphs F containing an infinite
number of cycles and no linear forests, the class of connected H-free graphs is F-
multiplicative if and only if H is a linear forest.

3 Cycle Families with Odd Cycles

In this section we assume we are given a family F of graphs that contains all odd
cycles, although we will show more general results whenever possible. We start with
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C C ′u1 u′
1

u2

up+1 u′
p+1

u′
2

Fig. 2. An example of the construction in the proof of Theorem 1 (iii) in the case when H is
C3-free, only contains cycles of length at most 4 and C5 ∈ F .

the following lemma, which generalizes the corresponding result of Belmonte et al. [2]
when F is the family of all cycles. We use a similar approach as used in their proof
but our arguments (which are based on bipartiteness instead of cycle-freeness) are
different and this proof demonstrates some techniques used several times in obtaining
our results.

Lemma 11. For any family of graphs F containing either all odd cycles or P2 and
for any fixed s ≥ 1, the class of connected sP3-free graphs is F-additive.

Proof. The proof is by induction on s. Let s = 1. Then every connected sP3-free graph
G is complete. Hence, every minimum F-transversal of G is connected.

Now let s ≥ 2. Let G be a connected sP3-free graph. We may assume by induction
that G contains an induced copy Γ0 of an (s−1)P3. Let S be a minimum F-transversal
of G. Let Γ be a minimum connected induced subgraph of G that contains Γ0. Because
G is sP3-free, G has diameter less than 4s. Then, by Lemma 4, we find that Γ has size
less than 3(s− 1) + (s− 2)4s = 4s2 − 5s− 3. Let S′ = S ∪ V (Γ ). Then we have that
|S′| ≤ |S|+ 4s2 − 5s− 3.

If S′ is connected then we take dsP3 = 4s2 − 5s − 3 as our desired constant and
we are done. Suppose S′ is not connected. Below we describe how to refine S′. During
this process, we always use Z to denote the component of S′ containing Γ , and we will
never remove a vertex of Z from S′; in fact, one can think of the proof as “growing”
Z and connecting it to the other vertices of S′ until Z = S′.

Observe that the sP3-freeness of G implies that every component of S′ other than
Z is complete. Throughout the proof, we let A denote the union of clique components
of S′, so V (A) = S′\V (Z) = S \V (Z). We also note that the graph G−S′ is bipartite,
as even its supergraph G− S contains no odd cycles by the definition of S. Hence we
can partition G− S′ into two (possibly empty) sets U1 and U2 so that U1 and U2 are
independent sets.

We start with the following two claims, both of which follow from Lemma 10,
which we apply twice, namely once with respect to U1 and once with respect to U2.
By Lemma 10 this leads to a total increase in the size of S′ by an additive factor of
at most 2(2s− 2) = 4s− 4.

Claim 1: Without loss of generality, we may assume that every vertex of U1 ∪ U2 is
adjacent to at most one component of A.

Claim 2: Without loss of generality, we may assume that every component of A is
adjacent to at most one vertex of U1 and to at most one vertex of U2.

Using Claims 1 and 2 we prove the following crucial claim.

Claim 3: Without loss of generality, we may assume that every vertex of every com-
ponent of A has exactly one neighbour in U1 and exactly one neighbour in U2.

We prove Claim 3 as follows. Let A∗ be the union of components for which the state-
ment of Claim 3 does not hold. Let D be a component of A∗. By Claim 2, D is adjacent

10



to at most one vertex of U1 and to at most one vertex of U2. First suppose that D
is non-adjacent to U1 or to U2, say D is not adjacent to U1. Because G is connected,
this means that D is adjacent to (exactly one) vertex z ∈ U2, say v ∈ D is adjacent to
z. As D belongs to A∗, we find that D contains a vertex v′ not adjacent to z. Hence,
vv′z is an induced P3. Now suppose that D is adjacent to U1 and to U2, say D has
vertices u, v (possibly u = v) so that u is adjacent to x ∈ U1 and v is adjacent to
z ∈ U2. Then, as D is in A∗, there exists a vertex v′ that is non-adjacent to at least
one of x, z, say to z. Again, vv′z is an induced P3. As G is sP3-free and no vertex in
U1 ∪U2 is adjacent to more than one component of A by Claim 1, we deduce that A∗

contains at most s− 1 components. Moreover, each vertex z ∈ U1 ∪U2 included in an
induced P3 as described above must be adjacent to Z (due to sP3-freeness of G and
the fact that Z contains an induced (s − 1)P3). Hence, we can add these vertices to
Z increasing the size of Z, and thus the size of S′, by at most s − 1. The remaining
components of A have the desired property. Moreover, Claims 1 and 2 are still valid.
This completes the proof of Claim 3.

Due to Claim 3 we may assume without loss of generality that each vertex v in each
component D of A has exactly two neighbours in G−S′, namely one neighbour in U1

and one neighbour in U2. By Claim 2, these neighbours are the same for all vertices
in D. Hence, we may denote these two neighbours by sD and tD, respectively,

Consider a component D of A. If one of its neighbours in U1∪U2, say sD, is adjacent
to Z, then replacing S′ with (S′ ∪ {sD}) \ {v} and Z with the connected component
of S′ containing Z ∪ {sD} does not result in an odd cycle in G − S′. Moreover, such
a swap does not increase the size of S′ either. It does, however, reduce the number
of vertices of S′ that are not in Z (which is our goal). Consequently, we perform
these swaps until, in the end, both the neighbours sD and tD of each component of
A are not adjacent to Z. In particular this implies that sD and tD are adjacent, so
VD∪{sD, tD} is a clique. Then, due to Claims 1–3, the components in A together with
their neighbours in U1∪U2 induce a union of complete graphs. This union is a disjoint
union, as otherwise G would contain an induced P3 not adjacent to Z and, as Z has
an induced (s− 1)P3, we would obtain an induced sP3 in G. Note that the swaps did
not change the size of S′.

Let U ′1 and U ′2 denote the subsets of U1 and U2, respectively, that consist of vertices
adjacent to no components of A. Let W1 consist of all vertices sD adjacent to U ′2 and
let W2 consist of all vertices tD adjacent to U ′1. Note that W1 ⊆ U1 \ U ′1 and that
W2 ⊆ U2 \ U ′2. Because G is connected and no sD or tD is adjacent to Z or to some
other component of A not equal to D, we find that W1 ∪W2 contain at least one of
sD, tD for each component D of A.

We choose smallest sets U ′′1 and U ′′2 in U ′1 and U ′2, respectively, that dominate
W2 and W1, respectively. By minimality, each vertex u ∈ U ′′1 must have a “private”
neighbour tD in W2, and hence together with tD and sD, corresponds to a “private”
P3. Consequently, as G is sP3-free and U ′′1 ⊆ U1 is an independent set, U ′′1 has size at
most s− 1. Similarly, U ′′2 has size at most s− 1. Moreover, each vertex in U ′′1 ∪ U ′′2 is
adjacent to Z (again due to the sP3-freeness of G).

Figure 3 shows an example in which the components of A consist on three cliques
(the first two of size two and the last one of size one) to illustrate the situation.

We now do as follows. First, for each component D of A we pick one of its vertices
v and swap v with sD if sD ∈ W1 and otherwise we swap v with tD (note that
tD ∈ W2 in that case). We also add all vertices of U ′′1 ∪ U ′′2 to Z and thus to S′.
The results of these swaps are as follows. First, G[S′] has become connected. Second,
S′ has increased in size at most by 2(s − 1), which is allowed. Third, G − S′ is still
bipartite (as swapping a vertex of a component D of A with sD or tD does not create
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1
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2

Γ0

Γ
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︷ ︸︸ ︷

Fig. 3. The situation in the proof of Lemma 11.

any odd cycles). Consequently, we have found a connected F-transversal of size at
most |S|+ 4s2 − 5s− 3 + 4s− 4 + (s− 1) + 2(s− 1) = |S|+ 4s2 + 2s− 10, so we can
take dsP3

= 4s2 + 2s− 10. ut

We are now ready to prove the main result of this section.

Theorem 2. For any graph H and for any family of cycles F containing all odd cy-
cles, the class of connected H-free graphs is

• F-multiplicative if and only if H is a linear forest;
• F-additive if and only if H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 0;
• F-identical if and only if H ⊆i P3.

Proof. The first claim follows immediately from Corollary 1. We now prove the second
claim. First suppose H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 0. If H ⊆i P5 + sP1 for
some s ≥ 0, the result follows from combining Lemmas 7 and 8. If H ⊆i sP3 for some
s ≥ 1, the result follows from Lemma 11. Now suppose H *i P5 + sP1 and H 6⊆i sP3

for any s ≥ 0. By Theorem 1 (iii), we may assume that H is a linear forest. Then
P6 ⊆i H or P2 + P4 ⊆i H, hence the class of connected H-free graphs is a superclass
of the class of connected (P2 + P4, P6)-free graphs and we can use Lemma 9.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, so the result follows directly. If H *i P3 then, by Theorem 1 (iii), we may
assume that H is a linear forest. Hence, 3P1 ⊆i H or P1 + P2 ⊆i H. Let K2,2,2 be the
graph on vertices u1, u2, v1, v2, w1, w2 and edges uiwj , uivj and viwj for 1 ≤ i ≤ j ≤ 2.
Note that K2,2,2 is (3P1, P1+P2)-free. Any minimum F-transversal has size 2, whereas
any minimum connected F-transversal is of size 3. ut

4 Cycle Families with 4-Cycles but no 3-Cycles

In this section we consider families of cycles F such that C3 /∈ F but C4 ∈ F . We
need the following lemma.

Lemma 12. For any family F of cycles with C3 6∈ F and C4 ∈ F ,

• the class of connected P5-free graphs is not F-additive;
• the class of connected P2 + P4-free graphs is not F-additive;
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• the class of connected 2P3-free graphs is not F-additive;
• the class of connected 3P2-free graphs is not F-additive.

Proof. We consider the four parts one at a time.
First, we describe a family of connected P5-free graphs that is not F-additive. Each

graph G is a clique on k vertices, k ≥ 4, and k copies of C4. Each vertex in the clique
is adjacent to every vertex in a distinct copy of C4. Figure 4 gives an example with
k = 4. Note that G is P5-free: any induced path on at least four vertices can contain
at most one vertex from each C4, and thus at most two such vertices in total, and can
only contain two vertices from the clique.

Fig. 4. A graph in a family of P5-free graphs that is not F-additive whenever C3 6∈ F and
C4 ∈ F .

We have tF (G) ≤ k since a set S containing one vertex from each copy of C4 is an
F-transversal as G− S is chordal. On the other hand, every connected F-transversal
of G contains, in addition to at least one vertex from each C4, all the vertices of the
clique. So ctF (G) ≥ 2k.

Second, we describe a family of connected P2 + P4-free graphs that is not F-additive.
Each graph G consists of k ≥ 2 copies of K3,3, identified at a single vertex denoted v.
Figure 5 shows the construction for k = 4.

v

Fig. 5. A graph in a family of P4 + P2-free graphs that is not F-additive whenever C4 ∈ F .

Note that G is P4 +P2-free: every induced P4 contains v, and deleting the vertices
in such a P4 and their neighbours results in an edgeless graph. We have tF (G) ≤ k+ 1
since a set S containing v and one vertex that is not adjacent to v from each K3,3 is an
F-transversal as G− S is a forest. On the other hand, every connected F-transversal
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of G contains, in addition to v, at least two other vertices from each copy of K3,3. So
ctF (G) ≥ 2k + 1.

Third, we describe a family of connected 2P3-free graphs that is not F-additive. Each
graph G consists of a complete graph K4k for k ≥ 2 denoted K, and a set M of 2k
additional vertices forming an induced matching and each joined to two other vertices
in K. Figure 6 shows the construction for k = 3. Note that G is 2P3-free: any induced
P3 contains a vertex from K, and deleting this vertex and all its neighbours results in
a disjoint union of cliques, a P3-free graph.

K

M e

Fig. 6. A graph in a family of 2P3-free graphs that is not F-additive whenever C3 6∈ F ,
C4 ∈ F .

We have tF (G) ≤ k, since a set S containing one vertex from each edge in M is an
F-transversal as G− S is chordal. On the other hand, every connected F-transversal
of G contains at least two vertices from each subgraph consisting of an edge e in M
and vertices in K adjacent to an endpoint of e. So ctF (G) ≥ 2k.

Finally, we describe a family of connected 3P2-free graphs that is not F-additive.
Each graph G consists of three copies K, K ′ and K∗ of a complete graph on 2k vertices
for k ≥ 2, and an independent set M of k vertices. Every vertex in K∗ is joined to
every vertex in K and K ′ and every vertex in M is joined to a distinct pair of vertices
in K and K ′. Figure 7 shows the construction for k = 3. Note that G is 3P2-free:
when an induced P2 and all its neighbours are deleted the resulting graph is either an
independent set (if the P2 is contained in K∗) or a graph in which every P2 is incident
with the same clique (if the P2 intersects either K or K ′).

K ′

K
K∗

Fig. 7. A graph in a family of 3P2-free graphs that is not F-additive whenever C3 6∈ F ,
C4 ∈ F .

We have tF (G) ≤ k, since M is an F-transversal as G−M is chordal. On the other
hand, a connected F-transversal of G either contains K∗ or, for each vertex v of M ,
either v and one of its neighbours, or, if it does not contain v, two of its neighbours.
So ctF (G) ≥ 2k. ut
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We now state our result for infinite families of cycles F with C3 /∈ F and C4 ∈ F .
It does not provide a complete characterization as we are unable to give necessary and
sufficient conditions for the class of H-free graphs to be F-additive. This would be
possible if it could be shown that (P3 + P2 + sP1)-free graphs are F-additive for all
s ≥ 0. By Lemma 8, this is the case if and only if (P3 +P2)-free graphs are F-additive,
which we conjecture to be true.

Theorem 3. For any graph H and for any infinite family of cycles F with C3 /∈ F
and C4 ∈ F , the class of connected H-free graphs is

• F-multiplicative if and only if H is a linear forest;
• F-additive if H ⊆i P4 + sP1 for some s ≥ 0, but not if H 6⊆i P4 + sP1 nor
H 6⊆i P3 + P2 + sP1 for some s ≥ 0;
• F-identical if and only if H ⊆i P3.

Proof. The first claim follows immediately from Corollary 1. We now prove the second
claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from Lemmas 6 and 8. Now
suppose H *i P4 + sP1 and H 6⊆i P3 +P2 + sP1 for any s ≥ 0. By Theorem 1 (iii), we
may assume that H is a linear forest. Then, by Lemma 5 (iii), we find that P5 ⊆i H,
P2 + P4 ⊆i H, 2P3 ⊆i H, or 3P2 ⊆i H, and we can use Lemma 12.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, so the result follows directly. If H *i P3 then, by Theorem 1 (iii), we may
assume that H is a linear forest. Hence, 3P1 ⊆i H or P1 + P2 ⊆i H.

If P1 + P2 ⊆i H, then we have that the complete bipartite graph G = K3,3 is a
connected H-free graph (since it is P1 +P2-free). And tF (G) = 2 < 3 = ctF (G) so the
class of connected H-free graphs is not F-identical.

Finally, suppose that 3P1 ⊆i H, and let G be the complement of the graph shown
in Figure 8. Since G is triangle-free and every two vertices of G have a common
non-neighbour, G is a connected 3P1-free graph. As every F-transversal of G must
intersect every induced 2P2 in G, the minimum F-transversals of G are in bijective
correspondence with the four edges of the 4-cycle in G. So tF (G) = 2 < 3 = ctF (G),
and the class of connected H-free graphs is also not F-identical in this case. ut

G

Fig. 8. The complement of a graph G with tF (G) < ctF (G) whenever C3 6∈ F and C4 ∈ F .

5 Cycle Families with 5-Cycles but no 3- or 4-Cycles

In this section we consider families of cycles F such that C3, C4 /∈ F but C5 ∈ F . We
first prove the following lemma; note that C3 and C4 are both induced subgraphs of
2P4.

Lemma 13. Let F be a family of graphs with C5 ∈ F that contains no induced sub-
graphs of sP4 for any s ≥ 1. Then the class of connected 2P2-free graphs is not F-
additive.
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Proof. We describe a family of connected 2P2-free graphs that is not F-additive, where
F is any family of cycles as in the statement of the lemma. The graphs in the family
are constructed from k ≥ 2 copies H1, . . . ,Hk of the graph that is obtained from 2P4

by adding all possible edges between the vertices of one copy and the other one. For
each Hi, there is a new vertex vi adjacent to both endpoints of the two P4s, and in
addition there are all possible edges between vertices in different Hi’s. Figure 9 shows
an example for k = 4.

We first show that every graph G in this family is 2P2-free. Every edge e of G has
at least one endpoint in some Hi, say in H1. Deleting the closed neighbourhood of e
results in the subgraph induced by a subset of {v1, . . . , vk} (if e ∈ E(H1)), or in the
subgraph induced by {u, v2, . . . , vk} for some u ∈ V (H1) (otherwise). In either case,
the resulting graph is edgeless. Therefore, G is 2P2-free.

Let G be a graph in this family, and let k be the number of Hi’s. We have tF (G) ≤ k
since deleting the vertices v1, . . . , vk results in a graph that is isomorphic to 2kP4 and
thus F-free. On the other hand, every connected F-transversal S of G must contain at
least two vertices from each subgraph induced by V (Hi)∪{vi}, for every i (otherwise it
either misses an induced C5 or contains only vi, making it isolated in G[S]). Therefore,
ctF (G) ≥ 2k, which establishes the non-F-additivity of the family. ut

v1

v4 v3

v2

H1 H2

H3H4

Fig. 9. A member of a family of connected 2P2-free graphs that is not F-additive whenever
C5 ∈ F and F contains no induced subgraphs of sP4 for any s ≥ 1. A thick edge between two
sets of vertices inducing a P4 means the presence of all possible edges between the two sets.

We also need the following lemma.

Lemma 14. Let F be a family of graphs that contains C5 but no induced subgraph of
4P4. Then the class of connected 3P1-free graphs is not F-identical.

Proof. Let F be any family of cycles as in the statement of the lemma and let G be
the complement of the graph depicted in Figure 10. Since G is triangle-free and every
two vertices of G have a common non-neighbour, G is a connected 3P1-free graph.
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Since C5 = C5, in the complement of G we need to cover all the C5’s. Therefore
there is a unique minimum F-transversal S of G, consisting of the two endpoints of
the central edge of G. Indeed G− S is isomorphic to 4P4, so the graph G− S ∼= 4P4

is F-free. Since the graph G[S] is not connected, we have ctF (G) > tF (G). ut

G

Fig. 10. The complement of a graph that shows that the class of connected 3P1-free graphs
is not F-identical whenever C5 ∈ F and F contains no induced subgraphs of 4P4.

Theorem 4. For any graph H and for any graph family F which only contains graphs
with an induced P4, including C5 and an infinite number of other cycles but no linear
forests and no induced subgraphs of sP4 for any s ≥ 1, the class of connected H-free
graphs is

• F-multiplicative if and only if H is a linear forest;

• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;

• F-identical if and only if H ⊆i P4.

Proof. The first claim follows immediately from Corollary 1. We now prove the second
claim. First suppose that H ⊆i P4 + sP1 for some s ≥ 0. Then the class of connected
H-free graphs is F-additive due to Lemmas 6 and 8. Now suppose that H 6⊆i P4 +sP1

for any s ≥ 0. By Theorem 1 (iii), we may assume that H is a linear forest. Hence,
by Lemma 5 (ii), 2P2 ⊆i H and we can use Lemma 13. Finally, we show the third
claim. Recall that if H ⊆i P4 then any H-free graph is already F-free. Suppose that
H 6⊆i P4. By Lemma 5 (i), we find that 2P2 ⊆i H or 3P1 ⊆i H. If 2P2 ⊆i H we use
Lemma 13 again. Hence 3P1 ⊆i H. In that case we use Lemma 14. This completes the
proof of Theorem 4. ut

6 Families of Short Paths and Cycles

In Section 6.2 we prove our results for families F of graphs that contain P2, 2P2 or
P4, in particular for families F for which the graph minus an F-transversal is a split
graph, a threshold graph, a trivially perfect graph, or a cograph, respectively. In order
to show these results we need a number of lemmas, which we will prove in Section 6.1.
As before, lemmas and theorems are often stated in a more general form than needed.

6.1 Lemmas

Lemma 15. For F = {C4, C5, 2P2} and any fixed s ≥ 0, the class of connected (P3 +
sP2)-free graphs is F-additive.

17



Proof. The proof is by induction on s. Let s = 0. Every connected P3-free graph G is
complete. Hence, every minimum F-transversal of G is connected.

Now let s ≥ 1. Let G be a connected (P3 + sP2)-free graph. We may assume by
induction that G contains an induced copy Γ0 of an P3+(s−1)P2. Let S be a minimum
F-transversal of G. Let Γ be a minimum connected induced subgraph of G that
contains Γ0. Because G is (P3+sP2)-free, G has diameter less than 3(s+1)−1 = 3s−2.
Then, by Lemma 4, we find that Γ has size less than 3(s − 1) + (s − 2)(3s − 2) =
3s2 − 3s+ 1. Let S′ = S ∪ V (Γ ). Then we have that |S′| ≤ |S|+ 3s2 − 3s+ 1.

If S′ is connected then we take dP3+sP2 = 3s2− 3s+ 1 as our desired constant and
we are done. Suppose S′ is not connected. Below we describe how to refine S′. During
this process, we always use Z to denote the component of S′ containing Γ , and we
will never remove a vertex of Z from S′.

Observe that the (P3+sP2)-freeness of G implies that every component of S′ other
than Z consists of a single vertex. We let A denote the union of these single vertices,
so A = S′ \ V (Z) = S \ V (Z). We also note that the graph G− S′ is split, as even its
supergraph G− S is {C4, C5, 2P2}-free by the definition of S. Hence we can partition
G− S′ into two (possibly empty) sets: a clique K and an independent set I.

We start with the following two claims, both of which follow from Lemma 10. By
Lemma 10, this leads to a total increase of S′ by an additive factor of at most 2s− 2.

Claim 1: Without loss of generality, we may assume that every vertex of I is adjacent
to at most one vertex of A.

Claim 2: Without loss of generality, we may assume that every vertex of A is adjacent
to at most one vertex of I.

We proceed as follows. If A contains a vertex u not adjacent to a vertex in I then we
move u from A to I. Hence, we may assume without loss of generality that A has no
such vertices. Then, by Claim 2, every vertex in A is adjacent to exactly one vertex of
I. Let A = {a1, . . . , aq} for some integer q ≥ 1 and let X = {x1, . . . , xq} be the subset
of I in which xi is the unique neighbour of ai for i = 1, . . . , q. By Claim 1, G[A ∪X]
is isomorphic to qP2. See Figure 11 for an example.

Z

A
︷ ︸︸ ︷
a1 a2 a3Γ0

Γ

I

K

X
x1 x2 x3

Fig. 11. The decomposition of the graph G in the proof of Lemma 15.

Due to the (P3 + sP2)-freeness of G and the fact that Z contains an induced
P3 + (s− 1)P2, each xi is adjacent to Z. We swap ai and xi, that is, we put ai into I
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and xi into A. Then, because ai is not adjacent to any other vertex in I, we still have
the property that G−S′ is split. However, we now also have that Z = S′, as desired. So
we have found a connected F-transversal S′ of size at most |S|+3s2−3s+1+2s−2 =
|S|+ 3s2− s− 1 meaning we can take dP3+sP2

= 3s2− s− 1. This completes the proof
of Lemma 15. ut
Lemma 16. Let F be a family of graphs with either F = {P2}, or F ∩ {P4, 2P2} 6= ∅
and F \ {P2, P4, 2P2} a (possibly empty) set of holes. If H is not a linear forest then
the class of connected H-free graphs is not F-additive.

Proof. Let H be a graph that is not a linear forest, so H contains a cycle or an induced
K1,3. Let us verify that the class of all paths is a class of H-free connected graphs that
is not F-additive.

If F = {P2}, then for large enough n we have cF (Pn) ≤ n/2 (since taking every
other vertex on the path results in an F-transversal), while ctF (Pn) ≥ n − 2 (since
any F-transversal contains a vertex u from the first 2 vertices of Pn and also a vertex
v from the last 2 vertices, and these two need to be made connected by taking all the
vertices of the path that lie in between).

If F ∩ {P4, 2P2} = {P4} then, similarly, for large enough n we have cF (Pn) ≤ n/4
while ctF (Pn) ≥ n − 6. If F ∩ {P4, 2P2} = {2P2} then for large enough n we have
cF (Pn) ≤ n/2, while ctF (Pn) ≥ n − 8. Finally, if F ∩ {P4, 2P2} = {P4, 2P2} then for
large enough n we have cF (Pn) ≤ n/2, while ctF (Pn) ≥ n− 6. ut
Lemma 17. Let F be a family of graphs that contains C4 but no induced subgraph of
K1,3. Then the class of (P2 + P1)-free graphs is not F-identical.

Proof. The complete bipartite graph K3,3 is (P2+P1)-free. Removing a single vertex or
two adjacent vertices does not make the graph C4-free. If we remove two non-adjacent
vertices then we obtain a claw, which is F-free. Hence, a minimum F-transversal has
size 2 and a minimum connected F-transversal has size at least 3. ut
Lemma 18. Let F be a family of graphs that contains P4 but no complete graph. Then
the class of 2P2-free graphs is not F-additive.

Proof. We construct a family of connected 2P2-free graphs {Gk} as follows. Let Gk

have a clique Kk = {u1, . . . , u2k} and an independent set {a1, . . . , ak}. For i = 1, . . . , k,
add the edges aiu2i−1 and aiu2i. (See Figure 12.)

u1 u2 u3 u4 u5 u6

a1 a2 a3

Fig. 12. The graph Gk for k = 3 used in the proof of Lemma 18.

Note that Gk is 2P2-free, for all k ≥ 1. Note that each set {ai, aj , ui, u2i, uj , u2j} in-
duces four different P4’s. On the one hand, the set {a1, . . . , ak} forms an F-transversal
of G of size k. On the other hand, as any two distinct ai and aj are non-adjacent and
have no common neighbour, any connected F-transversal of G contains at least two
vertices from at least k− 1 of the k pairwise disjoint sets {ai, u2i−1, u2i} and therefore
has size at least 2(k − 1). ut

19



Lemma 19. Let F be a family of graphs that contains P4 but no disjoint union of
two complete graphs. Then the class of 3P1-free graphs is not F-identical.

Proof. Construct the following 14-vertex graph G∗. Take a set A of seven vertices
a, a′, b, b′, c, d, d′, add the edges making each of A1 = {a, a′, b, b′} and A2 = {d, d′} a
clique, and add the edges bc, b′c, cd, cd′. Take a set B of seven vertices s, s′, t, t′, u, v, v′,
add the edges making each of B1 = {s, s′, t, t′} and B2 = {v, v′} a clique, and add the
edges tu, t′u, uv, uv′. Add every edge between a vertex of A1 and a vertex of B1 (thus
making A1 ∪B1 a clique), every edge between a vertex of B1 and a vertex of B2 (thus
making A2 ∪B2 a clique), add edges from c to every vertex of B \ {u}, and add edges
from u to every vertex of A \ {c}. See Figure 13 for a picture of G∗. Note that G∗ is
3P1-free and that {u, c} is the unique minimum F-transversal, hence every minimum
connected F-transversal has size (at least) 3. ut

a a′ b b′ c d d′

s s′ t t′ u v v′

Fig. 13. The graph G∗ used in the Proof of Lemma 19. A thick edge between two sets of
vertices means the presence of all possible edges between the two sets.

Let K+
6 be the graph that consists of a clique on six vertices and another vertex

made adjacent to three vertices of the clique.

Lemma 20. Let F be a family of graphs that contains 2P2 and P4 but no induced
subgraph of K+

6 . Then the class of 3P1-free graphs is not F-identical.

Proof. We construct the following graph G with ten vertices a1, a2, b1, b2,
u1, u2, u3, v1, v2, v3 so that {a1, a2, u1, u2, u3}, {b1, b2, v1, v2, v3} and
{u1, u2, u3, v1, v2, v3} are three cliques. See Figure 14 for a picture of G. Note
that G is 3P1-free, as the first two cliques partition V (G). Then every minimum
F-transversal consists of three vertices, namely one of {a1, a2} and two of {b1, b2}, or
vice versa (as otherwise either an induced 2P2 is left or an induced P4). Consequently,
the size of a minimum connected F-transversal is 4. ut

u1

u2

u3

a1

a2

b1

b2

v1

v2

v3

Fig. 14. The graph G used in the proof of Lemma 20.
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Lemma 21. Let F be a family of graphs that contains 2P2 but no induced subgraph
of 4P3. Then the class of 3P1-free graphs is not F-identical.

Proof. The proof mimics that of Lemma 14. Let G be the complement of the graph
shown in Figure 15. Since G is triangle-free and every two vertices of G have a common
non-neighbour, G is a connected 3P1-free graph. Since 2P2 = C4, in the complement of
G we need to cover all the C4’s. Therefore there is a unique minimum F-transversal S of
G, consisting of the two endpoints of the central edge of G. Indeed G−S is isomorphic
to 4P3, so the graph G−S ∼= 4P3 is F-free. Since the graph G[S] is not connected, we
have ctF (G) > tF (G). ut

G

Fig. 15. The complement of a graph G with tF (G) < ctF (G) whenever 2P2 ∈ F and no
induced subgraph of 4P3 is in F .

6.2 Theorems

We are now ready to prove the following six theorems.

Theorem 5. For any graph H and for F = {P2}, the class of connected H-free graphs
is

• F-multiplicative;
• F-additive if and only if H ⊆i P5 + sP1 or H ⊆i sP3 for some s ≥ 1;
• F-identical if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. If H ⊆i P5 + sP1 for some s ≥ 0, the result follows from combining
Lemmas 7 and 8. If H ⊆i sP3 for some s ≥ 0, the result follows from Lemma 11.
Suppose that H 6⊆i P5 + sP1 for any s ≥ 0 and H 6⊆i sP3 for any s ≥ 0. If H is
not a linear forest then we can use Lemma 16. Hence we may assume that H is a
linear forest. Then, since H 6⊆i P5 + sP1 and H 6⊆i sP3 for any s ≥ 0, it follows from
Lemma 5 (v) that P4 +P2 ⊆i H or P6 ⊆i H. Consider the (P4 +P2, P6)-free graph Gk

obtained from k 4-cycles aibicidiai for i = 1, . . . , k after identifying all a1, . . . , ak into a
single vertex a (so Gk consists of disjoint P3’s, whose end-vertices are both adjacent to
a). For every k ≥ 1, a minimum F-transversal has size k+1 and a minimum connected
F-transversal has size 2k + 1.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, so the result follows directly. Suppose H *i P3. By the previous claim we
may assume that H is a linear forest. Thus, H *i C4 and the graph G = C4 is an
H-free graph with tF (G) = 2 < 3 = ctF (G). ut

Theorem 6. For any graph H and for F = {C4, C5, 2P2}, the class of connected H-
free graphs is

• F-multiplicative;
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• F-additive if and only if H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some s ≥ 0;

• F-identical if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. First suppose H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some s ≥ 0. If
H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining Lemmas 6 and 8.
If H ⊆i P3 + sP2 for some s ≥ 0, the result follows from Lemma 15. Now suppose
H 6⊆i P4 +sP1 and H 6⊆i P3 +sP2 for any s ≥ 0. If H is not a linear forest then we can
use Lemma 16. Hence we may assume that H is a linear forest. Then by Lemma 5 (iv),
we find that P5 ⊆i H, P4 + P2 ⊆i H, or 2P3 ⊆i H.

First suppose that P5 ⊆i H or 2P3 ⊆i H. We construct a family of connected
H-free graphs {Gk} as follows. Let Gk have a clique Kk = {u1, . . . , uk} and two
independent sets {a1, . . . , ak} and {b1, . . . , bk}. For i = 1, . . . , k, add edges aibi, aiui
and biui. See Figure 16 for an example.

u1 u2 u3

a1
a2

a3
b1

b2

b3

u1 u2 u3

b3b1 b2

a1

a2

a3 c1

c2

c3

Fig. 16. The graphs Gk (left) and G∗k (right) for k = 3 used in the proof of Theorem 6.

Note that Gk is (2P3, P5)-free, and thus H-free, for all k ≥ 1. Every minimum
F-transversal consists of exactly one vertex of each pair {ai, bi}, as we need to remove
at least one vertex from at least k − 1 pairs {ai, bi} to remove induced 2P2’s and
then another vertex from the remaining pair (which forms an induced 2P2 with a non-
adjacent pair of clique vertices). On the other hand, every connected F-transversal
consists of at least 2k vertices.

Now suppose that P4+P2 ⊆i H. We construct a family of connected H-free graphs
{G∗k} as follows. Let G∗k have a clique Kk = {u1, . . . , uk} and three independent sets
{a1, . . . , ak}, {b1, . . . , bk} and {c1, . . . , ck}. For i = 1, . . . , k, add edges aibi and bici.
Also add an edge between each ai and each uj , and an edge between each ci and each
uj . See Figure 16 for an example. As each uj is adjacent to all vertices of G∗k except
the mutually non-adjacent vertices b1, . . . , bk, we find that G∗k is (P4 + P2)-free for
all k ≥ 1. By the same arguments as in the previous case, we find that {b1, . . . , bk} is
the unique minimum F-transversal. On the other hand, every connected F-transversal
contains at least 2k + 1 vertices.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, so the result follows directly. Now suppose H 6⊆i P3. By the previous claim,
we may assume that H ⊆i P4 + sP1 or H ⊆i P3 + sP2 for some integer s ≥ 0.

Suppose that 3P1 ⊆i H, and let G be the complement of the graph shown in
Figure 17.

Since G is triangle-free and every two vertices of G have a common non-neighbour,
G is a connected 3P1-free (and hence H-free) graph. The set S = {v1, v2} is an F-
transversal of G since G− S (and consequently G− S) is a split graph. On the other
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G
v1 v2

v3

v4v5

v6 v′6 v′3

Fig. 17. The complement of a graph G with tF (G) < ctF (G) whenever F = {C4, C5, 2P2}.

hand, deleting any pair of non-adjacent vertices from G leaves at least one subgraph
isomorphic to 2P2 or C4, which implies that tF (G) = 2 < ctF (G).

Now suppose that 3P1 *i H. If P2 + P1 ⊆i H then we can apply Lemma 17. If H
is (3P1, P2 + P1)-free, then we conclude (since H is a linear forest) that H ⊆i P3, a
contradiction. ut

Theorem 7. For any graph H and for F = {C4, P4} or F = {C4, P4, 2P2}, the class
of connected H-free graphs is

• F-multiplicative;
• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;
• F-identical if and only if H ⊆i P3.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining
Lemmas 6 and 8. Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear forest
then we can use Lemma 16. Hence we may assume that H is a linear forest. Then, as
H 6⊆i P4 + sP1, by Lemma 5 (ii) we find that 2P2 ⊆i H and we can use Lemma 18.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, so the result follows directly. Now suppose H 6⊆i P3. By the previous claim,
we may assume that H ⊆i P4 + sP1 for some integer s ≥ 0. Hence it holds that
3P1 ⊆i H or P2 + P1 ⊆i H.

We start with the case where 3P1 ⊆i H. If 2P2 ∈ F then we use Lemma 20. Suppose
that 2P2 /∈ F . Then F = {C4, P4} and we can use Lemma 19. We now consider the
case P2 + P1 ⊆i H. As C4 ∈ F we apply Lemma 17. This completes the proof of
Theorem 7. ut

Theorem 8. For any graph H and for F = {C5, 2P2}, the class of connected H-free
graphs is

• F-multiplicative;
• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;
• F-identical if and only if H ⊆i P3 or H ⊆i P2 + P1.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining
Lemmas 6 and 8. Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear
forest then we can use Lemma 16. Hence we may assume that H is a linear forest.
Then, as H 6⊆i P4 + sP1, by Lemma 5 (ii) we find that 2P2 ⊆i H and thus we can use
Lemma 13.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, and if H ⊆i P1 + P2 then any connected H-free graph is F-free. So in both
cases the result follows directly. Now suppose that H 6⊆i P3 and H 6⊆i P1 + P2. By
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the previous claim, we may assume that H ⊆i P4 + sP1 for some integer s ≥ 0. If
3P1 ⊆i H, then we can apply Lemma 21. If 3P1 6⊆i H, then H = P4 and we can
consider the 7-vertex graph G consisting of 6 vertices forming a 3P2 and one more
vertex adjacent to all the other vertices. Graph G is a connected P4-free graph with
tF (G) = 2 < 3 = ctF (G). This completes the proof of Theorem 8. ut

Theorem 9. For any graph H and for F = {P4, 2P2}, the class of connected H-free
graphs is

• F-multiplicative;
• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;
• F-identical if and only if H ⊆i P3 or H ⊆i P2 + P1.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining
Lemmas 6 and 8. Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear
forest then we can use Lemma 16. Hence we may assume that H is a linear forest.
Then, as H 6⊆i P4 + sP1, by Lemma 5 (ii) we find that 2P2 ⊆i H and thus we can use
Lemma 18.

We now prove the third claim. If H ⊆i P3 then any connected H-free graph is
complete, and if H ⊆i P1 + P2 then any connected H-free graph is F-free. So in both
cases the result follows directly. Now suppose that H 6⊆i P3 and H 6⊆i P1 + P2. By
the previous claim, we may assume that H ⊆i P4 + sP1 for some integer s ≥ 0. Hence
it holds that 3P1 ⊆i H and we can apply Lemma 20. This completes the proof of
Theorem 9. ut

Theorem 10. For any graph H and for F = {P4}, the class of connected H-free
graphs is

• F-multiplicative;
• F-additive if and only if H ⊆i P4 + sP1 for some s ≥ 0;
• F-identical if and only if H ⊆i P4.

Proof. The first claim follows immediately from Theorem 1 (i). We now prove the
second claim. If H ⊆i P4 + sP1 for some s ≥ 0, the result follows from combining
Lemmas 6 and 8. Now suppose H 6⊆i P4 + sP1 for any s ≥ 0. If H is not a linear
forest then we can use Lemma 16. Hence we may assume that H is a linear forest.
Then, as H 6⊆i P4 + sP1, by Lemma 5 (ii) we find that 2P2 ⊆i H and thus we can use
Lemma 18.

We now prove the third claim. If H ⊆i P4 then any connected H-free graph is
F-free, so the result follows directly. Now suppose H 6⊆i P4. By the previous claim,
we may assume that H ⊆i P4 + sP1 for some integer s ≥ 1. Hence, 3P1 ⊆i H and we
can use Lemma 19. ut

7 Conclusions

We extended the tetrachotomy result of Belmonte et al. [2] for the family F of all
cycles by giving tetrachotomy results for a number of natural families F containing
cycles and anticycles (see Table 1). Let us recall that a tetrachotomy for the price of
connectivity of F-transversals when F is the family of even cycles or of all holes is
still an open case. To settle it, it would suffice to show that the class of connected
(P3 + P2)-free graphs is F-additive, which we conjecture to be true.

Conjecture. The class of connected (P3 + P2)-free graphs is F-additive if F consists
of all even cycles or all holes.
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We also have no tetrachotomy for infinite families F of cycles that contain C3 but
that miss some other odd cycle. The partial results below show that a more refined
analysis is needed to obtain complete results in this direction.

We first summarize our current knowledge. By Corollary 1 we know that the class
of H-free graphs is F-multiplicative if and only if H is a linear forest. We also know,
due to Lemma 9, that the class of connected (P2+P4, P6)-free graphs is not F-additive.
Moreover, the class of connected H-free graphs is F-identical if and only if H ⊆i P3,
as we can use the example of G = K2,2,2 from Theorem 2. Hence, using Lemmas 6–8,
we see that what remains is to check, for every s ≥ 2, whether the class of H-free
graphs is F-additive if H = sP3. We can show that already for s = 2 this is true for
some families F and false for others.

In order to prove the first statement we need the following lemma.

Lemma 22. Every connected (C3, C5, 2P3)-free graph not isomorphic to C7 is bipar-
tite.

Proof. Let G be a connected (C3, C5, 2P3)-free graph not isomorphic to C7. For con-
tradiction, suppose that G is not bipartite. Then, as G is (C3, C5, 2P3)-free, G must
contain an induced subgraph F that is isomorphic to C7. Let F = v1v2 · · · v7v1. As G
is connected and not isomorphic to C7, there exists a vertex u ∈ V (G) \ V (H) adja-
cent to a vertex of F , say u is adjacent to v1. If u has no other neighbours in F , then
u, v1, v2, v4, v5, v6 form an induced 2P3, which is not possible. As G is (C3, C5)-free, u
is not adjacent to v2, v4, v5, v7. If u is adjacent to both v3 and v6, then u, v3, v4, v5, v6
induce a C5, which is not possible. This means that u is adjacent to exactly one of
v3, v6, say to v3. Then u, v1, v2, v4, v5, v6 form an induced 2P3, which is not possible
either. This completes the proof of the lemma. ut

Using Lemma 22 we can now show the following result, the proof of which mimics
the proof of Lemma 11 (although some changes are required).

Proposition 1. For any family of cycles F containing C3 and C5, the class of con-
nected 2P3-free graphs is F-additive.

Proof. Let F be a family of cycles containing C3 and C5. Let G be a 2P3-free graph.
If G contains no induced P3 then G is complete and we are done. Suppose that G
contains an induced copy Γ of a P3. Let S be a minimum F-transversal of G. Let
S′ = S ∪ V (Γ ). Note that |S′| ≤ |S|+ 3.

If S′ is connected then we take d2P3
= 3 and we are done. Suppose S′ is not

connected. Observe that the 2P3-freeness of G implies that every component of S′

other than Z is complete. Moreover, as G− S is F-free and 2P3-free, the same holds
for G − S′. As C3 and C5 both belong to F , we find that each component of G − S′
is either bipartite or isomorphic to C7. We place the vertices of any C7 in G − S′ in
S′. Because G is 2P3-free, G−S′ can have at most two components isomorphic to C7,
so this increases the size of S′ by at most 14. Due to this operation, G− S′ becomes
bipartite and the rest of the proof is a copy of the proof of Lemma 11. ut

Proposition 2. For any family F of cycles with C3 ∈ F and C5 6∈ F , the class of
connected 2P3-free graphs is not F-additive.

Proof. We describe a family of connected 2P3-free graphs that is not F-additive, where
F is any family of cycles as in the statement of the lemma. The graphs in the family
consist of k ≥ 3 copies of the diamond (the K4 minus an edge) with pairs of non-
adjacent vertices denoted as {ai, bi} in the i-th diamond. Moreover, for every 1 ≤ i <
j ≤ k, vertex ai is adjacent to vertex bj . Figure 18 gives an example of one of such
graphs, for k = 5.
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We first show that every graph G in this family is 2P3-free. Let P be an induced
P3 in G. Then P contains some ai or some bi, say it contains ai. If it also contains bi
for some i, then G−V (P ) is a disjoint union of triangles, hence P3-free. Otherwise, it
must contain some bj for j > i, and also in this case G − V (P ) is a disjoint union of
cliques. Therefore, G is 2P3-free.

Let G be a graph in this family, and let k be the number of diamonds. We have
tF (G) ≤ k since deleting a vertex of degree 3 from each diamond results in a graph in
which every induced cycle is a C5, hence in an F-free graph. On the other hand, every
connected F-transversal S of G must contain at least two vertices from each diamond
(otherwise it either misses an induced C3 or contains only one vertex of degree 3 in
some diamond, making it isolated in G[S]). Therefore, ctF (G) ≥ 2k, which establishes
the non-F-additivity of the family. ut

a1 a2 a3

b1 b2 b3 b4

a4 a5

b5

Fig. 18. A member of a family of 2P3-free graphs that is not F-additive whenever C3 ∈ F
and C5 6∈ F .

Propositions 1 and 2 suggest that we may want to distinguish between families F
that contain C3 and C5 or that contain C3 but not C5. We leave this as future work.

x1

x2

x3

x4

y1

y2y3

y4

Fig. 19. A sun obtained from a cycle of length 8.

We finish our paper with the following open problem. A chord of a cycle C is an
edge between two vertices u, v ∈ V (C) with uv /∈ E(C); if the distance between u ad v
in C is odd, then we speak of an odd chord. A graph is strongly chordal if it is chordal
and every cycle of even length at least 6 in G has an odd chord. A sun is a cycle
x1y1x2 · · ·x`y`x1 for some ` ≥ 3 to which all edges of the form xixj are added; suns
are sometimes called complete suns or (complete) trampolines. A graph G is strongly
chordal if and only if it is chordal and contains no sun as an induced subgraph [15].
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Is there a tetrachotomy for the price of connectivity for H-free graphs if F consists of
holes and suns?
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