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Abstract

In this paper, we compute asymptotics for the determinant of the combinatorial Laplacian

on a sequence of d-dimensional orthotope square lattices as the number of vertices in each

dimension grows at the same rate. It is related to the number of spanning trees by the well-

known matrix tree theorem. Asymptotics for 2 and 3 component rooted spanning forests

in these graphs are also derived. Moreover, we express the number of spanning trees in a

2-dimensional square lattice in terms of the one in a 2-dimensional discrete torus and also

in the quartered Aztec diamond. As a consequence, we find an asymptotic expansion of the

number of spanning trees in a subgraph of Z2 with a triangular boundary.

1 Introduction

In this paper we study the asymptotic behaviour of the number of spanning trees in a discrete
d-dimensional orthotope square lattice and in the quartered Aztec diamond. Let L(n1, . . . , nd)
denote the d-dimensional orthotope square lattice defined by the cartesian product of the d path
graphs Pni

, i = 1, . . . , d, where ni, i = 1, . . . , d, are positive non-zero integers. We set ni = αin,
i = 1, . . . , d and write indifferently ni or αin throughout the paper. By rescaling the distance
between two vertices on the lattice L(n1, . . . , nd) with a factor of 1/n, the limiting object as n
goes to infinity is a d-dimensional orthotope of size α1 × · · · × αd, that we denote by Kd:

Kd
..= [0, α1[× · · · × [0, αd[ .

The volume of Kd is

V d
d

..=
d∏

i=1

αi.

Let m ∈ {1, . . . , d− 1}. An m-dimensional face of Kd is defined by

{(x1, . . . , xd) ∈ Kd| ∃{iq}dq=1 ⊂ {1, . . . , d} such that xiq ∈
[
0, αiq

]
, q = 1, . . . ,m

and xiq ∈ {0, αiq}, q = m+ 1, . . . , d}.

The volume of the sum of all the m-dimensional faces of Kd is given by

V d
m

..= 2d−m
∑

16i1<···<im6d

m∏

q=1

αiq .
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For example, V d
1 is the perimeter and V d

2 the area of Kd.
Asymptotics for the determinant of the combinatorial Laplacian on graphs have been widely
studied, see for example [2, 3, 5, 9, 11]. It is related to the number of spanning trees of a graph
G, denoted by τ(G), through the matrix tree theorem due to Kirchhoff (see [1])

τ(G) =
1

|V (G)|det
∗∆G

where det∗∆G is the product of the non-zero eigenvalues of the Laplacian on G and |V (G)| the
number of vertices in G. In [2], the authors developed a technique to compute the asymptotic
behaviour of spectral determinants of the combinatorial Laplacian associated to a sequence of
discrete tori. The technique consists in studying the asymptotic behaviour of the associated
theta function which contains the spectral information of the graph. Consider a graph G with
vertex set V (G). For a function f defined on V (G), the combinatorial Laplacian is defined by

∆Gf(x) =
∑

y∼x

(f(x)− f(y))

where the sum is over all vertices adjacent to x. Let {λk}k denote the spectrum of the Laplacian
on G. The associated theta function is defined by

θG(t) =
∑

k∈V (G)

e−λkt.

To compute the asymptotic behaviour of spectral determinants on a sequence of d-orthotope
square lattices, we express the associated theta function in terms of the theta function associated
to the discrete torus with twice vertices at each side of the torus. This can be done because of the
similarity of their spectrum. We then use the asymptotic results from [2]. The formula obtained
relates the determinant of the Laplacian on the discrete lattice L(n1, . . . , nd) to the regularized
determinant of the Laplacian on the rescaled limiting object, which is the real d-dimensional
orthotope Kd, and to the ones on the m-dimensional boundary faces of Kd, m = 1, . . . , d − 1.
Moreover, we compute asymptotic results for the number of rooted spanning forests with 2 and
3 components.
We will prove the following theorem.

Theorem 1.1. Given positive integers αi, i = 1, . . . , d, let det∗∆L(α1n,...,αdn) be the prod-

uct of the non-zero eigenvalues of the Laplacian on the d-dimensional orthotope square lattice

L(α1n, . . . , αdn). Then as n → ∞

log det∗∆L(α1n,...,αdn) = cdV
d
d n

d −
d−1∑

m=1

1

4d−m

(∫ ∞

0

(1− e−4t)d−me−2mtI0(2t)
m dt

t

)
V d
mnm

+ (2 − 21−d) logn+
d∑

m=1

∑

16i1<···<im6d

log det∗∆αi1
×···×αim

+
1

2d

d∑

m=1

Cm
d (−1)m log(4m) + o(1)

where det∗∆αi1
×···×αim

is the regularized determinant of the Laplacian on the m-orthotope αi1 ×
· · · × αim with Dirichlet boundary conditions. The constant cd is

cd =

∫ ∞

0

(e−t − e−2dtI0(2t)
d)
dt

t
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where I0 is the modified I-Bessel function of order zero.

Notice that the limiting object Kd can be decomposed in a disjoint union of m orthotopes,
m ∈ {0, 1, . . . , d}. More precisely, let αi1 × · · · × αim , {iq}mq=1 ⊂ {1, . . . , d}, denote the m-
dimensional orthotope of side lengths αi1 , . . . , αim which is open in R

m. Then

Kd = {0} ⊔
d⊔

m=1

⊔

16i1<···<im6d

αi1 × · · · × αim .

This decomposition is reflected in the theorem by the appearance of the sum over this decom-
position of the logarithm of the regularized determinant of the Laplacian on the m-dimensional
faces, m = 1, . . . , d.
By expressing the eigenvalues of the Laplacian on the square lattice L(n1, n2) in terms of the one
on the two-dimensional discrete torus Z2/diag(2n1, 2n2)Z

2, we derive a relation, which is stated
below, between the number of spanning trees on these two lattices.

Theorem 1.2. Given positive integers n1, n2, let τ(L(n1, n2)) denote the number of spanning

trees on the rectangular square lattice L(n1, n2) and τ(T (2n1, 2n2)) the number of spanning trees

on the discrete torus Z
2/diag(2n1, 2n2)Z

2. We have

τ(L(n1, n2)) =
25/4τ(T (2n1, 2n2))

1/4

(n1n2)1/4((3 + 2
√
2)n1 − (3− 2

√
2)n1)1/2((3 + 2

√
2)n2 − (3− 2

√
2)n2)1/2

.

In [9], Kenyon computed asymptotics for spectral determinants on a simply-connected rec-
tilinear region in R

2. Here we compute it in the particular case of a triangular region. More
precisely, we consider the quartered Aztec diamond of order n, denoted by QADn, which is the
subgraph of Z2 with nearest neighbours connected induced by the vertices (k1, k2) such that
k1 + k2 6 n and k1, k2 > 0. Figure 1 illustrates QAD7. In [4], Ciucu derived a relation be-
tween the characteristic polynomials of the rectangular square lattice and of the quartered Aztec
diamond using combinatorial arguments. From this one can deduce a relation for the number
of spanning trees. In the second part of this work, we present an alternative approach for it.
Consequently, we derive the asymptotic behaviour of it, stated in the following theorem, which
shows that it is related to the regularized determinant of the Laplacian on the triangle with
Dirichlet boundary conditions.
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Figure 1: Quartered Aztec diamond of order 7.

Theorem 1.3. Let τ(QADn) denote the number of spanning trees in the quartered Aztec diamond

of order n. Then as n → ∞

log(τ(QADn)) =
2G

π
n2 − log(2 +

√
2)n− 3

4
logn+ log det∗∆∆ +

23

8
log 2 + o(1)
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where G is the Catalan constant and det∗∆∆ is the regularized determinant of the Laplacian on

the right-angled isoscele unit triangle with Dirichlet boundary conditions.

1.1 Regularized determinant

Let M be a Riemannian manifold with or without boundary and let ∆M be the Laplace-Beltrami
operator associated to M . If M has a boundary we associate Dirichlet boundary conditions to
∆M . Denote by {λk}k the eigenvalues of ∆M . The spectral zeta function associated to M is
defined for ℜ(s) > dimM/2 by

ζM (s) =
∑

λk 6=0

1

λs
k

.

It admits a meromorphic continuation to the whole complex plane (see for example [13] for M
with a boundary and [2] for the case M is a torus). The regularized determinant of ∆M can then
be defined by

log det∗∆M = −ζ′M (0).

1.2 Preliminary result

We prove the following lemma which will be useful in the next section to invert relations between
the theta functions. Throughout this paper, we set an empty summation to be one by convention.

Lemma 1.4. Let {iq}q>1 be an increasing sequence of positive integers. Let {nq}q>1 be a se-

quence of positive integers and {niq}q>1 a subsequence of it. Let f, g : N<N → R be two sequences

of variadic functions such that for all l ∈ N>1,

f(ni1 , . . . , nil) =

l∑

k=0

∑

a1<···<ak

{aq}
k
q=1

⊂{iq}
l
q=1

g(na1
, . . . , nak

). (1)

Then the following inversion formula holds: for all l ∈ N>1,

g(ni1 , . . . , nil) =

l∑

k=0

(−1)l−k
∑

a1<···<ak

{aq}
k
q=1

⊂{iq}
l
q=1

f(na1
, . . . , nak

).

Proof. Let l ∈ N>1. From relation (1) between f and g, we have

l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}

k
q=1

⊂{iq}
l
q=1

f(nj1 , . . . , njk)

=

l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}

k
q=1

⊂{iq}
l
q=1




k∑

m=0

∑

a1<···<am

{aq}
m
q=1

⊂{jq}
k
q=1

g(na1
, . . . , nam

)




=
l∑

k=1

(−1)l−k
k∑

m=1

∑

j1<···<jk
{jq}

k
q=1

⊂{iq}
l
q=1

∑

a1<···<am

{aq}
m
q=1

⊂{jq}
k
q=1

g(na1
, . . . , nam

) (2)

4



where in the second equality we used that

l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}

k
q=1

⊂{iq}
l
q=1

1 =

l∑

k=0

(−1)l−kCk
l = 0

from the binomial theorem, where Ck
l = l!/(k!(l − k)!). For l > k > m, the double summation

can be rewritten in one summation as
∑

j1<···<jk
{jq}

k
q=1

⊂{iq}
l
q=1

∑

a1<···<am

{aq}
m
q=1

⊂{jq}
k
q=1

= Ck−m
l−m

∑

j1<···<jm
{jq}

m
q=1

⊂{iq}
l
q=1

. (3)

Thus (2) is equal to

l∑

k=1

(−1)l−k
k∑

m=1

Ck−m
l−m

∑

j1<···<jm
{jq}

m
q=1

⊂{iq}
l
q=1

g(nj1 , . . . , njm)

=

l∑

m=1

l−m∑

k=0

(−1)l−m−kCk
l−m

∑

j1<···<jm
{jq}

m
q=1

⊂{iq}
l
q=1

g(nj1 , . . . , njm) = g(ni1 , . . . , nil)

where the second equality comes from the fact that the only non-zero term in the summation
over m is when m = l from the binomial theorem.

Remark. If we set f(ni1 , . . . , nil) = fl and g(ni1 , . . . , nik) = gk for all l, k ∈ N>1, we recover
the standard binomial inversion:

fl =
l∑

k=0

Ck
l gk if and only if gl =

l∑

k=0

(−1)l−kCk
l fk, for all l ∈ N>1,

with f0 = g0 = 1.

2 Asymptotic number of spanning trees in the d-orthotope

lattice

2.1 Theta function

The eigenvalues of the Laplacian on the square lattice L(n1, . . . , nd) are given by (see [5])

{λL
k }k=0,1,...,N−1 = {2d− 2

d∑

i=1

cos(πki/ni), ki = 0, 1, . . . , ni − 1, for i = 1, . . . , d}

where N =
∏d

i=1 ni. The d-dimensional discrete torus of size 2n1 × · · · × 2nd is defined by
the quotient Z

d/diag(2n1, . . . , 2nd)Z
d with nearest neighbours connected. We denote it by

T (2n1, . . . , 2nd). The eigenvalues of the Laplacian on T (2n1, . . . , 2nd) are given by (see [12])

{λT
k }k=0,1,...,2dN−1 = {2d− 2

d∑

i=1

cos(πki/ni), ki = 0, 1, . . . , 2ni − 1, for i = 1, . . . , d}.

5



Notice that {λL
k }k ⊂ {λT

k }k.
The theta function on the d-orthotope lattice L(n1, . . . , nd) is given by

θL(n1,...,nd)(t) =

n1−1∑

k1=0

· · ·
nd−1∑

kd=0

e−(2d−2
∑d

i=1
cos(πki/ni))t

and on the discete torus T (2n1, . . . , 2nd) by

θT (2n1,...,2nd)(t) =

2n1−1∑

k1=0

· · ·
2nd−1∑

kd=0

e−(2d−2
∑

d
i=1

cos(πki/ni))t.

Therefore by expressing the theta function on the d-orthotope square lattice L(n1, . . . , nd) in
terms of the one on the torus T (2n1, . . . , 2nd), one can deduce the asymptotic behaviour from
the results obtained in [2].
Let Ja, bK denote the set of successive integers {a, a + 1, . . . , b}. In the theta function on
L(n1, . . . , nd), the summation is over the discrete d-orthotope J0, n1 − 1K × · · · × J0, nd − 1K
that we denote by Jd, while for the torus T (2n1, . . . , 2nd) it is over the discrete d-orthotope

J0, 2n1 − 1K × · · · × J0, 2nd − 1K, denoted by J̃d. We decompose Jd as a disjoint union of
l-dimensional faces, l = 0, 1, . . . , d. The 0 dimension is the point 0 ∈ Z

d, we call it the
root of Jd. For l ∈ {1, . . . , d − 1}, the l-dimensional faces are defined by a subset of Z

d,
(k1, . . . , kd) ⊂ Jd, such that ∃{iq}dq=1 ⊂ {1, . . . , d} such that kiq ∈ J1, niq − 1K, q = 1, . . . , l
and kiq = 0, q = l + 1, . . . , d. We call the d-dimensional face the interior of Jd where no coor-
dinate is zero, that is J1, n1 − 1K × · · · × J1, nd − 1K. For example, in the 2 dimensional case, J2
decomposes as:

J2 = {0} ⊔ (J1, n1 − 1K × {0}) ⊔ ({0} × J1, n2 − 1K) ⊔ (J1, n1 − 1K × J1, n2 − 1K).

In the theta function of the torus T (2n1, . . . , 2nd), the summation is over 2d copies of Jd, namely:

J̃d =
⊔

ǫi∈{0,ni}
i=1,...,d

(Jd + (ǫ1, . . . , ǫd))

where the unions are disjoint. Figure 2 illustrates the decompositions of Jd and J̃d in the case
d = 2.
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(b) J̃2

Figure 2: J2 and J̃2 with n1 = 4 and n2 = 3. The big black dot is the root of J2, the small black
dots are the two 1-dimensional faces and the white dots are the interior of J2.
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Let define the theta-star function on the lattice L(ni1 , . . . , nil), with 1 6 i1 < · · · < il 6 d,
by the following expression

θ∗L(ni1
,...,nil

)(t) =

ni1
−1∑

ki1
=1

· · ·
nil

−1∑

kil
=1

e−(2l−2
∑il

i=i1
cos(πki/ni))t

where the summation is over the interior of the l-orthotope of size ni1 × · · · × nil , that is, the
ki start at 1 instead of 0 for all i ∈ {i1, . . . , il}. Therefore the theta function is related to the
theta-star function by the relation

θL(n1,...,nd)(t) =

d∑

l=0

∑

16i1<···<il6d

θ∗L(ni1
,...,nil

)(t). (4)

To evaluate the theta function on T (2n1, . . . , 2nd) we sum over the roots of the 2d discrete
orthotopes Jd, the l-dimensional boundary faces of Jd and the interior of Jd. Summing over
the roots of the Jd’s means that for all i = 1, . . . , d, ki is either 0 either ni. There are Cj

d =
d!/(j!(d − j)!) number of ways to take j of the ki’s to be zero. In this case the corresponding
exponential term of the theta function is e−4(d−j)t. The term l = 0 is then the sum of all the
possibilities:

d∑

j=0

Cj
de

−4(d−j)t = (1 + e−4t)d.

Then for each l-dimensional boundary face of Jd, where l ∈ {1, . . . , d−1}, there are d−l of the ki’s

which are either 0 either ni, this positions the l-dimensional face in J̃d. For this l, there are C
j
d−l

number of ways where j of the ki’s are zero and the exponential term is then e−4(d−l−j)t. And we
sum over the interior of the l-dimensional face L(ni1 , . . . , nil), where 1 6 i1 < · · · < il 6 d, which
is by definition the theta-star function θ∗L(ni1

,...,nil
)(t) with a factor of 2l since this configuration

appears 2l times. So for l ∈ {1, . . . , d− 1}, we have

d−l∑

j=0

Cj
d−le

−4(d−l−j)t
∑

16i1<···<il6d

2lθ∗L(ni1
,...,nil

)(t).

Finally we sum over the interior of Jd, that is, when all the ki’s are greater or equal to one, which
appears 2d times. This gives the l = d term

2dθ∗L(n1,...,nd)
(t).

The theta function on T (2n1, . . . , 2nd) is then the sum over the l-dimensional faces of the 2d

orthotopes Jd:

θT (2n1,...,2nd)(t) = 2d
d∑

l=0

(
1 + e−4t

2

)d−l ∑

16i1<···<il6d

θ∗L(ni1
,...,nil

)(t)

which is equivalent to

(1 + e−4t)−dθT (2n1,...,2nd)(t) =

d∑

l=0

2l(1 + e−4t)−l
∑

16i1<···<il6d

θ∗L(ni1
,...,nil

)(t).

7



By setting

f(n1, . . . , nd) = (1 + e−4t)−dθT (2n1,...,2nd)(t) and g(ni1 , . . . , nil) = 2l(1 + e−4t)−lθ∗L(ni1
,...,nil

)(t)

in Lemma 1.4, it comes

θ∗L(ni1
,...,nil

)(t) = 2−l
l∑

m=0

(−1− e−4t)l−m
∑

j1<···<jm
{jq}

m
q=1

⊂{iq}
l
q=1

θT (2nj1
,...,2njm )(t).

From the above relation and relation (4), the theta function on the d-orthotope square lattice is
expressed in terms of the theta function on the d-dimensional torus:

θL(n1,...,nd)(t) =

d∑

l=0

∑

16i1<···<il6d

l∑

m=0

2−l(−1− e−4t)l−m
∑

j1<···<jm
{jq}

m
q=1

⊂{iq}
l
q=1

θT (2nj1
,...,2njm )(t).

Rewriting the double multi-index summation in one summation using (3), we have

θL(n1,...,nd)(t) =

d∑

l=0

l∑

m=0

Cl−m
d−m2−l(−1− e−4t)l−m

∑

16i1<···<im6d

θT (2ni1
,...,2nim )(t)

Therefore the theta functions are related by

θL(n1,...,nd)(t) =
1

2d

d∑

m=0

(1− e−4t)d−m
∑

16i1<···<im6d

θT (2ni1
,...,2nim )(t). (5)

2.2 Preliminary calculation

Let {λL
j }j=0,...,N−1 be the eigenvalues of the combinatorial Laplacian on the square lattice

L(n1, . . . , nd). For small t > 0, the theta function on the torus θT (2ni1
,...,2nim ) behaves as

θT (2ni1
,...,2nim )(t)− 2m

( m∏

q=1

niq

)
e−2mtI0(2t)

m = O(t), t → 0. (6)

We follow the method derived in [2]. From relation (5) and the behaviour of the theta function
at small t > 0 (6), we start by writing the theta function on the lattice L(n1, . . . , nd) as

∑

j 6=0

e−λL
j t =

d∑

m=1

(
1− e−4t

4

)d−m

e−2mtI0(2t)
mV d

mnm

+

[
θL(n1,...,nd)(t)−

d∑

m=1

(
1− e−4t

4

)d−m

e−2mtI0(2t)
mV d

mnm − 1

]
,

to ensure the convergence of the integral of the Gauss transform that will appear below. By
taking the Gauss transform of the above, that is, multiplying by 2se−s2t and then integrating
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with respect to t from zero to infinity, we have

∑

j 6=0

2s

s2 + λL
j

=

d∑

m=1

V d
mnm2s

∫ ∞

0

e−s2t

(
1− e−4t

4

)d−m

e−2mtI0(2t)
mdt

+ 2s

[
d∑

m=1

∫ ∞

0

e−s2t(1− e−4t)d−m

×
(

1

2d

∑

16i1<···<im6d

θT (2ni1
,...,2nim )(t)−

1

4d−m
V d
mnme−2mtI0(2t)

m − 1

2d
Cm

d

)
dt

+

∫ ∞

0

e−s2t((1 − e−4t)d − 2d +

d∑

m=1

Cm
d (1− e−4t)d−m)dt

]
. (7)

For m ∈ {1, . . . , d}, define the functions Id
m and Hd

m,n such that

∂sId
m(s) = 2s

∫ ∞

0

e−s2t

(
1− e−4t

4

)d−m

e−2mtI0(2t)
mdt (8)

and

∂sHd
m,n(s) = 2s

∫ ∞

0

e−s2t(1− e−4t)d−m

×
(

1

2d

∑

16i1<···<im6d

θT (2ni1
,...,2nim )(t)−

1

4d−m
V d
mnme−2mtI0(2t)

m − 1

2d
Cm

d

)
dt.

(9)

Equation (7) can then be written as

∑

j 6=0

2s

s2 + λL
j

=

d∑

m=1

V d
mnm∂sId

m(s) +

d∑

m=1

∂sHd
m,n(s) +

1

2d
2s

∫ ∞

0

e−s2t((2 − e−4t)d − 2d)dt. (10)

By integrating over s equations (8) and (9) we get

Id
d (s) =

∫ ∞

0

(e−t − e−(s2+2d)tI0(2t)
d)
dt

t
,

Hd
d,n(s) = − 1

2d

∫ ∞

0

(e−s2t(θT (2n1,...,2nd)(t)− V d
d (2n)

de−2dtI0(2t)
d − 1) + e−t)

dt

t

and for m 6= d,

Id
m(s) = − 1

4d−m

∫ ∞

0

(1 − e−4t)d−me−(s2+2m)tI0(2t)
m dt

t
,

Hd
m,n(s) = −

∫ ∞

0

e−s2t(1− e−4t)d−m

×
(

1

2d

∑

16i1<···<im6d

θT (2ni1,...,2nim
)(t)−

1

4d−m
V d
mnme−2mtI0(2t)

m − 1

2d
Cm

d

)
dt

t
.
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By integrating equation (10) above we get

∑

j 6=0

log(s2+λL
j ) =

d∑

m=1

V d
mnmId

m(s)+

d∑

m=1

Hd
m,n(s)+

d∑

k=1

Ck
d (−2)−k log(s2+4k)+constant. (11)

The asymptotic behaviour of the functions Id
m and Hd

m,n as s → ∞ determine the constant of
integration. We have

Id
d (s) = 2 log s+ o(1) and Id

m(s) = o(1) for m 6= d as s → ∞
and

Hd
d,n(s) = − 1

2d−1
log s+ o(1) and Hd

m,n(s) = o(1) for m 6= d as s → ∞

and ∑

j 6=0

log(s2 + λL
j ) = 2(N − 1) log s+ o(1) as s → ∞.

Therefore, equation (11) as s → ∞ yields

2(N − 1) log s+ o(1) = 2N log s− 1

2d−1
log s+

1

2d−1
(1− 2d) log s+ constant + o(1)

so that the constant is zero. Evaluating equation (11) in s = 0 gives the logarithm of the product
of the non-zero eigenvalues of the Laplacian on the d-dimensional square lattice L(n1, . . . , nd):

log
(∏

j 6=0

λL
j

)
= cdV

d
d n

d +
d−1∑

m=1

V d
mId

m(0)nm +
d∑

m=1

Hd
m,n(0) +

d∑

k=1

Ck
d (−2)−k log(4k) (12)

where

cd =

∫ ∞

0

(e−t − e−2dtI0(2t)
d)
dt

t
.

2.3 Asymptotic expansion

By expanding (1− e−4t)d−m =
∑d−m

k=0 Ck
d−m(−1)ke−4kt in Hd

m,n(0), it can be rewritten as

Hd
m,n(0) = − 1

2d

d−m∑

k=0

Ck
d−m(−1)k

×
∑

16i1<···<im6d

∫ ∞

0

(
e−4kt(θT (2ni1

,...,2nim )(t)−
m∏

q=1

(2αiqne
−2tI0(2t))− 1) + e−t

)dt
t
,

for all m = 1, . . . , d, where the e−t term is added to make the integral converge. It can be added
since

∑d−m
k=0 Ck

d−m(−1)k = 0 for m = 1, . . . , d− 1. By splitting the sum over k we have

d∑

m=1

Hd
m,n(0) =

− 1

2d

d∑

m=1

∑

16i1<···<im6d

∫ ∞

0

(
θT (2ni1

,...,2nim )(t)−
m∏

q=1

(2αiqne
−2tI0(2t))− 1 + e−t

)dt
t

− 1

2d

d∑

m=1

d−m∑

k=1

∑

16i1<···<im6d

∫ ∞

0

(
e−4kt(θT (2ni1

,...,2nim )(t)−
m∏

q=1

(2αiqne
−2tI0(2t))− 1) + e−t

)dt
t
.
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From [2, Theorem 5.8], the asymptotic behaviour as n → ∞ of the k = 0 term is given by

− 1

2d

d∑

m=1

∑

16i1<···<im6d

∫ ∞

0

(θT (2ni1
,...,2nim )(t)−

m∏

q=1

(2αiqne
−2tI0(2t))− 1 + e−t)

dt

t

=
1

2d

d∑

m=1

∑

16i1<···<im6d

(2 logn− ζ′
Rm/diag(2αi1

,...,2αim )Zm(0)) + o(1).

After a change of variable t → n2t, the sum over the non-zero k’s can be splitted as

− 1

2d

d−1∑

k=1

d−k∑

m=1

∑

16i1<···<im6d

Ck
d−m(−1)k

×
[∫ 1

0

e−4kn2t(θT (2ni1
,...,2nim )(n

2t)−
m∏

q=1

(2αiqne
−2n2tI0(2n

2t)))
dt

t
+

∫ 1

0

(e−n2t − e−4kn2t)
dt

t

+

∫ ∞

1

e−4kn2t(θT (2ni1
,...,2nim )(n

2t)− 1)
dt

t

+

∫ ∞

1

(e−n2t − e−4kn2t
m∏

q=1

(2αiqne
−2n2tI0(2n

2t)))
dt

t

]
. (13)

From the propositions in [2, section 5], the first, third and fourth integrals tend to zero as n → ∞.
The second integral tends to

∫ ∞

0

(e−t − e−4kt)
dt

t
= log(4k).

The limit as n → ∞ of (13) is then

− 1

2d

d−1∑

k=1

d−k∑

m=1

Cm
d Ck

d−m(−1)k log(4k) = − 1

2d

d−1∑

k=1

Ck
d (2

d−k − 1)(−1)k log(4k).

Therefore, the Hd
m,n(0) term together with the constant term of equation (12) behave as

(
2− 1

2d−1

)
logn− 1

2d

d∑

m=1

∑

16i1<···<im6d

ζ′
Rm/diag(2αi1

,...,2αim )Zm(0) +
1

2d

d∑

k=1

Ck
d (−1)k log(4k)

as n → ∞.
We will now express the derivative of the spectral zeta function on the m-dimensional real torus
R

m/diag(2αi1 , . . . , 2αim)Zm, that is ζ′
Rm/diag(2αi1

,...,2αim )Zm , in terms of the derivative of the

spectral zeta function on the m-dimensional orthotope of size αi1 × · · · × αim . The eigenval-
ues of the Laplace-Beltrami operator with Dirichlet boundary conditions on the m-dimensional
orthotope of size αi1 × · · · × αim are given by

λk = π2
m∑

q=1

(
kiq
αiq

)2

with k = (ki1 , . . . , kim) ∈ (N∗)m.

So that the spectral zeta function on the m-dimensional orthotope of size αi1 × · · · × αim with
Dirichlet boundary conditions, denoted by ζαi1

×···×αim
, is given by

ζαi1
×···×αim

(s) =
1

π2s

∑

ki1
,...,kim>1

(
m∑

q=1

(
kiq
αiq

)2
)−s

.
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The spectral zeta function on the real torus Rm/diag(2αi1 , . . . , 2αim)Zm is given by

ζRm/diag(2αi1
,...,2αim )Zm(s) =

1

(2π)2s

∑

(ki1
,...,kim )∈Zm\{0}

(
m∑

q=1

(
kiq
2αiq

)2
)−s

.

The spectral zeta functions are then related by

ζRm/diag(2αi1
,...,2αim )Zm(s) =

m∑

l=1

2l
∑

j1<···<jl
{jq}

l
q=1

⊂{iq}
m
q=1

ζαj1
×···×αjl

(s).

Summing the above over all iq, q = 1, . . . ,m and over all m, m = 1, . . . , d, gives

1

2d

d∑

m=1

∑

16i1<···<im6d

ζRm/diag(2αi1
,...,2αim )Zm(s)

=
1

2d

d∑

m=1

∑

16i1<···<im6d

m∑

l=1

2l
∑

j1<···<jl
{jq}

l
q=1

⊂{iq}
m
q=1

ζαj1
×···×αjl

(s)

=
1

2d

d∑

m=1

m∑

l=1

Cm−l
d−l 2

l
∑

16i1<···<il6d

ζαi1
×···×αil

(s)

=

d∑

m=1

∑

16i1<···<im6d

ζαi1
×···×αim

(s)

where in the last equality we exchanged the sums over m and l and used the fact that∑d
m=l C

m−l
d−l = 2d−l. By expressing the derivative of the spectral zeta function evaluated in

zero in terms of the regularized determinant of the Laplace-Beltrami operator on m-dimensional
orthotopes, m = 1, . . . , d, with Dirichlet boundary conditions, we have

1

2d

d∑

m=1

∑

16i1<···<im6d

ζ′
Rm/diag(2αi1

,...,2αim )Zm(0) = −
d∑

m=1

∑

16i1<···<im6d

log det∗∆αi1
×···×αim

.

Putting everything together gives the asymptotic behaviour of the determinant of the Laplacian
on the d-dimensional square lattice L(n1, . . . , nd)

log det∗∆L(α1n,...,αdn) = cdV
d
d n

d −
d−1∑

m=1

1

4d−m

(∫ ∞

0

(1− e−4t)d−me−2mtI0(2t)
m dt

t

)
V d
mnm

+ (2 − 21−d) logn+

d∑

m=1

∑

16i1<···<im6d

log det∗∆αi1
×···×αim

+
1

2d

d∑

m=1

Cm
d (−1)m log(4m) + o(1)

as n → ∞. Notice that in the bulk limit the lead term is the same as in the case of the torus
but lower order terms are deducted; for each m-dimensional face, m = 1, . . . , d − 1, a term

12



proportional to V d
mnm is deducted. This can be explained by observing that in the torus case we

have a periodic lattice while for the d-dimensional hypercubic lattice the periodicity is substituted
by free boundary conditions. Spectral determinants of the limiting d-dimensional orthotope and
each of its m-dimensional faces, m = 1, . . . , d−1, also appear. Moreover the last constant term is
new in the development. The terms in V d

mnm appearing from the boundary effect can be written
in the following way:

−
∫ ∞

0

(1 − e−4t)d−me−2mtI0(2t)
m dt

t
=

d−m∑

k=0

Ck
d−m(−1)k

∫ ∞

0

(e−t − e−(2k+m)tI0(t)
m)

dt

t
.

These integrals are denoted by Jm(2k + m) in [6] by Glasser and are related to the Mahler
measure of the hypercubic polynomial P (x1, . . . , xm) = 4k+2m+

∑m
j=1(xj+x−1

j ) by the relation
m(P ) = log 2+ Jm(2k+m). In [6], Glasser calculates these integrals in terms of hypergeometric
functions for m = 2 and 3. For m = 1, one explicity has

1

4d−1

∫ ∞

0

(1− e−4t)d−1e−2tI0(2t)
dt

t
=

1

4d−1

d−1∑

k=1

Ck
d−1(−1)k log(2k + 1 + 2

√
k2 + k)

(see [11, Proposition 2.4]).

Example. Consider the two dimensional rectangular grid α1n×α2n. The volume of the limiting
rectangle of size α1 × α2 is V 2

2 = α1α2 with perimeter V 2
1 = 2α1 + 2α2. From Theorem 1.1 it

comes

log det∗∆L(α1n,α2n) =
4G

π
V 2
2 n

2 − 1

2
log(1 +

√
2)V 2

1 n+
3

2
logn+ log det∗∆α1×α2

+ log det∗∆α1
+ log det∗∆α2

− 1

4
log 2 + o(1)

as n → ∞, which is equivalent to the formula derived in [5, section 4.2].

2.4 Asymptotic number of rooted 2- and 3-spanning forests

In this section, we derive asymptotics for 2 and 3 component rooted spanning forests in d-
orthotope square lattices. LetNd

k denote the number of rooted k-spanning forests on L(n1, . . . , nd)
which is given by the k-th power in s2 of the characteristic polynomial:

∏d
i=1

ni−1∏

j=0

(
λL
j +

s2

n2

)
.

Following [5], by expanding the above in powers of (s/n)2, one finds that Nd
2 and Nd

3 are related
to Nd

1 by

Nd
2

Nd
1

=
∑

j 6=0

1

λL
j

and
Nd

3

Nd
1

=
1

2



(
Nd

2

Nd
1

)2

−
∑

j 6=0

1

(λL
j )

2


 .

The number or rooted spanning trees Nd
1 is related to the number of unrooted spanning trees

τ(L(n1, . . . , nd)) by the relation

Nd
1 =

( d∏

i=1

ni

)
τ(L(n1, . . . , nd)).
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Recall that from equation (11), we have that

∑

j 6=0

log((s/n)2 + λL
j ) =

d∑

m=1

V d
mnmId

m(s/n) +
d∑

m=1

Hd
m,n(s/n) +

d∑

k=1

Ck
d (−2)−k log((s/n)2 + 4k)

where

Id
d (s/n) =

∫ ∞

0

(e−t − e−((s/n)2+2d)tI0(2t)
d)
dt

t
.

We have
lim
n→∞

Id
d (s/n) = cd.

For d > 3,

lim
n→∞

n2(Id
d (s/n)− cd) = lim

n→∞
n2

∫ ∞

0

(1− e−(s/n)2t)e−2dtI0(2t)
d dt

t
=

s2

2
Wd

where Wd is the so-called Watson integral for the d-dimensional hypercubic lattice

Wd =

∫ ∞

0

e−dtI0(t)
ddt.

In [8], Joyce and Zucker introduced the generalised lattice Green function defined by

Gd(n; k, w) =
1

Γ(k)

∫ ∞

0

tk−1e−wt
d∏

i=1

Ini
(t)dt

where n = {n1, . . . , nd} is a set of non-negative integers, w > d, k > 0 and Γ is the gamma
function. Here the lattice Green function will only appear with n = 0, hence we denote it shortly
by Gd(k, w). In [8], numerical evaluations of the integrals cd and Wd are computed and also in
[2] for cd and in [7] for Wd and Gd(1, w).
For d > 5,

lim
n→∞

(n4(Id
d (s/n)− cd)− n2s2Wd) = lim

n→∞
n4

∫ ∞

0

(
1− e−(s/n)2t − s2

n2
t

)
e−2dtI0(2t)

d dt

t

= −s4

8
Gd(2, d).

Continuing in this way, we arrive at the following expansion for Id
d (s/n) as n → ∞

ndId
d (s/n) = cdn

d +

⌊(d−1)/2⌋∑

k=1

(−1)k+1nd−2k s
2k

k2k
Gd(k, d) + o(n). (14)

Recall that for m ∈ {1, . . . , d− 1},

Id
m(s/n) = − 1

4d−m

∫ ∞

0

(1 − e−4t)d−me−((s/n)2+2m)tI0(2t)
m dt

t
.

We have
lim
n→∞

Id
m(s/n) = Id

m(0).
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Similarly as for m = d, we obtain as n → ∞

nmId
m(s/n) = Id

m(0)nm

+
1

4d−m

⌊(m−1)/2⌋∑

k=1

(−1)knm−2k s2k

k!2k

∫ ∞

0

(1 − e−2t)d−me−mtI0(t)
mtk−1dt+ o(n).

(15)

The above integral can be expressed in terms of the generalised lattice Green function:

1

(k − 1)!

∫ ∞

0

(1− e−2t)d−me−mtI0(t)
mtk−1dt =

d−m∑

l=0

Cl
d−m(−1)lGm(k,m+ 2l).

Putting equations (14) and (15) together gives the expansion for d > 3

∑

j 6=0

log((s/n)2 + λL
j ) = V d

d cdn
d +

d−1∑

m=1

V d
mId

m(0)nm +

⌊(d−1)/2⌋∑

k=1

s2k

k2k

(
(−1)k+1V d

d Gd(k, d)n
d−2k

+ δd>4
(−1)k

(k − 1)!

d−1∑

m=2k+1

V d
mnm−2k 1

4d−m

∫ ∞

0

(1− e−2t)d−me−mtI0(t)
mtk−1dt

)
+ o(n)

where δd>d0
= 1 if d > d0 and 0 otherwise.

For d = 3,

∑

j 6=0

log((s/n)2 + λL
j ) = V 3

3 c3n
d + V 3

1 I3
1 (0)n+ V 3

2 I3
2 (0)n

2 +
s2

2
V 3
3 W3n+ o(n)

with the special values (W3 is given in [8])

I3
1 (0) =

1

16
log((17 + 2

√
2)(5− 2

√
6)) and W3 =

1

96π3
(
√
3− 1) (Γ(1/24)Γ(11/24))

2
.

For d > 4,

∑

j 6=0

log((s/n)2 + λL
j ) = V d

d cdn
d +

d−1∑

m=1

V d
mId

m(0)nm

+
s2

2

(
V d
d Wdn

d−2 −
d−1∑

m=3

V d
mnm−2 1

4d−m

∫ ∞

0

(1− e−2t)d−me−mtI0(t)
mdt

)

+
s4

8

(
−δd>5V

d
d Gd(2, d)n

d−4 + δd>6

d−1∑

m=5

V d
mnm−4 1

4d−m

∫ ∞

0

t(1− e−2t)d−me−mtI0(t)
mdt

)

+ (terms in sk with k > 3) + o(n)

as n → ∞.
On the other hand, the formal expansion of

∑
j 6=0 log((s/n)

2 + λL
j ) gives

∑

j 6=0

log((s/n)2 + λL
j ) = log

(∏

j 6=0

λL
j

)
+
∑

p>1

(−1)p−1

p

( s
n

)2p∑

j 6=0

1

(λL
j )

p
.
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By identification of the terms in s2, we find the asymptotic number of rooted 2-spanning forests
for d = 3, as n → ∞

N3
2 =

(
V 3
3

2
W3n

3 + o(n3)

)
N3

1

and for d > 4, we have

∑

j 6=0

1

λL
j

=
V d
d

2
Wdn

d −
d−1∑

m=3

V d
m

2
nm 1

4d−m

∫ ∞

0

(1 − e−2t)d−me−mtI0(t)
mdt+ o(n3)

so that

Nd
2 =

(
V d
d

2
Wdn

d −
d−1∑

m=3

V d
m

2
nm 1

4d−m

∫ ∞

0

(1 − e−2t)d−me−mtI0(t)
mdt+ o(n3)

)
Nd

1

where Nd
1 is asymptotically given by Theorem 1.1. By identification of the terms in s4, we find

that as n → ∞ ∑

j 6=0

1

(λL
j )

2
= O(nd)

so that the asymptotic number of rooted 3-spanning forests for d = 4 is given by

N4
3 =

(
(V 4

4 W4)
2

8
n8 − V 4

3 V
4
4

8
W4n

7

∫ ∞

0

(1 − e−2t)e−3tI0(t)
3dt+ o(n7)

)
N4

1 , as n → ∞.

Remark. It would be interesting to find the next terms in the development. For the 2-dimensional
case, we would need to find the asymptotic development as n → ∞ of the following integral

∫ ∞

0

n2(1 − e−(s/n)2t)e−4tI0(2t)
2 dt

t
.

In [5], the authors computed the asymptotic development of
∑

j 6=0 log((s/n)
2 + λj) in the case

of the torus with other techniques. To generalise their result to higher dimensions with our tech-
niques, for example in the 3-dimensional case, we would need to find the asymptotic development
of ∫ ∞

0

(n3(1 − e−(s/n)2t)− ns2t)e−6tI0(2t)
3 dt

t

as n → ∞. This would enable us to derive asymptotics for the number of rooted k-spanning
forests with k > 4.

2.5 Spanning trees in two-dimensional square lattices

In the two-dimensional case, one can derive an exact relation between the number of spanning
trees on the rectangular square lattice n1 × n2 and the one on the torus of size 2n1 × 2n2. The
product of the non-zero eigenvalues on T (2n1, 2n2) is given by

det∗∆T (2n1,2n2) =

2n1−1∏

k1=0
(k1,k2) 6=0

2n2−1∏

k2=0

(4 − 2 cos(πk1/n1)− 2 cos(πk2/n2)).

16



The product over k1, k2 is a disjoint union of products over four squares of size n1×n2. We split
this product as a product over the 0, 1 and 2 dimensional faces of the squares. It comes

det∗∆T (2n1,2n2) = 428

n1−1∏

k1=1

(2 − 2 cos(πk1/n1))
2
n2−1∏

k2=1

(2− 2 cos(πk2/n2))
2

×
n1−1∏

k1=1

(6− 2 cos(πk1/n1))
2
n2−1∏

k2=1

(6 − 2 cos(πk2/n2))
2

×
n1−1∏

k1=1

n2−1∏

k2=1

(4− 2 cos(πk1/n1)− 2 cos(πk2/n2))
4. (16)

On the other hand, the product of the non-zero eigenvalues on the square lattice L(n1, n2) is
given by

det∗∆L(n1,n2) =

n1−1∏

k1=0
(k1,k2) 6=0

n2−1∏

k2=0

(4− 2 cos(πk1/n1)− 2 cos(πk2/n2)).

By splitting the above product as a product when k1 = 0, then k2 = 0, then 1 6 k1 6 n1 − 1,
1 6 k2 6 n2 − 1, we get

det∗∆L(n1,n2) =

n1−1∏

k1=1

(2− 2 cos(πk1/n1))

n2−1∏

k2=1

(2 − 2 cos(πk2/n2))

×
n1−1∏

k1=1

n2−1∏

k2=1

(4− 2 cos(πk1/n1)− 2 cos(πk2/n2)). (17)

Using the matrix tree theorem and putting the following identities coming from relations for
Chebyshev polynomials of the second kind

n−1∏

k=1

(2− 2 cos(πk/n)) = n and

n−1∏

k=1

(6 − 2 cos(πk/n)) =
(3 + 2

√
2)n − (3− 2

√
2)n

4
√
2

,

in equations (16) and (17), it follows that

τ(L(n1, n2)) =
25/4τ(T (2n1, 2n2))

1/4

(n1n2)1/4((3 + 2
√
2)n1 − (3− 2

√
2)n1)1/2((3 + 2

√
2)n2 − (3− 2

√
2)n2)1/2

.

Remark. It would be interesting to see if one could generalise the above relation to higher
dimensions. It could not be done in the same way as it is done above. More precisely, when
splitting the product in 3 dimensions as a product over 0, 1, 2 and 3 dimensional faces, one would
need for example to evaluate the following product

n1−1∏

k1=1

n2−1∏

k2=1

(8− 2 cos(πk1/n1)− 2 cos(πk2/n2))

appearing for the 2-dimensional face defined by k3 = n3 and k1 = 1, . . . , n1−1, k2 = 1, . . . , n2−1.
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3 Asymptotic number of spanning trees in the quartered

Aztec diamond

3.1 A relation between the number of spanning trees on the quartered

Aztec diamond and on the square lattice

In [4, 10], the authors showed that the number of spanning trees in the quartered Aztec diamond
of side length n is given by

τ(QADn) =
∏

0<k1<k2<n

(4− 2 cos(πk1/n)− 2 cos(πk2/n)).

The product of the non-zero eigenvalues on the square grid of side n is given by

det∗∆L(n,n) =

n−1∏

k1=0
(k1,k2) 6=0

n−1∏

k2=0

(4− 2 cos(πk1/n)− 2 cos(πk2/n)).

By splitting this product as a product when k1 = 0, then k2 = 0, then k1 = k2, k1 = 1, . . . , n− 1,
then k1 < k2 and k2 < k1, we have

det∗∆L(n,n) =

n−1∏

k=1

(2− 2 cos(πk/n))2
n−1∏

k=1

(4− 4 cos(πk/n))

×
∏

16k1<k26n−1

(4− 2 cos(πk1/n)− 2 cos(πk2/n))
2.

From the matrix tree theorem, it follows that

τ(QADn) =
τ(L(n, n))1/2√

n2(n−1)/2
. (18)

3.2 Asymptotic expansion

From (18), we have

log(τ(QADn)) =
1

2
log det∗∆L(n,n) −

n

2
log 2− 3

2
logn+

1

2
log 2 (19)

where the asymptotic behaviour of log det∗∆L(n,n) is given by

log det∗∆L(n,n) =
4G

π
n2 − 2 log(1 +

√
2)n+

3

2
logn− ζ′1×1(0)− 2ζ′1(0)−

1

4
log 2 + o(1) (20)

as n → ∞.
Consider the right-angled isoscele triangle with the sides of same length equal to 1. The eigen-
values of the Laplace-Beltrami operator with Dirichlet boundary conditions are given by

λk = π2(k21 + k22), with k = (k1, k2) ∈ (N∗)2 and k1 > k2.

The associated spectral zeta function with Dirichlet boundary conditions, denoted by ζ∆, is then
given by

ζ∆(s) =
1

π2s

∑

16k2<k1

1

(k21 + k22)
s
.
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The spectral zeta function on the unit square with Dirichlet boundary conditions is given by

ζ1×1(s) =
1

π2s

∑

k1,k2>1

1

(k21 + k22)
s
= 2ζ∆(s) + 2−sζ1(s).

The spectral zeta function on the unit interval with Dirichlet boundary conditions is related to
the Riemann zeta function by ζ1(s) = (2/π2s)ζ(2s) with special values in 0, ζ(0) = −1/2 and
ζ′(0) = −(1/2) log(2π). Thus we have that ζ′1(0) = −2 log 2. By differentiating the above and
evaluating in s = 0, we get

ζ′1×1(0) = 2ζ′∆(0)− log 2. (21)

Putting (19), (20), (21) together and writing the derivative of the spectral zeta function in 0
in terms of the regularized determinant of the Laplace-Beltrami operator on the right-angled
isoscele unit triangle with Dirichlet boundary conditions, that is

ζ′∆(0) = − log det∗∆∆,

gives the asymptotic behaviour of the number of spanning trees on the quartered Aztec diamond,
namely

log(τ(QADn)) =
2G

π
n2 − log(2 +

√
2)n− 3

4
logn+ log det∗∆∆ +

23

8
log 2 + o(1)

as n → ∞.
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