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Abstract

Graph polynomials are deemed useful if they give rise to algebraic character-
izations of various graph properties, and their evaluations encode many other
graph invariants. Algebraic: The complete graphs Kn and the complete bipar-
tite graphs Kn,n can be characterized as those graphs whose matching polyno-
mials satisfy a certain recurrence relations and are related to the Hermite and
Laguerre polynomials. An encoded graph invariant: The absolute value of the
chromatic polynomial χ(G,X) of a graph G evaluated at −1 counts the number
of acyclic orientations of G.

In this paper we prove a general theorem on graph families which are char-
acterized by families of polynomials satisfying linear recurrence relations. This
gives infinitely many instances similar to the characterization of Kn,n. We also
show where to use, instead of the Hermite and Laguerre polynomials, linear
recurrence relations where the coefficients do not depend on n.

Finally, we discuss the distinctive power of graph polynomials in specific
form.
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In memoriam Herbert Wilf, June 13, 1931 - January 7, 2012

1. Introduction and background

1.1. Wilf ’s Recognition problem

H. Wilf asked in [Wil73] to characterize and recognize the instances of the
chromatic polynomial. C.D. Godsil and I. Gutman [GG81] gave a characteriza-
tion of the instances of the defect matching polynomial µ(G;X) for paths Pn,
cycles Cn, complete graphs Kn and bipartite complete graphs Kn,n in terms of
orthogonal polynomials. We want to put Wilf’s question and C.D. Godsil and
I. Gutman’s observation into a larger perspective. First we have to fix some
terminology. Let G denote the class of all finite graphs with no multiple edges.
A graph property is a class of graphs C ⊆ G closed under graph isomorphism. A
graph parameter f(G) is a function G → Z invariant under graph isomorphism.
A graph polynomial with r indeterminates4 X̄ = (X1, . . . , Xr) is a function P
from all finite graphs into the polynomial ring Z[X̄ ] which is invariant under
graph isomorphism. We write P(G; X̄) for the polynomial associated with the
graph G.

Definition 1. A graph polynomial P is computable if

(i) P is a Turing computable function, and additionally,

(ii) the range of P, the set

{p(X̄) ∈ Z[X̄ ] : there is a graph G with P(G; X̄) = p(X̄)}

is Turing decidable.

In this paper we give a general formulation to Wilf’s question.

Problem 1 (Recognition and Characterization Problem:). Given a graph poly-
nomial P(G; X̄) and a graph property C, define

YP,C = {p(X̄) ∈ Z[X̄ ] : ∃G ∈ C with P(G; X̄) = p(X̄)}

(i) The recognition problem asks for an algebraic method to decide member-
ship in YP,C.

(ii) The characterization problem asks for an algebraic characterization of
YP,C , i.e., an algebraic characterization of the coefficients of p(X̄).

Both the recognition and the characterization problem were stated explicitly
for the chromatic polynomial χ(G;X) and C the class of all finite graphs by H.
Wilf, [Wil73], and he deemed them to be very difficult.

When H. Wilf asked the question about the chromatic polynomial he had
an algebraic and descriptive answer in mind. Something like, a polynomial

4If the polynomial is univariate, we write X instead of X̄
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p(X) is a chromatic polynomial of a some graph G iff the coefficients satisfy
some relations. The conjecture, that the absolute values of the coefficients of
the chromatic polynomial form a unimodal sequence, only recently proved by
J. Huh, [Huh15] has its origin in Wilf’s question. H. Wilf was not concerned
about algorithmic complexity.

From a complexity point of view, we note that deciding whether a given
polynomial p(X) is a chromatic polynomial of a some graph G can be decided
by brute force in exponential time as follows:

(i) Use the degree dp of p(X) to determine the upper bound on the size of
the candidate graph G. In the case of the chromatic polynomial we have
|V (G)| = dp.

(ii) Let I(n) be the number of graphs, up to isomorphism, of order n. Listing
all graphs, up to isomorphism, of order n, is exponential in n.

(iii) For i ≤ I(dp) compute the chromatic polynomial χ(Gi;X) and test if
p(X) = χ(Gi;X). Evaluating χ(Gi;X) for X = a and a ∈ N is in ♯P.

The same argument works for many other graph polynomials.

Problem 2 (Algorithmic version of Wilf’s problem:). Given a graph polynomial
P and a graph property C, determine the complexity of the recognition problem
for YP,C .

One can view the result of C.D. Godsil and I. Gutman, [GG81] as a solution
of a very special case of Wilf’s Characterization Problem, where P = µ(G;X)
is the matching polynomial, and C is the the indexed family of Pn, cycles Cn,
complete graphs Kn and bipartite complete graphs Kn,n. The solution to the
Recognition Problem is then given by verifying that the polynomial p(X) in
question satisfies a recurrence relation. We shall discuss this and generalizations
thereof in Section 4.

In this paper we are interested in two questions:

(A): How can we get solutions to Wilf’s Characterization Problem for a general
class of graph polynomials?

(B): Given such a solution, what does it say about the underlying graphs?

Using classical results and a general theorem from [FM08], this paper gives
solutions to (A) similar to the characterization of C.D. Godsil and I. Gutman,
[GG81], for a large class of graph polynomials and indexed families of graphs Gn

by replacing, in many cases, the orthogonal polynomials by polynomials given
by other linear recurrence relations with constant coefficients. We shall see in
Section 4.3 how to formulate a meta-theorem which captures many cases for
special classes of graphs.

1.2. Algebraic vs graph theoretic properties of graph polynomials

As for (B), the answer depends on the particular way the graph polynomial
is represented. The situation is comparable to linear algebra, with matrices
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and linear maps f : V → W between vector spaces V and W . If we choose
bases in V and W , we can associate with f a matrix Mf representing f . Two
similar matrices represent the same linear map in terms of different choices
of bases. As every matrix is similar to a triangular matrix, triangularity is a
property of the matrix Mf and not of the linear map f . However, det(Mf ) = 0
is both a property of Mf and of the linear map: f is singular iff det(Mf ) = 0
iff det(M) = 0 for every matrix M similar to Mf .

Let gn(X) be a polynomial basis of Z[X ]. A graph polynomial is always
written in the form

P (G;X) =
∑

i

ai(G) · gi(X)

where the coefficients are graph parameters. The graph polynomial P (G;X) de-
fines an equivalence relation on the the class of finite graphs: Two graphsG1, G2

are P -equivalent iff P (G1;X) = P (G2;X). The various equivalence relations
induced by a graph polynomial P (G;X) are partially ordered by the refinement
relation. In analogy to similarity of matrices, we say that two graph polyno-
mials have the same distinctive power, or are d.p.-equivalent, if they induce the
same equivalence relation on graphs with the same number of vertices, edges and
connected components. A property of a graph polynomial is a semantic (aka
graph theoretic) property if it is invariant under d.p.-equivalence. Otherwise it
is a property of the representation, i.e., the choice of the polynomial bases, and
we speak of syntactic (aka algebraic) properties of the graph polynomial. A
more detailed treatment is given in Section 2. Semantic properties of a graph
polynomial P cannot be expressed in terms of algebraic properties of YP,C alone
without relating to the particular form of P. For a thorough discussion of this,
cf. [MRB14]. There we argued that determining the location of the roots of a
graph polynomial is not a semantic property of graph polynomials. We showed
that every graph polynomial can be transformed with mild transformations into
a d.p.-equivalent graph polynomial with roots almost wherever we want them
to be.

Here, in contrast to [MRB14], we will focus on several classes of very nat-
urally defined graph polynomials, the generalized chromatic polynomials and
polynomials defined as generating functions of induced or spanning subgraphs,
and determinant polynomials. Restricting the form of the graph polynomials
means restricting the coefficients of the graph polynomial in a way that allows a
natural combinatorial interpretation. We show that for P either the generalized
chromatic polynomials or the graph polynomials defined as generating functions
of induced or spanning subgraphs, the algebraic properties of the resulting graph
polynomials are semantic properties in the sense that for every graph polyno-
mial P ∈ P there is exactly one different graph polynomial Q ∈ P which is
d.p.-equivalent to P, (Theorem 5.7). In other words, we give a characterization
of d.p.-equivalence for graph polynomials in a particular simple form.

1.3. Main results

Our main contributions in this paper are more conceptual than technical.
We put Wilf’s recognition and characterization problem, originally formulated
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for the chromatic polynomial, into the general framework of the systematic
study of graph polynomials. To do this, we reinterpret diverse results from the
literature into this general framework. This leads us to the following results:

Let C = {Gn : n ∈ N} be a family of graphs and P a graph polynomial.

(i) We use a general criterion from [FM08] to show that the sequence of poly-
nomials P(Gn; X̄) satisfying a linear recurrence relation with constant
coefficients is C-finite5, (Theorem 4.9).

(ii) Let P be a graph polynomial. A graph G is P-unique if whenever for a
graph H we have P(H ;X) = P(G;X) then H is isomorphic to G. If every
Gn is P-unique we use this recurrence relation to give characterizations of
YP,C for many graph polynomials, (Theorem 4.8).

(iii) Graph polynomials are compared by their respective distinctive power
(d.p.- and s.d.p.-equivalence). We characterize d.p.- and s.d.p.-equivalence,
Proposition 2.2. For d.p.-equivalent graph properties C,D this gives: C and
D are d.p.-equivalent iff C = D or C = G − D, (Proposition 5.1)

(iv) In Section 5 we study d.p.- and s.d.p.-equivalence of graph polynomials
Pind

C (G;X) and Pspan
D (G;X) obtained as generating functions for induced

and spanning subgraphs in more detail. They refine the d.p.-equivalence
relation of the respective graph properties C and D. Theorems 5.13 and
5.14 show that there are infinitely many mutually d.p.-incomparable graph
polynomials of this form.

(v) Theorem 5.8 shows that C-finiteness is a semantic property of graph poly-
nomials obtained as generating functions for induced and spanning sub-
graphs.

(vi) Also in Section 5 we study d.p.-equivalence of generalized chromatic poly-
nomials χC(G;X). They also refine the d.p.- and s.d.p.-equivalence relation
of graph property C. Theorem 5.16 states that there are infinitely many
mutually s.d.p.-incomparable graph polynomials of this form.

(vii) Finally, we consider graph polynomials which are generating functions of
relations PΦ(A)(G;X), and we show that not every graph polynomial of
this form can be written as a generating function of induced (spanning)
subgraphs or as a generalized chromatic polynomial χC(G;X), Theorems
5.17 and 5.18.

2. How to define and compare graph polynomials?

2.1. Typical forms of graph polynomials

In this paper we look at five types of graph polynomials: generalized chro-
matic polynomials and polynomials defined as generating functions of induced
or spanning subgraphs, and determinant polynomials, and contrast this to graph
polynomials arising from generating functions of relations.

More precisely, let C be a graph property.

5 The terminology C-finite is usually used for sequences of natural numbers, and we adopt
it here for polynomials, cf. [PWZ96].
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Generalized chromatic: Let χC(G; k) denote the number of colorings of G
with at most k colors such that each color class induces a graph in C. It
was shown in [KMZ08, KMZ11] that χC(G; k) is a polynomial in k for any
graph property C. Generalized chromatic polynomials are further studied
in [GHK+17].

Generating functions: Let A ⊆ V (G) and B ⊆ E(G). We denote by G[A]
the induced subgraph of G with vertices in A, and by G〈B〉 the spanning
subgraph of G with edges in B.

(i) Let C a graph property.

P ind
C (G;X) =

∑

A⊆V :G[A]∈C

X |A|

(ii) Let D a graph property which is closed under adding isolated vertices,
i.e., if G ∈ D then G ⊔K1 ∈ D.

P
span
D (G;X) =

∑

B⊆E:G<B>∈D

X |B|

Generalized Generating functions: Let Xi : i ≤ r be indeterminates and
fi : i ≤ r be graph parameters. We also consider graph polynomials of
the form

P ind
C,f1,...,fr(G;X) =

∑

A⊆V :G[A]∈C

r
∏

i=1

X
fi(G[A])
i

and

P
span
C,f1,...,fr

(G;X) =
∑

B⊆E:G<B>∈D

r
∏

i=1

X
fi(G<B>)
i

Determinants: Let MG be a matrix associated with a graph G, such as the
adjacency matrix, the Laplacian, etc. Then we can form the polynomial
det(1 ·X −MG).

Special cases are the chromatic polynomial χ(G;X), the independence polyno-
mial I(G;X), the Tutte polynomial T (G;X,Y ) and the characteristic polyno-
mial of a graph pchar(G;X). Note that, in the sense of the following subsection,
χ(G;X), I(G;X) and pchar(G;X) are mutually d.p.-incomparable, and χ(G;X)
has strictly less distinctive power than T (G;X,Y ).

In Section 5.6 we shall see that there are graph polynomials defined in the
literature which seemingly do not fit the above frameworks. This is the case for
the usual definition of the generating matching polynomial:

∑

M⊆E(G):match(M)

X |M|

where match(M) says that V (G),M is a matching. However, we shall see in
Section 5.6 that there is another definition of the same polynomial which is an
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generating function. In stark contrast to this, we shall prove there, that the
dominating polynomial

DOM(G;X) =
∑

A⊆V (G):Φdom(A)

X |A|

where Φdom(A) says that A is a dominating set of G, cannot be written as a
generating function, (Theorem 5.17). This motivates the next definition, see
also Section 5.6.

Generating functions of a relation Let Φ be a property of pairs (G,A)
where G is a graph and A ⊆ V (G)r is an r-ary relation on G. Then
the generating function of Φ is defined by

PΦ(G;X) =
∑

A⊆V (G)r:Φ(G,A)

X |A|

The most general graph polynomials Further generalizations of chromatic
polynomials were studied in [MZ06, KMZ11, Kot12] and in [GGN13,
GNdM16]. In [MZ06, KMZ11] it was shown that the most general graph
polynomials can be obtained using model theory as developed in [Zil93,
CH03]. A similar approach was used in [GGN13, GNdM16] based on ideas
from [dlHJ95]. However, for our presentation here, the graph polynomials
we have defined so far suffice.

2.2. Comparing graph polynomials

We denote by n(G),m(G), k(G) the number of vertices, edges and connected
components of G. Let P be a graph polynomial. A graph G is P-unique if every
graph H with P(H ; X̄) = P(G; X̄) is isomorphic to G. We say that two graphs
G,H are similar if the have the same number of vertices, edges and connected
components. Two graphs G,H are P-equivalent if P(H ; X̄) = P(G; X̄). P
distinguishes between G and H if G and H are not P-equivalent.

Two graph polynomials P(G; X̄) and Q(G; Ȳ ) with r and s indeterminates
respectively can be compared by their distinctive power on similar graphs: P is
at most as distinctive as Q, P ≤s.d.p Q if any two similar graphs G,H which are
Q-equivalent are also P-equivalent. P and Q are s.d.p.-equivalent, P ∼s.d.p Q
if for any two similar graphs G,H P-equivalence and Q-equivalence coincide.
We can also compare graph polynomials on graphs without requiring similarity.
In this case we say that a graph polynomial P is at most as distinctive as Q,
P ≤d.p. Q, if for all graphs G1 and G2 we have that

Q(G1) = Q(G2) implies P(G1) = P(G2)

P and Q are d.p.-equivalent iff both P ≤d.p. Q and Q ≤d.p. P. D.p.-equivalence
is stronger that s.d.p.-equivalence:

Lemma 2.1. For any two graph polynomials P and Q we have: P ≤d.p. Q
implies P ≤s.d.p. Q.

8



In this paper we concentrate on d.p.-equivalence and speak of s.d.p.-equivalence
only when it is needed. In a sequel to this paper we will investigate in detail
what can be said of both notions.

Part (ii) of the following Proposition was shown in [MRB14], and (iii) follows
from Definition 1(i) and (ii).

Proposition 2.2. (i) P is at most as distinctive as Q, P ≤d.p Q, iff there
is a function F : Z[Ȳ ] → Z[X̄] such that for every graph G we have

P(G; X̄) = F (Q(G; Ȳ ))

(ii) P is at most as distinctive as Q on similar graphs, P ≤s.d.p Q, iff there
is a function F : Z[Ȳ ]× Z3 → Z[X̄] such that for every graph G we have

P(G; X̄) = F (Q(G; Ȳ ), n(G),m(G), k(G))

(iii) Furthermore, both for d.p. and s.d.p., if both P and Q are computable,
then F is computable, too.

Proof of (iii): The function F from (i) or (ii) is not unique. However, because
the range of polynomials given by Q is assumed to be decidable, we can choose
F such that F (p) = 0 for all p ∈ Z[X̄ ] such that there is no graph G with
Q(G; X̄) = p. F chosen in this way now is computable.

Remark 2.3. In the literature [MN09, Sok05] on the Tutte polynomial s.d.p.-
equivalence is implicitly used to compare the various forms of the Tutte poly-
nomial and the Potts model. The various forms of the Tutte polynomial are
not d.p.-equivalent. The same is true for the various forms of the matching
polynomial as discussed in, say, [LP86].

Graph polynomials are supposed to give information about graphs. The al-
gebraic characterization of YP,C uses the coefficients of the polynomial P(G; X̄)
to characterize C. However, such a characterization depends on the presenta-
tion of P(G; X̄) with respect to the basic polynomials chosen to write P(G; X̄).
In the univariate case, the basic polynomials are usually, but not always, Xn.
Sometimes one uses

(

X
n

)

instead, or the falling factorial X(n) = X · (X − 1) ·
. . . · (X − n + 1). On the other side, the notion of d.p.-equivalence captures
properties of graphs independently of the presentations of the particular graph
polynomials. A statement involving a graph polynomial P is a proper statement
about graphs, if it is invariant under d.p.-equivalence. Otherwise, it is merely a
statement about graphs via the particular presentation of the graph polynomial.

Problem 3 (Invariance under d.p.-equivalence). Are there algebraic character-
izations of YP,C which are invariant under d.p.- or s.d.p.-equivalence?

In [MRB14], this question was studied concerning the location of the roots
of P(G; X̄). The answer was negative even if the class of graph polynomials
considered is closed under substitutions, and prefactors. However, the various
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versions of the Tutte polynomials and matching polynomials can be obtained
from each other in this way.

In the light of the discussion in [MRB14], we now look at the following
problem:

Problem 4 (Distinctive power). Given two graph polynomials P,Q in a specific
form such as generalized chromatic polynomials, polynomials defined as gener-
ating functions of induced or spanning subgraphs, or determinant polynomials,
characterize when they are d.p-equivalent.

In Section 5, we will discuss this problem for the case of polynomials defined
as generating functions of induced subgraphs and generalized chromatic poly-
nomials, Theorem 5.7 and Proposition 5.10. These theorems do not hold for
generating functions of relations, see Section 5.6.

3. The recognition and characterization problems

Let P(G; X̄) be a computable graph polynomial, and let C be a graph prop-
erty. Recall from Section 1, that the Recognition Problem for P(G; X̄) and C is
the question, whether, given a polynomial s(X̄) ∈ Z[X̄ ], there is a graph Gs ∈ C
such that P(Gs; X̄) = s(X̄)? The Characterization Problem for P(G; X̄) and C
asks for a description of the set of polynomials

YP,C = {p(X̄) ∈ Z[X̄ ] : ∃G ∈ C with P(G; X̄) = p(X̄)}.

If C is the class of all finite graphs, we write YP. We also noted in Section 1,
that there is a brute force solution for the Recognition Problem as follows:

Observation 3.1. Assume that P(G; X̄) is a computable graph polynomial for
which we can give a bound β(P(G; X̄)) for the size of G. Then, checking whether
a polynomial p(X̄) is in YP can be done by computing P(G; X̄) for all graphs
smaller than β(P(G; X̄)).

What we are looking for should be better than that.
The problem may be easier for certain graph properties C in the relative

version. There are many such characterization in the literature, we just give
one here for the sake of illustration.

Example 3.1 (Taken from [DKT05]). Let C be the class of finite connected
graphs. Then Yr

χ,C consists of all instances of the chromatic polynomial which
have 0 as a root with multiplicity one.

It is easy to define graph polynomials P (G;X) with a trivial recognition, i.e.,
where for every polynomial

s(X) =

m
∑

i=0

aiX
i ∈ N[X ]

there is a graph Gs with P (Gs;X) = s(X).
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Proposition 3.2. Let MaxCl(G;X) =
∑

i mcli(G)Xi be the graph polynomial
where mcli(G) denotes the number of maximal cliques of size i. MaxCl(G;X)
has a trivial recognition.

Proof. Let s(X) =
∑m

i=0 aiX
i ∈ N[X ] and let Gs be the graph which is the

disjoint union of ai-many cliques of size i. Then MaxCl(Gs;X) = s(X).

Problem 5. Find more naturally defined graph polynomials with trivial recog-
nition.

To show that not all polynomials are chromatic polynomials, one can use
various properties of the coefficients. One sufficient condition is that the coeffi-
cients are alternating in sign for connected graphs. For a characterization, more
properties of the coefficients are needed. One such property is the fact that its
coefficients (or their absolute values) are unimodal or logconcave, cf. [Huh15],
which was suggested also for the independence polynomial, and other graph
polynomials. However, showing unimodality of the coefficients is notoriously
hard, [Sta89, Bre92, Bra15, Huh15].

4. Characterizations using recurrence relations

Let Pn, Cn andKn denote, respectively, the path, the cycle and the complete
graph on n vertices, and Kn,m denote the complete bipartite graph on n +
m vertices. We let Path be the family of paths Pn, and Cycle,Clique and
CBipartite the families of Cn, Kn and Kn,n respectively. For a class of graphs C
closed under isomorphisms, we denote the class of graphs consisting of disjoint
unions of graphs in C by DU(C).

Let P(G; X̄) be a graph polynomial and Gn be a sequence of graphs. The
sequence of polynomials Pn(X̄) = P(Gn; X̄) is C-finite if there is q ∈ N and
there are polynomials fi(X̄) ∈ Z[X̄ ], i ∈ [q] such that

Pn+q(X) =

q−1
∑

i=0

fi(X̄)Pi(X̄)

4.1. The characteristic polynomial pchar(G;X)

Let G be an undirected graph and AG is symmetric adjacency matrix. The
characteristic polynomial is defined as

pchar(G;X) = det(1 ·X −AG)

We note that pchar(G;X) is multiplicative, i.e., if H is the disjoint union of G1

and G2 then pchar(H ;X) = pchar(G1;X) · pchar(G2;X).

Proposition 4.1 (Taken from [BH12, Chapter 14.4.2]).
The graphs Pn, Cn, Kn and Kn,n are pchar-unique.
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Proposition 4.2 (A.J. Schwenk [Sch74]).
The sequences of polynomials pchar(Pn), pchar(Cn), pchar(Kn) and pchar(Kn,n)
are all C-finite.

Proposition 4.1 gives us:

Theorem 4.3.

(i) G is isomorphic to Pn iff pchar(G;X) = pchar(Pn;X).

(ii) G is isomorphic to Cn iff pchar(G;X) = pchar(Cn;X).

(iii) G is isomorphic to Kn iff pchar(G;X) = pchar(Kn;X).

(iv) G is isomorphic to Kn,n iff pchar(G;X) = pchar(Kn,n;X).

Proposition 4.2 gives us similar characterizations of Ypchar ,Path,Ypchar ,Cycle,Ypchar ,Clique

and Ypchar ,CBipartite using C-finiteness.

4.2. The matching polynomials

Let mk(G) denote the number of k-matchings of a graph G on n vertices.
Let µ(G;X) be the defect matching polynomial (aka acyclic polynomial)

µ(G;X) =

⌊n/2⌋
∑

k=0

mk(G)(−1)kXn−2k

Theorem 4.4 (C.D. Godsil and I. Gutman [GG81]). On forests F we have
µ(F ;X) = pchar(F ;X).

We look for characterizations of Yµ,Path,Yµ,Cycle,Yµ,Clique and Yµ,CBipartite.
We need the recursive definitions of the orthogonal polynomials of Cheby-

shev, Hermite and Laguerre, cf. [Chi11]: The Chebyshev polynomials Tn(X)
and Un(X) are defined recursively as follows:

T0(X) = 1, T1(X) = X and Tn+1(X) = 2X · Tn(X)− Tn−1(X)

and

U0(X) = 1, U1(X) = 2X and Un+1(X) = 2X · Un(X)− Un−1(X)

These two recurrence relations are linear in Un(X) and their coefficients are
elements of N[X ] and do not depend on n.

The Hermite polynomials Hen(X) are defined recursively as follows:

He0(X) = 1, He1(X) = X and Hen+1(X) = X ·Hen(X)− n ·Hen−1(X)

The Laguerre polynomials Ln(X) are defined recursively as follows:

L0(X) = 1, L1(X) = 1−X and Ln+1(X) =
2n+ 1− x

n+ 1
·Ln(X)−

n

n+ 1
Ln−1(X)

These recurrence relation are linear in Hen(X) and Ln(X) and their coefficients
are elements of N[X ], respectively Q[X ] and do depend on n.
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Theorem 4.5 (C.D. Godsil and I. Gutman [GG81]).

(i) µ(Cn; 2X) = 2 · Tn(X)

(ii) µ(Pn; 2X) = Un(X)

(iii) µ(Kn;X) = Hen(X)

(iv) µ(Kn,n;X) = (−1)n · Ln(X
2)

For related theorems, cf. also [God81, Ges89, NR04, DG04].

Theorem 4.6.

(i) ([BF95]) The Cn’s are µ-unique.

(ii) ([Noy03]) Kn and Kn,n are µ-unique.

(iii) ([BH12, Proposition 14.4.6]) Pn is pchar-unique, and, as it is a tree, also
µ-unique.

Putting all this together we get:

Theorem 4.7.

(i) A graph G is isomorphic to a cycle Cn iff µ(G;X) = 2 · Tn(X). In other
words, Yµ,Cycle can be characterized using a linear recurrence relation with
constant coefficients in Z[X ].

(ii) A graph G is isomorphic to a path Pn iff µ(G; 2X) = Un(X). In other
words, Yµ,Path can be characterized using a linear recurrence relation with
constant coefficients in Z[X ].

(iii) A graph G is isomorphic to a complete graph Kn iff µ(G;X) = Hen(X).
In other words, Yµ,Clique can be characterized using a recurrence relation
where the coefficients depend on n.

(iv) A graph G is isomorphic to a complete bipartite graph Kn,n iff µ(G;X) =
(−1)n ·Ln(X

2). In other words, Yµ,CBipartite can be characterized using a
recurrence relation where the coefficients depend on n.

4.3. An abstract theorem

Our discussion of the characteristic polynomial can be formulated abstractly.
We state the following observation as a theorem.

Theorem 4.8. Let P be a graph polynomial and C = {Gn : n ∈ N} be given as
a sequence of graphs. Assume the following:

(i) The sequence of polynomials P(Gn; X̄) satisfies some recurrence relation.

(ii) Each Gn is P-unique.

Then YP,C is characterized algebraically by the property: H is isomorphic to Gn

iff P(H ; X̄) = P(Gn; X̄). This can be checked using the recurrence relations.

One can also formulate an analogue of this theorem for families of graphs
Gn1,...,nk

depending on k indices.
We look also at the following indexed families of graphs:

13



Wn: The wheels Cn ⊲⊳ K1.

Ln: The ladders Ln = Cn ×K2.

Mn: The Möbius ladders Mn are obtained from C2n by connecting any pair of
opposite vertices.

C2
n: The square of the cycle Cn obtained by connecting any two vertices of

distance two.

Gridn,m: The square grids of size (n×m).

For a graph polynomial P, an indexed family Gn of graphs is P-recursive if
the sequence of polynomials P(Gn; X̄) is C-finite. Using the main theorem
from [FM08] one can prove the following for indexed families of graphs Gn of
bounded tree-width.

Theorem 4.9. Let m0 be fixed. The families Pn, Cn, Gridn,m0
,Wn, Ln,Mn, C

2
n

are all C-finite for the graph polynomials pchar, µ, χ, and T .

Remark 4.10. 1. Actually, the sequences from Theorem 4.9 are C-finite for
every graph polynomial definable in Monadic Second Order Logic (MSOL),
such as the independence polynomial, [LM05], and the edge elimination
polynomial ξ(G;X,Y, Z), [TAM11]. However, we do not want in this pa-
per to get involved with definability theory or the formalisms of (Monadic)
Second Order Logic, i.e., we want to keep it logic-free.

2. The way Theorem 4.9 is stated, it is non-constructive, because it does not
say anything about the form of the recurrence relation. It only asserts
C-finiteness, without giving the coefficients or the depth of the recursion.

3. The results of [FM08] cannot be applied to Kn,Kn,n because the sequences
of graphs Kn,Kn,n have unbounded tree-width. In fact the resulting fam-
ilies of chromatic and Tutte polynomials are not C-finite, [BDS72]. In
general, linear recurrence relations for a sequence of polynomials where
the coefficients depend on n are not C-finite, because the coefficients may
grow too fast.

The following is folklore for the chromatic polynomial and due to I. Gessel
[Ges95] for the Tutte polynomial.

Theorem 4.11. The families Kn,Kn,n satisfy recurrence relations with the
coefficients depending on n for the chromatic and Tutte polynomials:

χ(Kn;X) = (X − n+ 1) · χ(Kn−1;X)

T (Kn;X,Y ) =

n
∑

k=1

(

n− 1

k − 1

)

(X+Y+Y 2+. . .+Y k−1)·T (Kn; 1, Y )·T (Kn−k : X,Y )

and similar for Kn,n.
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4.4. The chromatic and the Tutte polynomials

To give further applications of Theorem 4.8 we collect some results from
[DKT05, dMN04] on χ-unique and T -unique graphs.

Theorem 4.12. 1. Let tm be a tree on m edges. Then T (tm;X) = Xm.
Hence the paths Pn are neither χ-unique nor T -unique.

2. Cn,Kn,Kn,m are all χ-unique, hence T -unique.

3. Wn, Ln,Mn and C2
n are T -unique but not χ-unique.

Now, Theorem 4.12 allows us to give more algebraic characterizations us-
ing recurrence relations for these sequences via the chromatic and the Tutte
polynomial.

5. Distinctive power

5.1. s.d.p.-equivalence and d.p-equivalence of graph properties

A class of graphs S which consists of all graphs having the same number of
vertices, edges and connected components is called a similarity class.

Let C be a graph property. Two graphs G,H are C-equivalent if either both
are in C or both are not in C. We denote by C̄ the graph property G − C.

Therefore we have:

Proposition 5.1. (i) Two graph properties C1 and C2 are d.p.-equivalent iff
either C1 = C2 or C1 = C̄2.

(ii) Two graph properties C1 and C2 are s.d.p.-equivalent iff for every similarity
class S either C1 ∩ S = C2 ∩ S or C1 ∩ S = C̄2 ∩ S.

Proof. (i): It is straightforward that if C2 = C1 or C2 = C̄1 then C1 and C2 are
d.p.-equivalent.
For the other direction, we prove first that C1 ⊆ C2 or C1 ⊆ C̄2.
By a symmetrical argument, we then prove also C2 ⊆ C1 or C2 ⊆ C̄1, C̄1 ⊆ C2 or
C̄1 ⊆ C̄2 and C̄2 ⊆ C1 or C̄2 ⊆ C̄1. Now the result follows.
(ii): Fix S. The proof is the same but relativized to S.

Remark 5.2. If C1 and C2 are s.d.p.-equivalent it is possible that for a similarity
class S we have C1 ∩ S = C2 ∩ S but for another similarity class S ′ we have
C1 ∩ S ′ = C̄2 ∩ S ′.

Proposition 5.3. (i) Let C1 and C2 be two graph properties. Assume that
both C1 and C2 are not empty and do not contain all finite graphs, and
that C1 6= C2 and C1 6= C̄2. Then C1 and C2 are d.p.-incomparable, i.e.,
C1 6≤d.p. C2 and C2 6≤d.p. C1.

(ii) Let C1 and C2 be two graph properties. Assume there is a similarity class
S such that both C1 ∩ S and C2 ∩ S are not empty and do not contain all
finite graphs in S, and that C1 ∩S 6= C2 ∩S and C1 ∩S 6= C̄2 ∩S. Then C1
and C2 are s.d.p.-incomparable, i.e., C1 6≤s.d.p. C2 and C2 6≤s.d.p. C1.

15



Proof. We prove only (i) and leave the proof of (ii) to the reader. Assume
G1 ∈ (C1 − C2), G2 ∈ (C2 − C1) and G3 ∈ C1 ∩ C2, the other cases being similar.
Then G2, G3 ∈ C2. If C1 ≤d.p. C2, we would have that both G2, G3 ∈ C1, or both
G2, G3 6∈ C1, a contradiction.

In the next two subsections we look at graph polynomials, which are either
generating functions, or count colorings which, in both cases, solely depend on
a graph property C.

5.2. Graph polynomials as generating functions

Let C be a graph property, and D be a graph property closed under adding
and removal isolated vertices. Recall from Section 2 the definitions

Pind
C (G;X) =

∑

A⊆V :G[A]∈C

X |A| and Pspan
D (G;X) =

∑

B⊆E:G〈B〉∈D

X |B|.

Let |V (G)| = n(G) and |E(G)| = m(G).

Proposition 5.4. (i) C ≤d.p. P
ind
C (G;X) and

(ii) D ≤d.p. P
span
D (G;X).

Proof. (i) follows from the fact that G ∈ C iff the coefficient of Xn(G) in
Pind

C (G;X) does not vanish.
Similarly, (ii) follows from the fact that G ∈ C iff the coefficient of Xm(G) in
Pspan

C (G;X) does not vanish.

From Lemma 2.1 we get immediately:

Corollary 5.5. (i) C ≤s.d.p. P
ind
C (G;X) and

(ii) D ≤s.d.p. P
span
D (G;X).

Proposition 5.6. With |V (G)| = n(G) and |E(G)| = m(G) we have:

(i) Pind
C (G;X) +Pind

C̄
(G;X) = (1 +X)n(G)

(ii) Pspan
D (G;X) +Pspan

D̄
(G;X) = (1 +X)m(G)

Proof. (i): Put

ci(G) = |{A ⊆ V (G) : |A| = i, G[A] ∈ C}|

and
c̄i(G) = |{A ⊆ V (G) : |A| = i, G[A] 6∈ C}|.

Clearly,

ci(G) + c̄i(G) =

(

n(G)

i

)

,

hence
n(G)
∑

i=0

(ci(G) + c̄i(G))X i = (1 +X)n(G).

(ii) is similar, but we need that for a set of edges A ⊆ E(G) the spanning
subgraph G〈A〉 = (V (G), A) ∈ D iff V (A), A) ∈ D, where V (A) = {v ∈ V (G) :
there is u ∈ V (G) with (u, v) ∈ A}.
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Proposition 5.7. Let C1 and C2, D1 and D2 be graph properties such that C1
and C2 and D1 and D2 are pairwise d.p.-equivalent,

(i) Pind
C1

(G;X) and Pind
C2

(G;X) are s.d.p.-equivalent;

(ii) If, additionally, D1 and D2 are closed under the addition and removal of
isolated vertices, then Pspan

D1
(G;X) and Pspan

D2
(G;X) are s.d.p.-equivalent;

Proof. We prove only (i), (ii) is proved analogously.
(i): We use Proposition 5.1. If C1 = C2, clearly, Pind

C1
(G;X) = Pind

C2
(G;X),

hence they are d.p.-equivalent. If C1 = C̄2, we use Proposition 5.6 together with
Proposition 2.2. But Proposition 5.6 depends on the n(G), hence we get only
that Pind

C1
(G;X)andPind

C2
(G;X) are s.d.p.-equivalent.

Let Gn be an indexed sequence of graphs such that the sequence of poly-
nomials X |V (Gn)| is C-finite. This assumption is true for all the examples from
Section 4.3, and in particular for Theorem 4.5, provided the function |V (Gn)|
is linear in n. We shall now show that C-finiteness of the sequences of polyno-
mials Pind

C (Gn;X) of Theorem 4.5 is a semantic property graph polynomials as
generating functions. However, the particular form of the recurrence relation is
not.

Theorem 5.8. Let C1 and C2, D1 and D2 be graph properties such that C1 and C2
and D1 and D2 are pairwise d.p.-equivalent, and let Gn be an indexed sequence
of graphs. Furthermore, assume that the sequence of polynomials X |V (Gn)| is
C-finite. Then

(i) Pind
C1

(Gn; X̄) is C-finite iff Pind
C2

(Gn; X̄) is C-finite.

(ii) Pspan
D1

(Gn; X̄) is C-finite iff Pspan
D2

(Gn; X̄) is C-finite;

Proof. This follows in both cases from the fact that the sum and difference of
two C-finite sequences is again C-finite together with Proposition 5.6.

5.3. Generalized chromatic polynomials

Recall from the introduction the definition of χC(G; k) as the number of
colorings of G with at most k colors such that each color class induces a graph
in C.

Theorem 5.9 (J. Makowsky and B. Zilber, cf. [KMZ11]). χC(G; k) is a poly-
nomial in k for any graph property C.

In contrast to Proposition 5.6 the relationship between χC(G; k) and χC̄(G; k)
is not at all obvious.

Problem 6. What can we say about χC̄(G; k) in terms of χC(G; k)?

Proposition 5.10. There are two classes C1 and C2 which are d.p.-equivalent
but such that χC1

and χC2
are not d.p.-equivalent.
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Proof. Let C1 be all the disconnected graphs and Let C2 be all the connected
graphs. As they are complements of each other, they are d.p.-equivalent.
We compute for Ki:

χC1
(Ki; j) = 0, j ∈ N+

because there is no way to partition Ki into any number of disconnected parts.
Hence χC1

(Ki;X) = 0.
χC2

(Ki; 2) = 2i − 2

because every partion ofKi into two nonempty parts gives two connected graphs.
Therefore χC2

distinguishes between cliques of different size, whereas χC1
does

not.

We note, however, that the analogue of Proposition 5.7 for generalized chro-
matic polynomials remains open.

5.4. d.p.-equivalence of graph polynomials

The converse of Theorem 5.7(i) and (ii) is not true:

Proposition 5.11. There are graph properties C1 and C2 which are not d.p.-
equivalent, but such that

(i) Pind
C1

(G;X) and Pind
C2

(G;X) are d.p.-equivalent.

(ii) χC1
(G;X) and χC2

(G;X) are d.p.-equivalent.

Proof. For (i) Let C1 = {K1} and C2 = {K2, E2} where En is the graph on n

vertices and no edges.
We compute:

Pind
C1

(G;X) = n(G) ·X

Pind
C2

(G;X) =

(

n(G)

2

)

·X2

For (ii) we choose C1 = {K1} as before, but C2 = {K1,K2, E2}.
Claim 1: χC2

(G,X) ≤d.p. n(G)
Proof of Claim 1: Let G1 and G2 be two graphs with the same number of ver-
tices. W.l.o.g. assume they have the same vertex set V (G1) = V (G2) = V .
Now notice for every f : V → [k], f is a C2-coloring of G1 iff it is a f is a
C2-coloring of G2. Hence χC2

(G1, X) = χC2
(G2, X) whenever G1 and G2 have

the same number of vertices.
Claim 2: n(G) ≤d.p. χC2

(G,X)

Proof of Claim 2: First denote for every m, neven(m) =
∏m−1

i=0

(

2(m−i)
2

)

and

nodd(m) =
∏m−1

i=0

(

2(m−i)+1
2

)

. For every graph G, there is a natural number
m(G) such that n(G) = 2m(G) or n(G) = 2m(G) + 1. If n(G) = 2m(G),
χC2

(G,m(G)) = neven(m(G)). If n(G) = 2m(G)+1, χC2
(G,m(G)) = nodd(m(G)).

Note nodd(r) > neven(r) for every natural number r. The minimal natural num-
ber r such that χ(G, r) > 0 is equal to m(G). We get that the minimal r such
that χC2

(G, r) > 0 determines n(G). Hence χC1
and χC2

are d.p.-equivalent.
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We leave it to the reader to construct the corresponding counterexample for
Pspan

D (G;X).
We cannot use Proposition 5.3 to show that there infinitely many d.p.-

incomparable graph polynomials of the form Pind
C (G;X). However, we can

construct explicitly infinitely many d.p.-incomparable graph polynomials of this
form.

5.5. Many d.p.-inequivalent graph polynomials

For the rest of this section, let Ci be the undirected circle on i vertices, and
C∗

i the graph which consists of a copy of Ci−1 together with a new vertex v

which is connected to exactly one of the vertices of Ci−1. Clearly, Ci and C∗
i

are similar. Furthermore, let Ci = {Ci}, and let Gk
i consist of the disjoint union

of k-many copies of Ci, and let Ĝk
i consist of the disjoint union of k − 1 copies

of C∗
i together with one copy of Ci. Again, Ĝ

k
i and Gk

i are similar.
We compute:

Lemma 5.12.

Pind
Cj

(Gk
i ;X) = Pind

Cj
(Ĝk

i ;X) = 0 for i 6= j, i 6= j + 1, (i)

Pind
Ci

(Gk
i ;X) = k ·X i (ii)

Pind
Ci

(Ĝk
i ;X) = X i (iii)

Theorem 5.13. For all i, j with i 6= j and i 6= j + 1 the polynomials Pind
Ci

and

Pind
Cj

are d.p.-incomparable, hence there are infinitely many d.p.-inequivalent

graph polynomials of the form Pind
C (G;X).

Proof. Assume i, j ≥ 3 with i 6= j and i 6= j+1. We first prove Pind
Ci

6<d.p. P
ind
Cj

for i 6= j and i 6= j + 1.
We look at the graphs G2

j and Ĝ2
j . Pind

Cj
(G2

j ;X) = 2 · X i by Lemma 5.12(ii).

Pind
Cj

(Ĝ2
j ;X) = X i by Lemma 5.12(iii). Hence, Pind

Cj
distinguishes between the

two graphs G2
j and Ĝ2

j . However, Pind
Ci

(G2
j ;X) = Pind

Ci
(Ĝ2

j ;X) = 0, by Lemma

5.12(i). Hence, Pind
Ci

does not distinguish between the two graphs.

To prove Pind
Cj

6<d.p. P
ind
Ci

for j 6= i and j 6= i + 1. we look at the graphs G2
i

and Ĝ2
i . In this case Pind

Cj
does not distinguish between the two graphs G2

i and

Ĝ2
i , but P

ind
Ci

does.

Theorem 5.14. There are infinitely many d.p.-inequivalent graph polynomials
of the form Pspan

C (G;X).

Proof. The proof mimics the proof of Theorem 5.13 with following changes:
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Instead of Ci we use Di = {Ci ⊔Ej : j ∈ N} and

Pspan
Cj

(Gk
i ;X) = 0 for i 6= j, i 6= j + 1

Pspan
Ci

(Gk
i ;X) = k ·X i.

Pspan
Cj

(Ĝk
i ;X) =

{

0 i 6= j, i 6= j + 1

(k − 1) ·Xj i = j + 1

Pspan
Ci

(Ĝk
i ;X) = X i.

Next we look at chromatic polynomials χi(G;X) = χCi
(G;X). We use the

following obvious lemma:

Lemma 5.15. (i) For X = λ ∈ N:

χi(G
k
i ;λ) =

{

λ(k) λ ≥ k

0 else

(ii)
χj(G

k
i , λ) = 0

provided that i 6= j.

(iii)
χj(Ĝ

k
i , λ) = 0

provided that k ≥ 2 or k = 1, i 6= j.

Theorem 5.16. For all i 6= j the polynomials χi and χj are d.p.-incomparable,
hence there are infinitely many d.p.-incomparable graph polynomials of the form
χC.

Proof. χi 6≤d.p. χj:

We look at the graphs G2
i and Ĝ2

i . By Lemma 5.15 χj does not distinguish

between G2
i and Ĝ2

i . However, χi distinguishes between them.

To show that χj 6≤d.p. χi, we look at the graphs G2
j and Ĝ2

j . By Lemma

5.15 χi does not distinguish between G1
j and G2

j . However, χj does distinguish
between them.

5.6. Generating functions of a relation

If, instead of counting induced (spanning) subgraphs with a certain graph
property C (D), we count r-ary relations with a property Φ(A), we get a gen-
eralization of both the generating functions of induced (spanning) subgraphs.
Here the summation is defined by

PΦ(G;X) =
∑

A⊆E(G):Φ(A)

X |A|.
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For example, the generating matching polynomial, defined as

m(G;X) =
∑

A⊆E(G):Φmatch(A)

X |A|.

can be written as

m(G;X) =
∑

A⊆E(G):G〈A〉∈Dmatch

X |A|

with Dmatch being the disjoint union of isolated vertices and isolated edges.
However, not every graph polynomial PΦ(G;X) can be written as a gener-

ating function of induced (spanning) subgraphs.
Consider the graph polynomial

DOM(G;X) =
∑

A⊆V (G):Φdom(A)

X |A|

where Φdom(A) says that A is a dominating set of G.
We compute:

DOM(K2, ;X) = 2X +X2 (1)

DOM(E2, ;X) = X2 (2)

Theorem 5.17. (i) There is no graph property C such that

DOM(G;X) = Pind
C (G;X).

(ii) There is no graph property D such that

DOM(G;X) = Pspan
D (G;X).

Proof. (i): Assume, for contradiction, there is such a C, and that K1 ∈ C. The
coefficient of X in Pind

C (E2;X) is 2 because K1 ∈ C. However, the coefficient of
X in DOM(E2;X) is 0, by equation (2), a contradiction.

Now, assume K1 6∈ C. The coefficient of X in Pind
C (K2;X) is 0, because

K1 6∈ C. However, the coefficient of X in DOM(K2;X) is 2, by equation (1),
another contradiction.

(ii): Assume, for contradiction, there is such a D. The coefficient of X in
Pspan

D (K2;X) is ≤ 1, because K2 has only one edge. However, the coefficient of
X in DOM(K2;X) is 2, by equation (1), a contradiction.

We can use Equation (1) also to show the following:

Theorem 5.18. There is no graph property C such that

DOM(G;X) = χC(G;X).
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Proof. First we note that χC(G; 1) = 1 iff χC(G; 1) 6= 0 iff G ∈ C.
Assume that K2 ∈ C. Then we have, using Equation (1),

χC(K2; 1) = 1 = DOM(K2, 1) = 3,

a contradiction.
Assume that K2 6∈ C. then we have, using Equation (1),

χC(K2; 1) = 0 = DOM(K2, 1) = 3,

another contradiction.

5.7. Determinant polynomials

There are only two matrices associated with graphs which have been used
to define graph polynomials: the adjacency matrix and the Laplacian. The two
resulting determinant polynomials are d.p.-incomparable. It is conceivable to
to define other matrix presentations of graphs, and ask when they give rise to
d.p.-equivalent determinant polynomials. The characterization and recognition
problem in this case amounts to the question when the characteristic polynomial
of a matrix is the the characteristic polynomial arising from a graph. However,
in this paper we do not pursue this further.

5.8. Characterizing d.p.-equivalence for special classes of graph polynomials

Theorems 5.7 and Proposition 5.10 and Proposition 5.11 show that d.p.-
equivalence of C and C1, respectively D and D1, is not enough to characterize
d.p.-equivalence of generating functions or generalized chromatic polynomials
defined by C and D. Sometimes d.p.-equivalence of graph properties only implies
and s.d.p.-equivalence of the corresponding graph polynomials.

Problem 7. Characterize d.p.-equivalence of graph polynomials arising from C
and D as

1. generalized chromatic polynomials;

2. generating functions of induced are spanning subgraphs;

3. generating functions of relations.

6. Conclusions and open problems

In the light of our general framework to study Wilf’s characterization and
recognition problems for graph graph polynomials, we have shown how to char-
acterize the instances of a graph polynomial P(G; X̄) of various indexed se-
quences of graphs Gi or Gi,j using C-finite sequences of polynomials on Z[X̄ ].
Our method works for many graph polynomials and indexed sequences of graphs
as described in the general framework of [FM08], provided that each graph in
the indexed sequence is P-unique. This improves the characterization of the
instances of the defect matching polynomial given in [GG81], and generalizes
it to infinitely many other graph polynomials and indexed sequences of graphs.
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It also shows that for graph polynomials given as generating functions of in-
duced or spanning subgraphs with a given property, C-finiteness is a semantic
property. It remains unclear, whether this also applies to generalized chromatic
polynomials.

However, this approach to the algebraic characterization of graph proper-
ties, as envisaged by the late Herbert Wilf in [Wil73], is just a very small step
forward. The characterization of the polynomials which are instances of the
prominent graph polynomials, the matching, chromatic or characteristic poly-
nomials, remains wide open.

In the final section we also briefly discussed whether and when such a char-
acterization found for a graph polynomial P sheds light on other graph polyno-
mials which are d.p.- or s.d.p-equivalent to P. In forthcoming paper we shall
discuss d.p.- or s.d.p-equivalence of graph polynomials from a logical point of
view, [KMR17].
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homomorphism numbers. arXiv:1308.3999 [math.CO], 2013.

[GHK+17] A. Goodall, M. Hermann, T. Kotek, J.A. Makowsky, and S.D. No-
ble. On the complexity of generalized chromatic polynomials. arXiv
http://arxiv.org/abs/1701.06639, 2017.
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