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Abstract

We say a family of subsets of {1, 2, . . . , n} is antipodal if it is closed
under taking complements. We prove a best-possible isoperimetric in-
equality for antipodal families of subsets of {1, 2, . . . , n} (of any size).
Our inequality implies that for any k ∈ N, among all such families of size
2k, a family consisting of the union of two antipodal (k − 1)-dimensional
subcubes has the smallest possible edge boundary.

1 Introduction

Isoperimetric questions are classical objects of study in mathematics. In general,
they ask for the minimum possible ‘boundary-size’ of a set of a given ‘size’, where
the exact meaning of these words varies according to the problem.

The classical isoperimetric problem in the plane asks for the minimum pos-
sible perimeter of a shape in the plane with area 1. The answer, that it is best
to take a circle, was ‘known’ to the ancient Greeks, but it was not until the 19th
century that this was proved rigorously, by Weierstrass in a series of lectures in
the 1870s in Berlin.

The isoperimetric problem has been solved for n-dimensional Euclidean
space En, for the n-dimensional unit sphere Sn := {x ∈ Rn+1 :

∑n+1

i=1
x2
i = 1},

and for n-dimensional hyperbolic space Hn (for all n), with the natural notion of
boundary in each case, corresponding to surface area for sufficiently ‘nice’ sets.
(For background on isoperimetric problems, we refer the reader to the book of
Burago and Zalgaller [2], the surveys of Osserman [6] and of Ros [8], and the
references therein.) One of the most well-known open problems in the area is
to solve the isoperimetric problem for n-dimensional real projective space RP

n,
or equivalently for antipodal subsets of the n-dimensional sphere Sn. (We say a
subset A ⊆ Sn is antipodal if A = −A.) The conjecture can be stated as follows.

Conjecture 1. Let n ∈ N with n ≥ 2, and let µ denote the n-dimensional

Hausdorff measure on Sn. Let A ⊆ Sn be open and antipodal. Then there exists
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a set B ⊆ Sn such that µ(B) = µ(A), σ(B) ≤ σ(A), and

B = {x ∈ S
n :

r
∑

i=1

x2
i > a}

for some r ∈ [n] and some a ∈ R.

Here, if A ⊆ Sn is an open set, then σ(A) denotes the surface area of A, i.e.
the (n− 1)-dimensional Hausdorff measure of the topological boundary of A.

Only the cases n = 2 and n = 3 of Conjecture 1 are known, the former being
‘folklore’ and the latter being due to Ritoré and Ros [7]. In this paper, we prove
a discrete analogue of Conjecture 1.

First for some definitions and notation. If X is a set, we write P(X) for
the power-set of X . For n ∈ N, we write [n] := {1, 2, . . . , n}, and we let Qn

denote the graph of the n-dimensional discrete cube, i.e. the graph with vertex-
set P([n]), where x and y are joined by an edge if |x∆y| = 1. If A ⊆ P([n]), we
write ∂A for the edge-boundary of A in the discrete cube Qn, i.e. ∂A is the set
of edges of Qn which join a vertex in A to a vertex outside A. We write e(A)
for the number of edges of Qn which have both end-vertices in A. We say that
two families A,B ⊆ P([n]) are isomorphic if there exists an automorphism σ of
Qn such that B = σ(A). Clearly, if A and B are isomorphic, then |∂A| = |∂B|.

The binary ordering on P([n]) is defined by x < y iff max(x∆y) ∈ y. An
initial segment of the binary ordering on P([n]) is the set of the first k (smallest)
elements of P([n]) in the binary ordering, for some k ≤ 2n. For any k ≤ 2n, we
write In,k for the initial segment of the binary ordering on P([n]) with size k.

Harper [3], Lindsay [5], Bernstein [1] and Hart [4] solved the edge isoperi-
metric problem for Qn, showing that among all subsets of P([n]) of given size,
initial segments of the binary ordering on P([n]) have the smallest possible
edge-boundary.

In this paper, we consider the edge isoperimetric problem for antipodal sets
in Qn. If x ⊆ [n], we define x := [n] \ x, and if A ⊆ P([n]), we define A := {x :
x ∈ A}. We say a family A ⊆ P([n]) is antipodal if A = A. This notion is of
course the natural analogue in the discrete cube of antipodality in Sn; indeed,
identifying P([n]) with {−1, 1}n ⊆ √

n · Sn−1 ⊆ Rn in the natural way, x 7→ x
corresponds to the antipodal map v 7→ −v.

We prove the following best-possible edge isoperimetric inequality for an-
tipodal families.

Theorem 2. Let A ⊆ P([n]) be antipodal. Then

|∂A| ≥ |∂(In,|A|/2 ∪ In,|A|/2)|.

We remark that Theorem 2 implies that if A ⊆ P([n]) is antipodal with
|A| = 2k for some k ∈ [n − 1], then |∂A| ≥ |∂(Sk−1 ∪ Sk−1)|, where Sk−1 :=
In,2k−1 = {x ⊆ [n] : x ⊆ [k−1]} is a (k−1)-dimensional subcube. In other words,
a union of two antipodal subcubes has the smallest possible edge-boundary, over
all antipodal sets of the same size.
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To prove Theorem 2, it will be helpful for us to rephrase it slightly. Firstly,
observe that for any A ⊆ P([n]), we have ∂(Ac) = ∂A, and that for any k ≤
2n−1, the family (In,k∪In,k)c is isomorphic to the family In,2n−1−k∪In,2n−1−k,
via the isomorphism x 7→ x∆{n}. Hence, by taking complements, it suffices to
prove Theorem 2 in the case |A| ≤ 2n−1.

Secondly, for any family A ⊆ P([n]), we have

2e(A) + |∂A| = n|A|, (1)

so Theorem 2 is equivalent to the statement that if A ⊆ P([n]) is antipodal,
then

e(A) ≤ e(In,|A|/2 ∪ In,|A|/2).

Note also that if B is an initial segment of the binary ordering on P([n]) with
|B| ≤ 2n−2, then B ⊆ {x ⊆ [n] : x ∩ {n − 1, n} = ∅} and B ⊆ {x ⊆ [n] :
{n− 1, n} ⊆ x}, so B ∩ B = ∅ and e(B,B) = 0. Moreover, it is easy to see that
B is isomorphic to B, and therefore e(B) = e(B). Hence,

e(B ∪ B) = e(B) + e(B) = 2e(B).

If k, n ∈ N with k ≤ 2n, we write F (k) := e(In,k). (It is easy to see that
F (k) is independent of n.) Putting all this together, we see that Theorem 2 is
equivalent to the following:

e(A) ≤ 2F (|A|/2) ∀A ⊆ P([n]) : |A| ≤ 2n−1, A is antipodal. (2)

Now for a few words about our proof. In the special cases of |A| = 2n−1 and
|A| = 2n−2, Theorem 2 can be proved by an easy Fourier-analytic argument,
but it is fairly obvious that this argument has no hope of proving the theorem
for general set-sizes. Our proof of Theorem 2 is purely combinatorial; we prove
a stronger statement by induction on n. Our aim is to do induction on n in
the usual way: namely, by choosing some i ∈ [n] and considering the upper and
lower i-sections of A, defined respectively by

A+

i := {x ∈ P([n] \ {i}) : x ∪ {i} ∈ A}, A−
i := {x ∈ P([n] \ {i}) : x ∈ A}.

However, a moment’s thought shows that an i-section of an antipodal family
need not be antipodal. For example, if A = Sk−1 ∪ Sk−1 (a union of two
antipodal (k − 1)-dimensional subcubes), then for any i ≥ k, the i-section A−

i

consists of a single (k−1)-dimensional subcube, which is not an antipodal family.
This rules out an inductive hypothesis involving antipodal families.

Hence, we seek a stronger statement, about arbitrary subsets of P([n]); one
which we can prove by induction on n, and which will imply Theorem 2. It turns
out that the right statement is as follows. For any A ⊆ P([n]) (not necessarily
antipodal), we define

f(A) := 2e(A) + |A ∩ A|.
To prove Theorem 2, it suffices to prove the following.
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Theorem 3. For any n ∈ N and any A ⊆ P([n]) with |A| ≤ 2n−1, we have

f(A) ≤ 2F (|A|). (3)

Indeed, assume that Theorem 3 holds. Let A ⊆ P([n]) be antipodal with

|A| ≤ 2n−1. We have A−
n = A+

n and |A+
n | = |A|/2 ≤ 2n−2, and so

e(A) = e(A+
n ) + e(A−

n ) + |A+
n ∩ A−

n | = e(A+
n ) + e(A+

n ) + |A+
n ∩ A+

n |
= 2e(A+

n ) + |A+
n ∩ A+

n | = f(A+
n ) ≤ 2F (|A+

n |) = 2F (|A|/2),

implying (2) and so proving Theorem 2.
Note that the function f takes the same value (namely, k2k) when A is

a k-dimensional subcube, as when A is the union of two antipodal (k − 1)-
dimensional subcubes. This is certainly needed in order for our inductive ap-
proach to work, by our above remark about the i-sections of the union of two
antipodal subcubes.

We prove Theorem 3 in the next section; in the rest of this section, we gather
some additional facts we will use in our proof.

We will use the following lemma of Hart from [4].

Lemma 4. For any x, y ∈ N ∪ {0}, we have

F (x+ y)− F (x) − F (y) ≥ min{x, y}.

Equality holds if y is a power of 2 and x ≤ y.

We will also use the following easy consequence of Lemma 4.

Lemma 5. Let x, y ∈ N ∪ {0} and let n ∈ N such that x + y ≤ 2n, y ≥ 2n−1

and y ≤ 2n−1 + x. Then

F (x+ y)− F (y)− F (x)− y + 2n−1 ≥ x.

Proof. Write z := y − 2n−1; then z ≤ x and x+ z ≤ 2n−1. We therefore have

F (x+ y)− F (y)− F (x)− y + 2n−1 = F (2n−1 + x+ z)− F (2n−1 + z)− F (x)− z

= F (2n−1) + F (x+ z) + x+ z

− F (2n−1)− F (z)− z − F (x) − z

= F (x+ z)− F (x)− F (z) + x− z

≥ min{x, z}+ x− z

= x,

where the last inequality uses Lemma 4.

We also need the following lemma, which says that for any familyA ⊆ P([n]),
one coordinate from every pair of coordinates is such that the upper and lower
sections of A corresponding to that coordinate are ‘somewhat’ close in size.
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Lemma 6. Let n ∈ N with n ≥ 2, and let A ⊆ P([n]). Then for any 1 ≤ i <
j ≤ n, we have

min{
∣

∣|A+

i | − |A−
i |
∣

∣ ,
∣

∣|A+

j | − |A−
j |
∣

∣} ≤ 2n−2.

Proof. Without loss of generality, by considering {A∆S : A ∈ A} for some S ⊆
{i, j}, we may assume that |A+

i | ≤ |A−
i | and that |A+

j | ≤ |A−
j |. Interchanging

i and j if necessary, we may assume that |(A−
i )

+

j | ≥ |(A+

i )
−
j |. Then we have

0 ≤ |A−
j | − |A+

j | = |(A−
i )

−
j |+ |(A+

i )
−
j | − |(A−

i )
+

j | − |(A+

i )
+

j |
≤ |(A−

i )
−
j | − |(Ai)

+)+j |
≤ |(A−

i )
−
j |

≤ 2n−2,

proving the lemma.

We also need the following.

Lemma 7. Let n ∈ N and let C,D ⊆ P([n]). Then

2|C ∩ D|+ 2|C ∩ D| ≤ |C ∩ C|+ |D ∩ D|+ 2min{|C|, |D|}. (4)

Proof. Note that both sides of the above inequality are invariant under inter-
changing C and D, so it suffices to prove the lemma in the case |C| ≤ |D|. By
inclusion-exclusion, we have

2|C ∩ D|+ 2|C ∩ D| = 2|C ∩ (D ∪ D)|+ 2|C ∩ (D ∩ D)| ≤ 2|C|+ 2|C ∩ (D ∩D)|,
so it suffices to prove that

2|C ∩ (D ∩ D)| ≤ |C ∩ C|+ |D ∩ D|.
Writing E = D ∩ D, it suffices to prove that for any antipodal set E ⊆ P([n]),
and any set C ⊆ P([n]), we have

2|C ∩ E| ≤ |C ∩ C|+ |E|.
This follows immediately from inclusion-exclusion again; indeed, we have

2|C∩E| = |C∩E|+|C∩E| = |C∩E|+|C∩E| = |(C∩C)∩E|+|(C∪C)∩E| ≤ |C∩C|+|E|,
whenever E is antipodal.

Finally, we note that for any A ⊆ P([n]), we have

f(Ac) = 2e(Ac) + |Ac ∩ Ac| = n|Ac| − |∂(Ac)|+ |Ac ∩ Āc|
= n|A|+ n(|Ac| − |A|)− |∂A|+ |(A ∪A)c|
= n|A| − |∂A|+ n(2n − 2|A|) + 2n − |A ∪ A|
= 2e(A) + n(2n − 2|A|) + 2n − 2|A|+ |A ∩ A|
= f(A) + 2(n+ 1)(2n−1 − |A|). (5)
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Moreover, using (1) and the fact that (In,k)c is isomorphic to In,2n−k, we have

2F (k)− 2F (2n − k) = kn− ∂(In,k)− ((2n − k)n− ∂((In,k)c))
= kn− ∂(In,k)− ((2n − k)n− ∂(In,k))
= (2k − 2n)n (6)

for any k ≤ 2n. It follows from (5) and (6), by taking complements, that
Theorem 3 is equivalent to the inequality

f(A) ≤ 2F (|A|) + 2|A| − 2n ∀A ⊆ P([n]) : |A| ≥ 2n−1. (7)

2 Proof of Theorem 3

Our proof is by induction on n. The base case n = 1 of Theorem 3 is easily
checked. We turn to the induction step. Let n ≥ 2, and assume that Theorem
3 holds when n is replaced by n− 1. Let A ⊆ P([n]) with |A| ≤ 2n−1. Observe
that for any i ∈ [n], we have

f(A) = 2e(A) + |A ∩ A|
= 2e(A+

i ) + 2e(A−
i ) + 2|A+

i ∩A−
i |+ |A+

i ∩ A−
i |+ |A−

i ∩A+

i |
= 2e(A+

i ) + 2e(A−
i ) + 2|A+

i ∩A−
i |+ 2|A+

i ∩A−
i |. (8)

We now split into two cases.
Case 1. Firstly, suppose that there exists i ∈ [n] such that max{|A+

i |, |A−
i |} ≤

2n−2. Without loss of generality, we may assume that this holds for i = n, i.e.
that max{|A+

n |, |A−
n |} ≤ 2n−2. We may also assume that |A+

n | ≤ |A−
n |. Then,

defining C := A+
n ⊆ P([n − 1]) and D := A−

n ⊆ P([n − 1]), and invoking (8)
with i = n, we have

f(A) = 2e(C) + 2e(D) + 2|C ∩ D|+ 2|C ∩ D|
= f(C) + f(D)− |C ∩ C| − |D ∩ D|+ 2|C ∩ D|+ 2|C ∩ D|. (9)

We now apply the induction hypothesis to C and D. Since |C| ≤ |D| ≤ 2n−2,
we may apply (3), obtaining f(C) ≤ 2F (|C|) and f(D) ≤ 2F (|D|). Substituting
the last two inequalities into (9), we obtain

f(A) ≤ 2F (|C|) + 2F (|D|) + 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D|
= 2F (|C|+ |D|) −

(

2F (|C|+ |D|)− 2F (|C|)− 2F (|D|)
)

+ 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D|
≤ 2F (|A|) + 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D| − 2min{|C|, |D|}
= 2F (|A|) + 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D| − 2|C|
≤ 2F (|A|),
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where the second inequality follows from Lemma 4, and the third inequality
follows from Lemma 7. This completes the induction step in Case 1.

Case 2. Secondly, suppose that Case 1 does not occur, i.e. that max{|A+

j |, |A−
j |} >

2n−2 for all j ∈ [n]. By Lemma 6, there exists i ∈ [n] such that
∣

∣|A+

i | − |A−
i |
∣

∣ ≤
2n−2, and therefore

2n−2 < max{|A+

i |, |A−
i |} ≤ min{|A+

i |, |A−
i |}+ 2n−2.

Without loss of generality, we may assume that this holds for i = n, and that
|A+

n | ≤ |A−
n |, so that

2n−2 < |A−
n | ≤ 2n−2 + |A+

n |.
Defining C := A+

n ⊆ P([n − 1]) and D := A−
n ⊆ P([n − 1]) as before, and

invoking (8) with i = n, we have

f(A) = 2e(C) + 2e(D) + 2|C ∩ D|+ 2|C ∩ D|
= f(C) + f(D)− |C ∩ C| − |D ∩ D|+ 2|C ∩ D|+ 2|C ∩ D|. (10)

Now, since |C| ≤ |D|, we have 2|C| ≤ |C| + |D| = |A| ≤ 2n−1 and therefore
|C| ≤ 2n−2. On the other hand, we have |D| > 2n−2. Applying the induction
hypothesis to C and D (using (3) for C and (7) for D), we obtain f(C) ≤ 2F (|C|)
and f(D) ≤ 2F (|D|)+ 2|D|− 2n−1; substituting these two inequalities into (10)
yields

f(A) ≤ 2F (|C|) + 2F (|D|) + 2|D| − 2n−1 + 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D|
= 2F (|C|+ |D|)−

(

2F (|C|+ |D|)− 2F (|C|)− 2F (|D|)− 2|D|+ 2 · 2n−2
)

+ 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D|
≤ 2F (|A|) + 2|C ∩ D|+ 2|C ∩ D| − |C ∩ C| − |D ∩ D| − 2|C|
≤ 2F (|A|),

where the second inequality uses Lemma 5, applied with x = |C| and y = |D|,
and with n − 1 in place of n, and the third inequality uses Lemma 7. This
completes the induction step in Case 2, proving the theorem.

3 Conclusion

We feel that our proof of Theorem 3 (and therefore of Theorem 2) is somewhat
delicate, as it relies on the fact that, in the inductive step, the terms involving F
can be dealt with using the fortunate properties of the function F (in Lemmas
4 and 5), and the other terms can be dealt with using the elementary inequality
in Lemma 7. We also note that there is a nested sequence of families (with
one family of every possible size), each of which is extremal for Theorem 2. In
contrast, the (conjectural) extremal families in Conjecture 1 do not have this
‘nested’ property. Hence, perhaps unfortunately, we feel that Theorem 2, and
our proof thereof, may shed only a limited amount of light on Conjecture 1.
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