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Abstract

Let G be a graph with the vertex set {v1, . . . , vn}. The Seidel matrix of G is an n× n

matrix whose diagonal entries are zero, ij-th entry is −1 if vi and vj are adjacent and

otherwise is 1. The Seidel energy of G is defined to be the sum of absolute values of all

eigenvalues of the Seidel matrix of G. Haemers conjectured that the Seidel energy of any

graph of order n is at least 2n− 2 and, up to Seidel equivalence, the equality holds for Kn.

We establish the validity of Haemers’ Conjecture in general.

2010 AMS Subject Classification Number: 05C50, 15A18.

1 Introduction and Terminology

Throughout this paper all graphs we consider are simple and finite. For a graph G, we denote the

set of vertices and edges of G by V (G) and E(G), respectively. The complement of G denoted

by G and the complete graph of order n is denoted by Kn. In this paper, for v ∈ V (G), NG(v)

and NG[v] denote the open neighborhood and the close neighborhood of v in G, respectively.

For every Hermitian matrix A and any real number p > 0, the p-energy of A, Ep(A), is

defined to be sum of the p-th power of absolute values of the eigenvalues of A. The well-known

concept of energy of a graph G denoted by E(G) is E1(A), where A is the adjacency matrix of

G.

Let G be a graph and V (G) = {v1, . . . , vn}. The Seidel matrix of G, denoted by S(G), is

an n × n matrix whose diagonal entries are zero, ij-th entry is −1 if vi and vj are adjacent

and otherwise is 1 (It is noteworthy that at first, van Lint and Seidel introduced the concept of

∗E-mail addresses: s_akbari@sharif.edu (S. Akbari), eynollahzadehsamadi@gmail.com (M. Einollahzadeh),

karkhaneei@gmail.com (M. M. Karkhaneei) mohammadali.nematollahi69@student.sharif.edu (M.A. Nematol-

lahi).
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Seidel matrix for the study of equiangular lines in [7]). The p-Seidel energy of G is defined to

be Ep(S(G)). By the Seidel energy of G, we mean 1-Seidel energy of G and denote by E(S(G)).

The Seidel switching of G is defined as follows: Partition V (G) into two subsets V1 and V2,

delete the edges between V1 and V2 and join all vertices v1 ∈ V1 and v2 ∈ V2 which are not

adjacent. Therefore, if we call the new graph by G′, then we have S(G′) = DS(G)D, where D is

a diagonal matrix with entries 1 (resp. −1) corresponding to the vertices of V1 (resp. V2) ([3]).

Hence, S(G) and S(G′) are similar and they have the same Seidel energy. Note, that if one of

the V1 or V2 is empty, then G remains unchanged. Two graphs G1 and G2 are called S-equivalent

(resp. SC-equivalent) if G2 is obtained from G1 (resp. G1 or G1) by a Seidel switching. Note

that in either cases, S(G2) is similar to S(G1) or −S(G1), hence E(S(G1)) = E(S(G2)).

For every square matrix A with eigenvalues λ1, . . . , λn, by Sk(A) we mean Sk(λ1, . . . , λn),

where Sk(x1, . . . , xn) is the k-th elementary symmetric polynomial in n variables; i.e.

Sk(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik , (S0(x1, . . . , xn) := 1).

Also, for every m× n matrix R and the index sets I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m}, RI,J is

the submatrix of R obtained by the restriction of R to the rows I and the columns J . By R⋆,

we mean conjugate transpose of R.

Haemers in [3] introduced the concept of Seidel energy of a graph and he proposed the

following conjecture:

Conjecture. For every graph G of order n, E(S(G)) ≥ E(S(Kn)) = 2n− 2.

This conjecture was first investigated by Haemers for n ≤ 10 and then was settled for

n ≤ 12 in [2]. Ghorbani in [1] proved Haemers’ Conjecture for the graphs G of order n such

that n− 1 ≤ |det(S(G))|. Also, Oboudi in [6] proved Haemers’ Conjecture for every k-regular

graph G of order n such that k 6= n−1

2
and G has no eigenvalue in (−1, 0). Here, we establish

two following theorems which are the main results of the paper:

Theorem 1. Let G be a graph of order n. Then, for every real number p ∈ (0, 2)

Ep(S(G)) > (n− 1)p + (n− 2).

Theorem 2. For every graph G of order n, E(S(G)) ≥ E(S(Kn)) = 2n− 2. Moreover, if G and

Kn are not SC-equivalent, then the inequality is strict.

Hence, Theorem 2 proves Haemers’ Conjecture. Note that if one restricts the attention to

the circulant graphs, then the nature of the Haemers’ Conjecture resembles the sharp Littlewood

Conjecture on the minimum of the L1-norm of polynomials (on the unit circle in the complex
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plane) whose absolute values of coefficients are equal to 1.1 For the special class of polynomials

with ±1 coefficients, Klemeš proved the sharp Littlewood Conjecture [4] and in the procedure

of his proof, he used the following equality:

Ep(A) :=
n
∑

i=1

|λi|p = C p

2

∫ ∞

0

ln

(

n
∑

k=0

Sk(A
2)tk

)

t−
p

2
−1dt, for every p ∈ (0, 2), (1)

where λ1, . . . , λn are the eigenvalues of the matrix A.

The Equation (1) comes from the Equation (2) which can be checked by a change of variable:

αp = Cp

∫ ∞

0

ln(1 + αt)t−p−1dt, Cp =

(∫ ∞

0

ln(1 + t)t−p−1dt

)−1

, (2)

where p ∈ (0, 1) and α = reiθ is a complex number which is not a negative real number, r > 0

and −π < θ < π. Indeed, if for every natural number n and complex numbers α1, . . . , αn (no

αi is negative real number) we define f(t) =
∏n

i=1
(1 + tαi), then by Equation (2) we have

n
∑

i=1

αp
i = Cp

∫ ∞

0

ln(f(t))t−p−1dt, for every p ∈ (0, 1). (3)

Now, one can expand f(t) as
n
∑

k=0

Sk(α1, . . . , αn)t
k. Hence, if for every i, αi = λ2

i , where

λ1, . . . , λn are eigenvalues of A, then Equation (1) is obtained.

Throughout this paper, we consider the branch rpeipθ for αp. We use Equation (1) to

establish a lower bound for Sk(A
2), where A is the Seidel matrix of a graph, and then we prove

Haemers’ Conjecture in general.

2 Main Theorems

In this section, we prove Theorems 1 and 2. So Haemers’ Conjecture holds. First, we need the

following well-known identity, by the Cauchy-Binet Theorem (See [5, p.776]).

Theorem 3 (Cauchy-Binet). If B is an n × n matrix of the form B = RR∗ for some matrix

R, then

Sk(B) =
∑

I,J

(detRI,J)
2,

where the summation is taken over all k-subsets I, J ⊂ {1, . . . , n}.

1Thanks to T. Tao’s comment in https://mathoverflow.net/q/302424/53059
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Lemma 4. Let G be a graph of order n and A = S(G). Then, for k = 1, . . . , n, we have

Sk(A
2) ≥ n(n− 1)

(

n− 2

k − 1

)

.

Proof. By Theorem 3, Sk(A
2) =

∑

I,J

(det(AI,J ))
2, where the summation is taken over all k-

subsets I and J . Now, we prove the following claim.

Claim. For every two subsets I and J such that |I ∩ J | = k − 1, | det(AI,J )| ≥ 1.

To prove the claim, note that for every (i, j), if i 6= j, then ai,j = ±1 and otherwise ai,j = 0.

So, if |I ∩ J | = k − 1, then after applying permutations on rows and columns of AI,J , modulo

2, AI,J has the following form:


















1 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
. . .

...

1 1 1 · · · 0



















.

In the above matrix, subtract the first column from the other columns and get the following

matrix:


















1 0 0 · · · 0

1 1 0 · · · 0

1 0 1 · · · 0
...

...
. . .

...

1 0 0 · · · 1



















,

whose determinant is 1. So det(AI,J ) is an odd number and the claim is proved. On the other

hand, the number of pairs (I, J) with the above property is n(n − 1)
(

n−2

k−1

)

and the proof is

complete.

Proof of Theorem 1. Let A = S(G) and λ1, . . . , λn be its eigenvalues. By Equation (1), for

every p ∈ (0, 2), we have

Ep(A) =
n
∑

i=1

|λi|p = C p

2

∫ ∞

0

ln(

n
∑

k=0

Sk(A
2)tk)t−

p

2
−1dt.

Since
n
∏

i=1

(1 + tλ2

i ) =
n
∑

k=0

Sk(A
2)tk, by Lemma 4, for every t ≥ 0, we have

n
∏

i=1

(1 + tλ2

i ) = 1 +

n
∑

k=1

Sk(A
2)tk ≥ 1 +

n−1
∑

k=1

n(n− 1)

(

n− 2

k − 1

)

tk = 1+ n(n− 1)t(1 + t)n−2. (4)
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Note that for every t > 0, we have

(1 + t)n−2 − 1 = t((1 + t) + · · ·+ (1 + t)n−3)

≤ t(n− 3)(1 + t)n−3

< t(n− 2)(1 + t)n−3.

Hence, Inequality (4) can be written as follows:

n
∏

i=1

(1 + tλ2

i ) ≥ 1 + n(n− 1)t(1 + t)n−2

= 1 + (n− 2)t(1 + t)n−2 + (n2 − 2n+ 2)t(1 + t)n−2

≥ 1 + (n− 2)t(1 + t)n−3 + (n2 − 2n+ 2)t(1 + t)n−2

> (1 + t)n−2 + (n2 − 2n+ 2)t(1 + t)n−2

= (1 + t)n−2(1 + (n2 − 2n+ 2)t).

So, by Equation (1), for every 0 < p < 2,

Ep(A) =
n
∑

i=1

|λi|p = C p

2

∞
∫

0

ln(

n
∏

i=1

(1 + tλ2

i ))t
−

p

2
−1dt

> C p

2

((n− 2)

∫ ∞

0

ln(1 + t)t−
p

2
−1dt+

∫ ∞

0

ln(1 + (n2 − 2n+ 2)t)t−
p

2
−1dt)

= (n− 2) + (n2 − 2n+ 2)
p

2 > (n− 2) + (n− 1)p.

The proof is complete. �

Now, if we apply Theorem 1 for p = 1, then we have the following corollary

Corollary 5. For every graph G of order n, E(S(G)) > 2n− 3.

In order to prove Theorem 2, we strengthen the inequality of Lemma 4. For this purpose,

we pay attention to the 2 × 2 submatrices of S(G) with an odd number of −1, which have a

key rule in the value of Sk(A
2) and hence in E(S(G)). We state the following definition.

Definition 6. Let G be a graph. An ordered pair (X,Y ) of disjoint subsets of V (G) with

|X | = |Y | = 2, is called an odd pair if the number of edges with one endpoint in X and another

in Y is odd. We denote the number of odd pairs in G by s(G).

Let (X,Y ) be an odd pair. Consider the 2 × 2 submatrix of A = S(G) whose rows and

5



columns are corresponding to the vertices of X and Y . This submatrix has the form

(

±1 ±1

±1 ±1

)

,

which contains one or three −1. It is easily seen that the determinant of this matrix is ±2.

Lemma 7. Let G be a graph of order n and A = S(G). Then, for k = 1, . . . , n− 2, we have

Sk(A
2) ≥ n(n− 1)

(

n− 2

k − 1

)

+ 4s(G)

(

n− 4

k − 2

)

. (5)

Proof. The term n(n− 1)
(

n−2

k−1

)

on the right hand side of (5) is deduced by the proof of Lemma

4. Now, suppose that (X,Y ) be an odd pair. If I ⊂ G, |I| = k − 2 and I ∩ X = I ∩ Y = ∅,

we claim that the absolute value of determinant of k × k submatrix of S(G) corresponding to

S(G)I∪X,I∪Y is at least 2. To prove the claim, note that after applying some permutations to

its rows and columns of S(G)I∪X,I∪Y one can see that S(G)I∪X,I∪Y is changed to U , where

U =























T
±1 ±1 · · · ±1

±1 ±1 · · · ±1

±1 ±1

±1 ±1
...

...

±1 ±1

0 ±1 · · · ±1

±1 0 · · · ±1
...

...
. . .

...

±1 ±1 · · · 0























,

and T has an odd number of −1. After multiplying the rows and columns of T by −1 if

necessary, T can be changed to the matrix

(

1 1

1 −1

)

.

Now, by applying some elementary column operations on U , one can obtain the following

matrix:














1 1

1 −1

0 0 · · · 0

0 0 · · · 0

∗ R















.
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Clearly, R = Ik−2 and detR = 1 modulo 2. This implies that

|detU | ≥ 2, (over real numbers).

We have
(

n−4

k−2

)

number of subsets I with the desired property. Note that we have s(G)
(

n−4

k−2

)

number of k × k submatrices which introduced. Because, if S(G)I∪X,I∪Y = S(G)I′∪X′,I′∪Y ′ ,

where (X,Y ) and (X ′, Y ′) are two odd pairs, then

I = (I ∪X) ∩ (I ∪ Y ) = (I ′ ∪X ′) ∩ (I ′ ∪ Y ′) = I ′,

and therefore, X = X ′ and Y = Y ′. Now, by Theorem 3, these submatrices have 4s(G)
(

n−4

k−2

)

contribution in Sk(A
2). To complete the proof, note that the k× k submatrices of S(G) which

considered here and those in the proof of Lemma 4 (which gives us the first term on the right

hand side of (5)) do not have any intersection.

Lemma 8. Let G be a graph of order n which is not SC-equivalent to Kn. Then G has at

least one odd pair.

Proof. One can see that if n ≤ 3, then G is SC-equivalent to Kn. So, assume that n ≥ 4.

Let v ∈ V (G) be an arbitrary vertex. By applying a Seidel switching on G with respect to

NG[v] and NG[v], one can suppose that v is adjacent to all vertices of G. Let vi, vj and vk

be vertices of G \ {v} such that vi and vj are adjacent but vi and vk are not adjacent. Then,

({v, vi}, {vj, vk}) is an odd pair in G.

If such vi, vj and vk do not exist, then one can deduce that G\{v} has no induced subgraph

isomorphic to K1∪K2 or K1 ∪K2. Therefore, G\{v} is either complete graph or empty graph.

Hence G = Kn or using a Seidel switching with respect to {v} and G \ {v}, we can delete all

edges of G and so G = Kn.

Lemma 9. If G is a graph of order n and s(G) ≥ 1, then s(G) ≥ 2(n− 3)2.

Proof. Let V (G) = {v1, . . . , vn}. Without loss of generality, suppose that ({v1, v2}, {v3, v4}) is

an odd pair. Now, for every i, 4 ≤ i ≤ n, the parity of the number of edges between vi and

{v1, v2} is different from the parity of the number of edges between v3 and {v1, v2} or v4 and

{v1, v2}. Hence, exactly one of the ({v1, v2}, {v3, vi}) and ({v1, v2}, {v4, vi}) is an odd pair. So,

if we show the second element of this odd pair by Vi (vi ∈ Vi), then ({v1, v2}, Vi) is an odd

pair. Similarly, if i ≥ 4 and vj /∈ Vi ∪ {v1} (1 ≤ j ≤ n), then exactly one of the ({v1, vj}, Vi)

and ({v2, vj}, Vi) is an odd pair. Denote the first element of this odd pair by Wj and hence,

(Wj , Vi) is an odd pair. So, we have (n− 3)2 odd pairs. Note that for every i and j, (Vi,Wj) is

an odd pair, too and is not equal to an odd pair (Wj′ , Vi′ ). Therefore we have at least 2(n− 3)2

odd pairs in total, as desired.
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Now, we state a technical lemma for the cubic polynomials with positive coefficients.

Lemma 10. If f(t) = 1 + at+ bt2 + ct3 is a cubic polynomial with positive coefficients, then

C 1

2

∫ ∞

0

ln(f(t))t−
3

2 dt ≥
√

a+ 2

√

b+ 2
√
ac.

Proof. Since the constant term of f is 1, one can consider the following factorization

f(t) = (1 + α1t)(1 + α2t)(1 + α3t),

where α1, α2, α3 ∈ C. Since f is positive over R
≥0, no αi is a negative real number, because

otherwise f has a positive root, a contradiction. On the other hand, f has a real root, so at

least one of αi, say α1, is a positive real number. Hence, α2 and α3 are either positive real

numbers or conjugate complex numbers. Note that by our convention about the arguments of

complex numbers, if α and β are conjugate, then
√
α
√
β =

√
αβ. Now by (3),

3
∑

i=1

√
αi = C 1

2

∫ ∞

0

ln(f(t))t−
3

2 dt.

Define X =
3
∑

i=1

√
αi. We have

X2 =

3
∑

i=1

αi + 2
∑

i<j

√
αiαj = a+ 2

∑

i<j

√
αiαj (6)

(
∑

i<j

√
αiαj)

2 =
∑

i<j

αiαj + 2
√
α1α2α3

3
∑

i=1

√
αi = b+ 2(

√
c)X. (7)

In both cases, either αi is positive or α2 = α3, the values
∑

i<j

√
αiαj and

√
c are positive

numbers. So, Equation (6) implies X ≥ √
a. Now, (6) and (7) imply that,

X =

√

a+ 2
∑

i<j

√
αi
√
αj =

√

a+ 2

√

b+ 2
√
cX ≥

√

a+ 2

√

b+ 2
√
ac.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. As stated in [3], using a computer search one can see that E(S(G)) ≥
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2n− 2 for n ≤ 10. So, we assume that n > 10. Now, by Lemma 7, for k = 1, . . . , n, we have

Sk(A
2) ≥ n(n− 1)

(

n− 2

k − 1

)

+ 4s(G)

(

n− 4

k − 2

)

, (8)

where A = S(G). Hence, for the eigenvalues λ1, . . . , λn of A and t > 0, we have

n
∏

i=1

(1 + tλ2

i ) = 1 +

n
∑

k=1

Sk(A
2)tk

≥ 1 +
n
∑

k=1

(n(n− 1)

(

n− 2

k − 1

)

+ 4s(G)

(

n− 4

k − 2

)

)tk

= 1 + n(n− 1)t(1 + t)n−2 + 4s(G)t2(1 + t)n−4

= 1 + (n− 4)t(1 + t)n−2 + (n2 − 2n+ 4)t(1 + t)n−2 + 4s(G)t2(1 + t)n−4

> (1 + t)n−4(1 + (n2 − 2n+ 4)t(1 + t)2 + 4s(G)t2),

where the last inequality follows from

(1 + t)n−4 < 1 + (n− 4)t(1 + t)n−5 < 1 + (n− 4)t(1 + t)n−2.

Therefore we have

E(S(G)) =

n
∑

i=1

|λi| = C 1

2

∫ ∞

0

ln(

n
∏

i=1

(1 + tλ2

i ))t
− 3

2 dt

> C 1

2

∫ ∞

0

ln((1 + t)n−4(1 + (n2 − 2n+ 4)t(1 + t)2 + 4s(G)t2))t−
3

2 dt

= C 1

2

∫ ∞

0

ln(1 + t)n−4t−
3

2 dt+ C 1

2

∫ ∞

0

ln(1 + (n2 − 2n+ 4)t(1 + t)2 + 4s(G)t2)t−
3

2 dt

= (n− 4) + C 1

2

∫ ∞

0

ln(1 + (n2 − 2n+ 4)t(1 + t)2 + 4s(G)t2)t−
3

2 dt. (9)

Let g(t) = 1 + (n2 − 2n + 4)t(1 + t)2 + 4s(G)t2 = 1 + αt + (2α + 4s(G))t2 + αt3, where

α = n2 − 2n+ 4. Hence by Lemma 10, we have

C 1

2

∫ ∞

0

ln(g(t))t−
3

2 ≥
√

α+ 2
√

(2α+ 4s(G)) + 2α

=

√

α+ 4
√

α+ s(G).

9



Note that for every natural number n, α = n2 − 2n+ 4 ≥ 3

4
n2 which implies that

C 1

2

∫ ∞

0

ln(g(t))t−
3

2 ≥

√

n2 − 2n+ 4 + 4

√

3

4
n2 + s(G). (10)

Therefore if s(G) ≥ 3

2
n2, we have

C 1

2

∫ ∞

0

ln(g(t))t−
3

2 ≥
√

n2 − 2n+ 4 + 6n = n+ 2,

which Equation (9) yields that, E(S(G)) > 2n − 2. Notice that for any graph G, which is

SC-equivalent to Kn, E(S(G)) = 2n − 2 holds. Hence we assume that G is not SC-equivalent

to Kn. In this case, by Lemma 9, s(G) ≥ 2(n − 3)2 and so for n ≥ 23, we have s(G) ≥ 3

2
n2,

as desired. Also, if G is not SC-equivalent to Kn, then by Lemma 8, there is an odd pair in

G, say ({v1, v2}, {v3, v4}), and as the proof of Lemma 9 shows, all 2(n − 3)2 odd pairs of G

contain v1 or v2. Hence if G \ {v1, v2} is not SC-equivalent to Kn−2, G has 2(n− 5)2 other odd

pairs. Notice that for every natural number n ≥ 11, 2(n − 3)2 + 2(n − 5)2 ≥ 3

2
n2, as desired.

To complete the proof, we consider the graph G with 10 < n = |V (G)| < 23 and G \ {v1, v2}
is SC-equivalent to Kn−2. Now, by applying the Seidel switching on G or its complement, one

can assume that G \ {v1, v2} ≃ Kn−2. The number of these graphs, up to isomorphism, is at

most 2n2 and so by a computer search, it can be easily checked that the assertion holds for

these graphs. The proof is complete. �

Now, by [6, Theorem 13], we close the paper with the following corollary.

Corollary 11. For every graph G, E(S(G)) ≥ E(G).
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