
ar
X

iv
:1

71
2.

02
40

3v
1 

 [
m

at
h.

C
O

] 
 6

 D
ec

 2
01

7

The oriented size Ramsey number of directed paths

Shoham Letzter∗ Benny Sudakov†

Abstract

An oriented graph is a directed graph with no bi-directed edges, i.e. if xy is an edge then yx

is not an edge. The oriented size Ramsey number of an oriented graph H , denoted by −→r (H),

is the minimum m for which there exists an oriented graph G with m edges, such that every

2-colouring of G contains a monochromatic copy of H .

In this paper we prove that the oriented size Ramsey number of the directed paths on n vertices

satisfies −→r (−→Pn) = Ω(n2 logn). This improves a lower bound by Ben-Eliezer, Krivelevich and

Sudakov. It also matches an upper bound by Bucić and the authors, thus establishing an

asymptotically tight bound on −→r (−→Pn).

We also discuss how our methods can be used to improve the best known lower bound of the

k-colour version of −→r (−→Pn).

1 Introduction

Given graphs G and H, we write G → H if there is a monochromatic copy of H in every 2-edge-

colouring of G. The size Ramsey number of a graph H, denoted by r(H), is the minimum number

of edges in G over graphs G satisfying G → H. The concept of size Ramsey numbers was introduced

by Erdős, Faudree, Rousseau and Schelp [5] in 1972, and has received considerable attention since.

A notable example is the size Ramsey number of a path on n vertices, which was shown by Beck

[1] to be linear in n, thus disproving a conjecture of Erdős [4].

Here we consider an analogue of size Ramsey numbers for oriented graphs (recall that an oriented

graph is a directed graph where at most one of xy and yx is an edge for every two vertices x and

y). The oriented size Ramsey number of an oriented graph H, denoted by −→r (H), is the minimum

number of edges of G over oriented graphs G satisfying G → H.
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In this note, we focus on the oriented size Ramsey number of the directed path on n vertices,

denoted by
−→
Pn. Unlike the undirected case, it turns out that −→r (−→Pn) is not linear in n, as shown by

Ben-Eliezer, Krivelevich and Sudakov [2], who established the following bounds (where c1 and c2

are positive absolute constants).

c1n
2 log n

(log log n)3
≤ −→r (−→Pn) ≤ c2n

2(log n)2.

Recently, Bucić and the authors [3] improved the upper bound to −→r (−→Pn) ≤ c3n
2 log n, by establish-

ing a lower bound on the longest monochromatic path in 2-coloured random tournaments, thereby

bringing the upper and lower bounds very close together. The main aim of this note is to obtain a

matching lower bound on −→r (−→Pn), thus showing that

−→r (−→Pn) = Θ(n2 log n).

We achieve our aim in the following theorem.

Theorem 1. Let G be a directed graph with at most n2 log n edges. Then G can be 2-coloured such

that all monochromatic directed paths have length at most 169n.

We prove Theorem 1 in the next section and conclude the paper in Section 3 with a discussion of

a generalisation to more colours. Throughout the paper we omit floor and ceiling signs whenever

they are not crucial, and all logarithms are in base 2.

2 The proof

In our proof of Theorem 1, we follow the footsteps of Ben-Eliezer, Krivelevich and Sudakov [2]. The

main difference is an improvement on their main tool in their proof of the lower bound, presented

in Lemma 2 below.

Before stating the lemma we make a definition. We call a set U of vertices in a directed graph

k-special if it is acyclic and its components (in the underlying graph) have order at most k.

In [2], the authors proved that an oriented graph on n vertices with at most εn2 edges contains

an acyclic subset of size at least c logn
ε log(1/ε) . It turns out that the proof of this statement, which is

a directed version of a lemma by Erdős and Szemerédi [6], can be adapted to give the following

stronger statement which ensures the existence of a large special (and, in particular, acyclic) subset.

Lemma 2. Let G be an oriented graph with n vertices and at most εn2 edges, where ε > 1/n. Then

there is a (log n)-special set of size at least logn
20ε log(1/ε) .
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In the proof of Lemma 2 we shall need the following simple lemma. Its proof follows by induction

from the fact that every oriented m-vertex graph has a vertex with out-degree at most m/2.

Lemma 3. Every oriented graph on m vertices contains an acyclic subset of size at least logm.

Proof of Lemma 2. We may assume that ε < 1/8, otherwise the proof follows from Lemma 3.

Remove all vertices whose degree (in the underlying graph) is at least 4εn, and denote the resulting

graph by G′; note that G′ has at least n− 2εn2

4εn = n/2 vertices.

Let U be a maximum (log n)-special set in G′ (from now on, we call such sets special). We may

assume that |U | < logn
20ε log(1/ε) , and, since ε > 1/n, also |U | < n/20.

The number of edges between U and V (G′) \ U is at most 4εn|U |. Hence, the number of vertices

in V (G′) \U which have at least 10ε|U | neighbours in U , is at most 2n/5. Therefore, the set W , of

vertices outside of U that have fewer than 10ε|U | neighbours in U , has size at least n/2−|U |−2n/5 ≥
n/20.

For each vertex w ∈ W , let Sw be a subset of U of size exactly 10ε|U | that contains all the neighbours
of w in U . Note that the number of possible sets Sw is at most the following (using

(n
k

)

≤
(

en
k

)k
).

( |U |
10ε|U |

)

≤
( e

10ε

)10ε|U |
≤ 2

log n
2 log(1/ε)

log(e/10ε) ≤
√
n.

Hence, there is a subset W ′ of W of size at least |W |/√n ≥ √
n/20, for which Sw is the same for

all w ∈ W ′. By Lemma 3, there is an acyclic subset W ′′ of W ′ whose size is at least 1
2 log n. Write

U ′ = (U \ S) ∪W ′′, where S = Sw for some w ∈ W ′. There are no edges between U \ S and W ′′,

hence, since U and W ′′ are acyclic, so is U ′′. Furthermore, the components in U ′ are contained in

either U or in W ′′, thus they have order at most log n. It follows that U ′ is special. Finally, we

have the following (note that ε < 1/2).

|U ′| ≥ |U | − 10ε|U | + log n

2
≥ |U | − log n

2 log 1/ε
+

log n

2
> |U |.

This is a contradiction to the choice of U as a maximum special set. The lemma follows.

Before turning to the proof of Theorem 1, we mention the following lemma.

Lemma 4. Every acyclic graph on m vertices can be 2-edge-coloured such that every monochromatic

directed path has length at most
√
m.

Proof. Let G be an acyclic graph on m vertices. Let v1, . . . , vm be an ordering of the vertices of

G such there are no edges vivj with i > j. Define Uk = {v1+(k−1)
√
m, . . . , vk

√
m} for k ∈ [

√
m] (we

assume that
√
m is integer for simplicity). Colour edges inside the Ui’s red and edges between the

Ui’s blue. It is easy to see that every monochromatic directed path has length at most
√
m.
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The following corollary easily follows: colour each of the components of a k-special set using the

colouring described in Lemma 4.

Corollary 5. The edges of a k-special set can be 2-coloured such that monochromatic paths have

length at most
√
k.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Our aim is to partition G into not too many special sets (i.e. (log n)-special)

and a small remainder. The main tool is the following claim.

Lemma 6. Let G be an oriented graph with at most n2 log n edges. Then the vertices of G can be

partitioned into at most 160n√
logn

special sets, and a remainder of at most 8n
√
log n vertices.

Proof. Our plan is very simple: we remove, one by one, a special set of maximum size, until we

remain with at most 8n
√
log n vertices. In order to show that the number of special sets removed

in such a process is not too large, we divide the process into stages.

Let α be such that the number of vertices of G is αn
√
log n; note that we may assume α > 8, as

otherwise we are done trivially. Write αi = α/2i, for 0 ≤ i ≤ I, where I is smallest for which αI ≤ 8

holds (so αI ≥ 4). The first stage is the first part of the process described above, where special sets

of maximum size are removed one by one, run until the first time when the number of vertices drops

below α1n
√
log n. Similarly, the i-th stage consists of the part of the process which starts right after

the end of the (i− 1)-th stage, and lasts until the number of vertices drops below αin
√
log n.

Write εi =
n2 logn

(αin
√
logn)2

= 1/α2
i . By Lemma 2, the special sets removed in the i-th stage have size

at least logn
20εi log(1/εi)

=
α2
i logn

40 logαi
. Since the number of vertices removed is at most αi−1n

√
log n, the

number of special sets removed in the i-th stage, where i ≤ I, is at most the following.

αi−1n
√
log n

α2
i logn

40 log(αi)

=
80 log αi

αi
· n√

log n
(1)

Note that αi = αI · 2I−i ≥ 4 · 2I−i = 22+I−i, as αI ≥ 4. Since log x
x is decreasing for x ≥ e, we have

that log(αi)
αi

≤ log(22+I−i)
22+I−i = 2+I−i

22+I−i for 0 ≤ i ≤ I. Hence,

∑

0≤i≤I

80 log αi

αi
≤

∑

2≤i≤I+2

80i

2i
≤ 40

∑

i≥0

(i+ 1)2−i = 40
∑

i≥0

∑

j≤i

2−i = 40
(

∑

i≥0

2−i
)2

= 160. (2)

It follows from (1) and (2) that the total number of special sets removed in this process is at most
160n√
logn

. Also, by definition of αI , the number of vertices remaining in the graph is at most 8n
√
log n,

as required.
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By Lemma 6, there is a partition of the vertices of G into at most 160n√
logn

special sets and a remainder

W of at most 8n log n vertices. By iterating Lemma 3 we can partition W into at most 8n√
logn

acyclic

sets of size log n and a remainder of at most n vertices. As these acyclic sets are special, we thus

obtain a partition {U1, . . . , Ul,W
′} of the vertices of G where Ui is special for i ∈ [l], l ≤ 168n√

logn
, and

|W ′| ≤ n.

We colour the edges inside the Ui’s with red and blue in such a way that monochromatic paths

inside the Ui’s have length at most
√
log n; this is possible due to Corollary 5. We then colour edges

between Ui and Uj red if i < j and blue if i > j. Finally, we colour edges into W ′ red, edges from

W ′ blue, and colour the edges inside W ′ arbitrarily. Any monochromatic path in this colouring

contains at most
√
log n vertices from each Ui and at most n vertices from W ′, hence it has length

at most 169n, as required.

3 Conclusion

We conclude this note with a discussion of a generalisation to a k-coloured setting. We shall consider
−→r (−→Pn, k + 1), the (k + 1)-colour oriented size Ramsey number of

−→
Pn. The following bounds follow

from [2] and [3].

c1n
2k(log n)1/k

(log log n)(k+2)/k
≤ −→r (−→Pn, k + 1) ≤ c2n

2k log n.

Using our approach, it is possible to improve the lower bound and obtain the following.

−→r (−→Pn, k + 1) ≥ c1n
2k(log n)2/(k+1).

We give only a sketch of the proof. As in the proof of Theorem 1, we may partition a graph with

at most n2k(log n)2/(k+1) edges into at most cnk(log n)1/(k+1)

logn special sets and a remainder of at most

n vertices. Using an analogue of Lemma 4, we may colour the edges of special sets with k + 1

colours such that monochromatic paths have length at most (log n)1/(k+1). In order to colour the

edges between special sets, we use the fact (see, e.g. [2]) that a directed graph on m vertices can

be (k + 1)-coloured (where, if both xy and yx are edges, we may use a separate colour for each of

them) such that monochromatic paths have length at most cm1/k and all colour classes are acyclic.

We thus obtain a (k + 1)-colouring in which monochromatic paths have length at most c2n.

Finally, we note that the upper bound in [3] was obtained by showing that random tournaments

have, with high probability, monochromatic paths of the required length in every 2-colouring of

their edges. It seems plausible that a similar statement holds for (k + 1)-colourings of random

tournaments, and perhaps a matching upper bounds on −→r (−→Pn, k + 1) can be proved using the

methods from [3].
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[6] P. Erdős and E. Szemerédi, On a Ramsey type theorem, Collection of articles dedicated to the

memory of Alfred Renyi, I, Period. Math. Hungar. 2, 1972, pp. 295–299.

6


	1 Introduction
	2 The proof
	3 Conclusion

