Counterexamples to a conjecture of Las Vergnas

Robert Brijder ${ }^{1}$ and Hendrik Jan Hoogeboom ${ }^{2}$
${ }^{1}$ Hasselt University, Belgium
${ }^{2}$ Leiden University, The Netherlands

Abstract
We present counterexamples to a 30 -year-old conjecture of Las Vergnas [J. Combin. Theory Ser. B, 1988] regarding the Tutte polynomial of binary matroids.

Based on an evaluation established for the Tutte polynomial of plane graphs on (3,3), Michel Las Vergnas made three conjectures in LV88, in increasing strength, regarding the Tutte polynomial of binary matroids. The first and weakest of these [LV88, Conjecture 4.1] was proved in [Jae89] and in a more general setting in Bou91.
Theorem 1 (Jae89, Bou91). For every binary matroid M, the value $T_{M}(3,3) / T_{M}(-1,-1)$ is an odd integer.

We remark that, for a binary matroid $M, T_{M}(-1,-1)=(-1)^{|E(M)|}(-2)^{b(M)}$, where $b(M)$ is the dimension of the bicycle space of M [RR78, Theorem 9.1]. The other two conjectures remained open for a long time (and were recalled again in 2004 in [ELV04]). It was shown by Gordon Royle Roy13 that $M\left(K_{8}\right)$ is a counterexample to the third and strongest of the three conjectures LV88, Conjecture 4.3]. In fact, an exhaustive search using the dataset of binary matroids with at most 15 elements of [FW11] reveals several more counterexamples.

We now state the second conjecture [LV88, Conjecture 4.2], which is stronger than the first and weaker than the third conjecture.
Conjecture $2([\boxed{\mathrm{LV} 88}])$. For every binary matroid M and every integer z, the value $T_{M}(-1+$ $4 z,-1+4 z) / T_{M}(-1,-1)$ is an odd integer.

Thus Theorem 1 corresponds to the value $z=1$ in Conjecture 2, It turns out that $M\left(K_{8}\right)$ is not a counterexample to this conjecture. Also, an exhaustive search using the above-mentioned dataset of FW11] reveals no counterexample to this conjecture. Consequently, any counterexample has at least 16 elements. In fact, for each binary matroid M with less than 16 elements, $Q_{M}(z):=T_{N}(-1+4 z,-1+4 z) / T_{N}(-1,-1)$ turns out to have only integer coefficients. This, together with the fact that both $Q_{M}(0)=1$ and $Q_{M}(1)$ are odd (the latter by Theorem 11), implies that $Q_{M}(z)$ is an odd integer for all integers z.

Using SageMath Sage we found that the binary matroid G with 24 elements corresponding to the extended binary Golay code (see, e.g., the appendix of Oxl11 for a definition) is a counterexample to Conjecture 2 Moreover, the rank-6 minor N of G with 18 elements having the following reduced representation over GF (2)

$$
\left(\begin{array}{llllllllllll}
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

is another counterexample. Indeed, N has the following Tutte polynomial $T_{N}(x, y)$

$$
\begin{array}{r}
y^{12}+6 y^{11}+21 y^{10}+56 y^{9}+126 y^{8}+252 y^{7}+x^{6}+45 x y^{5}+462 y^{6}+12 x^{5}+6 x^{4} y+225 x y^{4}+ \\
747 y^{5}+72 x^{4}+111 x^{3} y+240 x^{2} y^{2}+675 x y^{3}+1017 y^{4}+247 x^{3}+591 x^{2} y+1095 x y^{2}+1057 y^{3}+ \\
417 x^{2}+909 x y+723 y^{2}+231 x+231 y
\end{array}
$$

We have $T_{N}(-1,-1)=2^{6}$ and $Q_{N}(z)=T_{N}(-1+4 z,-1+4 z) / T_{N}(-1,-1)$ is equal to

$$
\begin{array}{r}
262144 z^{12}-393216 z^{11}+344064 z^{10}-180224 z^{9}+73728 z^{8}-18432 z^{7}+8320 z^{6}-1248 z^{5}+ \\
2616 z^{4}-1012 z^{3}+\frac{195}{2} z^{2}-\frac{15}{2} z+1
\end{array}
$$

Consequently, $Q_{N}(z)$ is even for $z \in\{-2,-1,2\}$, contradicting Conjecture 2 ,
Finally, the self-dual (but not identically self-dual) rank-9 minor N^{\prime} of G having the following reduced representation over GF(2)

$$
\left(\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

is yet another counterexample with 18 elements.
Acknowledgements. While SageMath is a collaborative project, we especially would like to thank Stefan van Zwam and Rudi Pendavingh for developing SageMath's matroid theory module, which we used extensively in our calculations. R.B. is a postdoctoral fellow of the Research Foundation - Flanders (FWO).

References

[Bou91] A. Bouchet. Tutte-Martin polynomials and orienting vectors of isotropic systems. Graphs and Combinatorics, 7(3):235-252, 1991.
[ELV04] G. Etienne and M. Las Vergnas. The Tutte polynomial of a morphism of matroids III. Vectorial matroids. Advances in Applied Mathematics, 32:198-211, 2004.
[FW11] H. Fripertinger and M. Wild. A catalogue of small regular matroids and their Tutte polynomials, 2011. arXiv:1107.1403. Dataset at imsc.uni-graz.at/fripertinger/ html/matroids/matroide_neu.html. Retrieved: July 24, 2018.
[Jae89] F. Jaeger. On Tutte polynomials of matroids representable over GF (q). European Journal of Combinatorics, 10:247-255, 1989.
[LV88] M. Las Vergnas. On the evaluation at (3,3) of the Tutte polynomial of a graph. Journal of Combinatorial Theory, Series B, 45(3):367-372, 1988.
[Oxl11] J. Oxley. Matroid theory, Second Edition. Oxford University Press, 2011.
[Roy13] G. Royle. A Las Vergnas conjecture, 2013. URL symomega.wordpress.com/2013/06/ 30/a-las-vergnas-conjecture/.
[RR78] P. Rosenstiehl and R. Read. On the principal edge tripartition of a graph. In B. Bollobás, editor, Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 195-226. Elsevier, 1978.
[Sage] SageMath, the Sage Mathematics Software System. URL sagemath.org.

