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The right acute angles problem?

Andrey Kupavskii∗, Dmitriy Zakharov†

Abstract

The Danzer–Grünbaum acute angles problem asks for the largest size of a set of
points in R

d that determines only acute angles. There has been a lot of progress
recently due to the results of the second author and of Gerencsér and Harangi, and
now the problem is essentially solved.

In this note, we suggest the following variant of the problem, which is one way
to “save” the problem. Let F (α) = limd→∞ f(d, α)1/d, where f(d, α) is the largest
number of points in R

d with no angle greater than or equal to α. Then the question is
to find c := limα→π/2− F (α). It is an intriguing question whether c is equal to 2 as one
may expect in view of the result of Gerencsér and Harangi. In this paper we prove the
lower bound c >

√
2.

We also solve a related problem of Erdős and Füredi on the “stability” of the acute
angles problem and refute another conjecture stated in the same paper.

1 Introduction

A set of points X ⊂ R
d is called acute (non-obtuse) if any three points from X form an

acute (acute or right, respectively) triangle. In 1962, Danzer and Grünbaum [DG] confirmed
a conjecture of Erdős from 1957 that any non-obtuse set of points in R

d has cardinality at
most 2d, moreover, the only examples of non-obtuse sets of cardinality 2d are the hypercube
and some of its affine images. They then modified the question and asked to determine the
maximum size f(d) of an acute set in R

d for any d > 2. Danzer and Grünbaum obtained
the first bounds on f(d):

2d− 1 6 f(d) 6 2d − 1, (1)

where the upper bound immediately follows from the aforementioned result on non-obtuse
sets. They conjectured that the lower bound is tight.

As it turned out recently, the value of f(d) is actually very close to the upper bound in
(1). While the only improvement upon the upper bound in (1) made so far is the inequality
f(3) 6 5 proved in [C], there were numerous improvements for the lower bound. The only
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values of f(d) that are known at the moment are f(2) = 3 and f(3) = 5, and the latter is
the only known improvement of the upper bound (1), due to Croft [C].

In 1983, Erdős and Füredi [EF] provided a probabilistic construction of an acute set with
[1
2
( 2√

3
)d] points, thus disproving the conjecture of Danzer and Grünbaum. The underlying

idea was to consider a random subset of the vertices of the hypercube {0, 1}d (see the next
section for details). In the years 1983-2009, the improvements of the lower bound were very
moderate: the constant 1

2
in front of the exponential term ( 2√

3
)d was improved in several

steps, resulting in the inequality f(d) & 0.942 · ( 2√
3
)d [B, Bu]. In 2009, Ackerman and Ben-

Zwi [AB] improved the Erdős–Füredi bound by a factor of c
√
d using a certain general result

concerning the independence numbers of sparse hypergraphs. In 2001, Harangi [H] made the
first exponential improvement: the constant 2√

3
≈ 1.155 was replaced by (144

23
)0.1 ≈ 1.201.

Harangi’s idea was to consider random subsets of the set of the form Xn
0 ⊂ R

d0n, rather than
{0, 1}d, as it was done in the proof by Erdős and Füredi. Here, X0 ⊂ R

d0 is a low-dimensional
acute set, which is typically constructed by hand or with the help of computer. For example,
if one takes X0 to be an acute triangle on the plane then one gets the bound f(d) & 1.158d,
which is slightly better than the Erdős–Füredi bound. Harangi used a 12-point acute subset
of R5 in his proof.

The next round of development was triggered in the spring of 2017, when the first explicit
exponential acute sets were constructed by the second author [Z]. The obtained bound on
f(d) was also much better than the previously known ones: f(d) > Fd+1 ≈ 1.618d, where Fd

is the d-th Fibonacci number.1 The proof used induction and certain slight perturbations
of the point set to make the right angles in the arising product-type constructions acute. In
the fall of 2017 Gerencsér and Harangi [GH] proved that

f(d) > 2d−1 + 1. (2)

The proof was inspired by constructions of 9-point and 17-point acute sets in R
4 and R

5,
respectively, made by an Ukranian mathematics enthusiast. The idea of Gerencsér and
Harangi’s bound is to carefully perturb the vertices of the hypercube {0, 1}d−1 using one
extra dimension to get rid of all right angles. One extra point can then be added to the
construction.

One common feature of all known explicit exponential-sized constructions is that the
largest angle among the points is just barely smaller than π

2
, and the constructions break

down completely if we require the largest angle to be, say π
2
− 0.001. On the other hand, as

we shall see below, random constructions can be usually modified so that the largest angle
would be separated from π

2
. This suggests a certain interesting direction for research, but

let us first introduce a couple of definitions.

Definition 1. Denote by f(d, α) the size of the largest set of points in R
d with no three

points forming an angle at least α. Put

F (α) := lim sup
d→∞

f(d, α)1/d. (3)

1Here F0 = F1 = 1.
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Thus, for instance, f(d) = f(d, π
2
), and the result of Gerencsér–Harangi now implies that

F (π
2
) = 2. In [Kup], the first author showed that limα→π/2+ f(d, α) = 2d.
Note that f(d, α) is meaningful only for α ∈ [π

3
, π] since f(d, α) = 2 for any α 6 π

3
. Some

further results about f(d, α) for α close to π
3
or to π can be found in [EF].

Results of Erdős–Füredi [EF, Theorem 3.6] translate to the following:

F
(π

3
+ δ

)

∈
[

1 + δ2, 1 + 4δ
]

. (4)

In the range α > π
2
it turns out that f(d, α) grows surprisingly fast. The following result

is essentially due to Erdős–Füredi [EF, Theorem 4.3] but their formulation applies only to
α close enough to π (note that the condition that n is sufficiently large is missing in the
statement of [EF, Theorem 4.3]).

Proposition 1. For any α ∈ (π
2
, π) there are constants C, c > 1 such that for all sufficiently

large d
2c

d

< f(d, α) < 2C
d

. (5)

Note that Proposition 1 refutes Conjecture 2.13 from the very same paper [EF].
Now we can formulate our main question.

Question 1. Is it true that

lim
α→π/2−

F (α) = 2? (6)

Equivalently, is it true that for any ε > 0 there is δ > 0 so that for any sufficiently large

d there is a set X ⊂ R
d of cardinality at least (2 − ε)d such that any three points from X

determine an angle less than π
2
− δ?

Although the problem is very close to the acute angles problem, the current methods that
use explicit constructions fail completely, and the gap between the bounds is still exponential.
We prove the following lower bound in this paper.

Theorem 1. We have

lim
α→π/2−

F (α) >
√
2. (7)

That is for every ε > 0 there exists δ > 0 such that for any sufficiently large d there is a set

X ⊂ R
d of cardinality at least (

√
2− ε)d determining only angles less than π

2
− δ.

Our proof is a combination of the method of Erdős–Füredi with the recent construction
of acute sets by Gerencsér–Harangi.

The second result gives a non-trivial upper bound on F (α) for any α < π/2.

Theorem 2. For α > 0 small enough we have F (π
2
− α) 6 2− α2.

3



Theorem 2 confirms a conjecture of Erdős–Füredi [EF, Conjecture 3.5]. The proof is
a modification of the proof of the inequality f(d) 6 2d due to Danzer and Grünbaum.
Namely, their proof is based on the observation that if X is an acute set and P = conv(X)
is the convex hull of X then interiors of homothets P+x

2
, x ∈ X , are pairwise disjoint.

Considering the volumes one easily obtains the bound |X| 6 2d. The idea behind the
proof of Theorem 2 is to take two disjoint subsets A,C ⊂ X and consider sets of the form
λ conv(A)+(1−λ)c ⊂ conv(A∪C), where c ∈ C. One can show that these sets are pairwise
disjoint provided (i) all the angles in X are less than π

2
−α and (ii) λ is chosen appropriately.

One then obtains an inequality λdVol(convA)|C| 6 Vol(convA∪C). Lemma 1 implies that
one can choose A and C in such a way that Vol(convA) and Vol(convA∪C) are almost the
same and |C| is comparable to |X|, which completes the proof.

2 The proofs

Sketch of the proof of Proposition 1. To prove the lower bound, we construct a set {v1, . . . , vm}
of m > cd unit vectors in R

d such that the angle between any two of them lies in (π
2
−ε, π

2
+ε),

where 2ε = α − π
2
. This can be done by taking a random subset on the unit sphere and

applying a concentration inequality (see, for instance, [M, Chapter 14]). Now take a suffi-
ciently large number λ and consider the set X = {vI =

∑

t∈I λ
tvt | I ⊂ [m]}. Note that

|X| = 2c
d

. For any two points vI , vJ ∈ X we have vI − vJ ≈ ±λtvt, where t is the largest
element of I∆J . So the angle between vI − vJ and vI − vK is approximately equal to the
angle between some vectors ±vi and ±vj , and therefore, it is at most α.

To prove the upper bound, we construct a set {v1, . . . , vm} of m 6 Cd vectors such that
any vector determines an angle less than π−α

2
with one of them. This can be done by a

greedy algorithm or deduced from known results for the sphere packing problem. Take a
set X of more than 2m points. For x, y ∈ X , color a pair (x, y), x 6= y, in color i if the
angle between vi and x − y is at most π−α

2
. In what follows, we show that, since |X| > 2m,

there exists a triple x, y, z such that (x, y) and (y, z) received the same color (i.e., there is a
monochromatic oriented 2-path). But then the angle between y − x and y − z is at least α.

We show that such a triple exists by induction on m. The statement is clear for m = 1
and |X| = 3. Next, for m-colorings, take any color, say, red, and consider all edges of this
color. If there is no red oriented 2-path, then each vertex either has only incoming or only
outgoing red edges, and so red edges span a bipartite graph. (We are free to assign vertices
with no incident red edge to any of the two parts.) Take the bigger part of this bipartite
graph. It has size at least ⌈(2m + 1)/2⌉ = 2m−1 + 1 and is colored with m− 1 colors. Thus
it contains a monochromatic oriented 2-path.

Proof of Theorem 1. Fix an arbitrary ε > 0. Take a sufficiently large d0 and an acute set
X0 ⊂ R

d0 of size 2d0−1+1 (which exists by (2)). Let R > 0 be the diameter of X0 and denote
by s the smallest scalar product 〈x− y, x− z〉 over all triples x, y, z ∈ X0 such that x 6= y, z.
By the definition of an acute set, we have s > 0.
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W.l.o.g., assume that d0 divides d. Let m = 2
1−ε

2
nd0 where n = d/d0. Choose 2m

uniformly random points p1, . . . , p2m ∈ Xn
0 ⊂ R

d0n, and set pi = (pi1, . . . , pin). Let us
estimate the expectation of the number of triples (i, j, k) such that 〈pi − pj, pi − pk〉 6 ε

2
ns.

If for some i, j, k we have 〈pi−pj , pi−pk〉 6 ε
2
ns then there are at least (1− ε

2
)n coordinates

t ∈ {1, . . . , n} for which pit = pjt or pit = pkt. The probability of the latter event is at most
(

n
ε

2
n

)

(

2
|X0|

)(1− ε

2
)n

6 2n−(1− ε

2
)(d0−2)n. So the expectation of the number of such triples is at

most
(2m)32n−(1− ε

2
)(d0−2)n 6 8m2(1−ε)nd02−(1− ε

2
)nd0+3n ≪ m. (8)

Thus there are points p1, . . . , p2m with at most m “bad” triples. Remove one point from each

of these triples and obtain a set X ⊂ Xn
0 ⊂ R

nd0 of cardinality at least m =
√
2
(1−ε)nd0

such
that for any two points x, y ∈ X we have |x− y|2 6 R2n and for any three points x, y, z ∈ X
we have 〈x − y, x − z〉 > ε

2
ns. This means that the angle α between vectors x − y, x − z

satisfies cosα > ε
2
s/R2 and thus depends on ε only.

In the proof of Theorem 2, we shall need the following lemma.

Lemma 1. Suppose X ⊂ R
d, |X| = N > d + 1 and the convex hull conv(X) has non-zero

volume. Then for any c ∈ [12d log2 N
N

, 1] there are sets A ⊂ B ⊂ X such that

1. |B \ A| > c
3d log2 N

N .

2. 0 6= Vol(conv(B)) 6 (1 + c)Vol(conv(A)).

Proof. By Carathéodory’s theorem, every point of conv(X) lies in the convex hull of some
d + 1 points of X , so by the pigeonhole principle, there is a set X0 ⊂ X of size d + 1 such
that

Vol(conv(X0)) >

(

N

d+ 1

)−1

Vol(conv(X)) > N−d−1Vol(conv(X)).

Take any chain X0 ⊂ X1 ⊂ . . . ⊂ Xm = X, such that |Xi+1 \ Xi| ∈ [ c
3d log2 N

N, c
2d log2 N

N ]

(it is possible because of the restriction on c). We have m >
2d log2 N

c
, so if we had

Vol(conv(Xi+1)) > (1 + c)Vol(conv(Xi)) for all i, then

Vol(conv(X)) > (1 + c)mVol(conv(X0)) > 22d log2 NVol(conv(X0)) > Vol(conv(X)),

a contradiction.

Proof of Theorem 2. Take a set X ⊂ R
d which determines only angles at most π

2
− α for a

sufficiently small α > 0. Put ε = sinα. It is easy to see that for any three different points
x, y, z ∈ X

〈y − x, z − x〉 > ε‖y − x‖‖z − x‖ > 1.5ε‖z − x‖2, (9)

where the last inequality follows from the fact that ‖y−x‖
‖z−x‖ = sin∠xzy

sin∠zyx
> sin∠xzy > sin 2α >

1.5ε for sufficiently small α. Doing the same calculation for both z − x and x − z as the
second vector in the scalar product in (9), we get that for any three distinct x, y, z we have

1.5ε2‖z − x‖2 < 〈y − x, z − x〉 < (1− 1.5ε2)‖z − x‖2. (10)
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Applying Lemma 1 with c = 1 we get sets A ⊂ B such that 0 6= Vol(convB) 6

2Vol(convA) and |B \A| > |X|
4d2

. Take λ = 1
2
· (1− 1.5ε2)

−1
, from (10) we see that for any dis-

tinct x, z ∈ B \A we have ((1−λ)x+conv(λA))∩((1−λ)z+conv(λA)) = ∅. Indeed, for any
point y from the first set we have 〈y−x, z−x〉 < λ(1−1.5ε2)‖z−x‖2 = 1

2
‖z−x‖2, while for any

y′ from the second set we have 〈y′−x, z−x〉 > (1−λ)‖z−x‖2+λ ·1.5ε2‖z−x‖2 = 1
2
‖z−x‖2.

Moreover, (1− λ)x+ conv(λA) ⊂ convB for any x ∈ B, so

|B \ A|λdVol(convA) 6 Vol(convB) 6 2Vol(convA), (11)

thus
|X| 6 4d2|B \ A| 6 8d2λ−d = 8d22d

(

1− 1.5ε2
)d

6 (2− α2)d, (12)

provided that d is sufficiently large and α > 0 is sufficiently small. (Here we used that
limα→0+

sinα
α

= 1.)
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