
ar
X

iv
:1

91
1.

11
10

5v
2 

 [
m

at
h.

C
O

] 
 1

0 
A

pr
 2

02
0

A bound for the distinguishing index of

regular graphs
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Abstract

An edge-colouring of a graph is distinguishing if the only automorphism that
preserves the colouring is the identity. It has been conjectured that all but finitely
many connected, finite, regular graphs admit a distinguishing edge-colouring with
two colours. We show that all such graphs except K2 admit a distinguishing edge-
colouring with three colours. This result also extends to infinite, locally finite graphs.
Furthermore, we are able to show that there are arbitrary large infinite cardinals κ
such that every connected κ-regular graph has a distinguishing edge-colouring with
two colours.

1 Introduction

Let G be a connected, finite or infinite graph and let Aut(G) denote its group of auto-
morphisms. The distinguishing index of G, denoted by D′(G), is the least number of
colours needed to colour the edges of G such that the only colour preserving automor-
phism is the identity. This concept was first introduced in [10]; the analogous concept
for vertex colouring, often denoted by D(G) is significantly older, see [1, 2]. Note that
D(G) and D′(G) can be arbitrarily far apart. As an example, it is easy to see that the
complete graph Kn satisfies D(Kn) = n, but D′(Kn) = 2 for n ≥ 6. Another example
is the complete bipartite graph. On the other hand, it is known that for most graphs
D′(G) does not exceed D(G), see [12].

∗Florian Lehner was supported by the Austrian Science Fund (FWF), grant J 3850-N32
†This work was partially supported by Ministry of Science and Higher Education of Poland and OEAD
grant no.PL 08/2017.
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For connected graphs with finite maximum degree ∆, it is known that D′(G) ≤ ∆,
unless G is C3, C4 or C5. This bound is sharp, and the graphs which attain it are
fully characterised, see [14, 15]. On the other hand, there are many graph classes where
better bounds are possible. For example it is known that, apart from finitely many
exceptions, D′(G) ≤ 2 for all traceable graphs [14], 3-connected planar graphs [16],
Cartesian powers of finite and countable graphs [4, 6], and countable graphs where every
non-trivial automorphism moves infinitely many edges [11].

The following conjecture made by Alikhani and Soltani, and independently by Imrich,
Kalinowski, Piĺsniak and Woźniak [8], would imply improved bounds in the case when
the minimum and the maximum degree of the graph are not too far from each other.

Conjecture 1. [8] If G is a connected finite graph with minimum degree δ ≥ 2 and
maximum degree ∆, then D′(G) ≤ ⌈ δ

√
∆⌉ + 1, with equality only for G = Kδ,rδ and

finitely many graphs on at most 6 vertices.

We observe that the second part of Conjecture 1 is not true in general; equality also
holds for other complete bipartite graphs. Indeed, consider a complete bipartite graph
Kp,q with p < q and an integer d > 1 such that dp − ⌈logd p⌉+ 1 ≤ q ≤ dp. It is known
that in this case D′(Kp,q) = d+ 1 = ⌈ δ

√
∆⌉+ 1, see [5, 7].

It is still possible, however, that the first part of Conjecture 1 holds, that is, D′(G) ≤
⌈ δ
√
∆⌉+ 1 for any finite connected graph G with minimum degree δ ≥ 2 and maximum

degree ∆. Note that if this is the case, then the bound is almost tight for Kδ,∆. Indeed,
assume that we have a colouring of the edges of Kδ,∆ with r ≤ δ

√
∆ colours. Let

v1, . . . , vδ be an enumeration of the vertices in the part of size δ. Assign to each vertex
u in the part of size ∆ the sequence of colours of the edges uv1, . . . , uvδ. If two of
these sequences coincide, then the corresponding vertices can be swapped by a colour
preserving automorphism. This can only be avoided if r = δ

√
∆ and each of the ∆ = rδ

different sequences appears exactly once. It is easy to check that for such a colouring
any permutation of v1, . . . , vδ extends to a colour preserving automorphism of Kδ,∆, thus
showing that D′(Kδ,∆) >

δ
√
∆.

In this paper we are interested in regular graphs, that is, graphs where δ = ∆. We
prove that the first part of Conjecture 1 holds for such graphs. However, based on the
observation that D′(K∆,∆) = 2 for ∆ ≥ 4, we conjecture that our result is not tight.

Conjecture 2. If G is a connected, finite, regular graph, then D′(G) ≤ 2, unless G is
either Kn for n ≤ 5, or Kn,n for n ≤ 3, or C5.

Besides Conjecture 1, there is another compelling reason why one might expect this to
be true. It is easy to show that if a graphG with at least 7 vertices contains a Hamiltonian
path, then D′(G) = 2. Indeed, for such a graph one can obtain an asymmetric spanning
tree H with one vertex of valence three and three branches of different lengths simply by
adding an edge to P and then removing an edge. Colouring all edges of such a spanning
tree with one colour and the remaining edges with a second colour yields a distinguishing
edge 2-colouring; for more details see [14].

While there are regular graphs that do not admit Hamiltonian paths, it is not un-
reasonable to think that most of them at least have an asymmetric spanning tree. By
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Dirac’s Theorem, a graph on n vertices whose minimum degree is at least n
2 has a Hamil-

tonian cycle. Consequently, if G is a regular graph, then either G or its complement has
a Hamiltonian cycle, and one might hope that a Hamiltonian cycle in the complement of
G can also be used to construct an asymmetric spanning tree of G. For vertex transitive
graphs it is also worth pointing out that Lovász [13] conjectured that all of them admit
a Hamiltonian path.

As mentioned above, in this paper we make progress on Conjecture 2 and some natural
generalisations of it. More precisely, in Section 2 we prove the following theorem. It is
worth pointing out that this result covers both finite and infinite, locally finite graphs.

Theorem 3. Let G be connected ∆-regular graph for ∆ ∈ N \ {1}. Then D′(G) ≤ 3.

Moreover, in Section 3 we consider ∆-regular graphs where ∆ is infinite. It was shown
in [3] that any connected graph in which all degrees are countable satisfies D′(G) ≤ 2.
We extend this result by showing that there exist arbitrary large cardinals κ such that
every connected κ-regular graph has distinguishing index at most two. Namely, every
fixed point of the aleph hierarchy has the said property.

2 Proof of the main result

In this section we prove the following theorem which easily implies Theorem 3.

Theorem 4. Let G be connected ∆-regular graph for some finite ∆. Unless G = K2,
there is a distinguishing edge colouring with 3 colours—red, green, and blue—that addi-
tionally satisfies the following property.

(∗) There is at most one vertex all of whose incident edges are coloured blue. If G =
Kn, then there is no such vertex.

Proof. It is not hard to see (c.f. [10]) that there is such a colouring for complete graphs
on at least 3 vertices. Furthermore, by results from [14] and [15], it is known that for any
graph G with maximum degree ∆ it holds that D′(G) ≤ max{∆− 1, 3}; the proofs also
show that if G is regular of degree ∆ ≤ 4, then there is a distinguishing edge colouring
satisfying (∗). Therefore, we may assume that G is not complete, that ∆ ≥ 5, and that
any ∆′-regular graph with ∆′ < ∆ has a distinguishing edge colouring with 3 colours
which satisfies (∗).

For the rest of the proof, fix an arbitrary root vertex r in G. Let S be the set of
orbits under Aut(G, r), where Aut(G, r) = {γ ∈ Aut(G) | γr = r} is the stabiliser of r
in AutG. Order S by distance from r, with ties broken arbitrarily, and let (Si)0≤i<|S|

be the corresponding enumeration. Denote by Ei the set of edges incident to Si. For
i < |S|, let m(i) = max{j | ∃k ≤ i : Ek ∩ Ej 6= ∅}, in other words, m(i) is the maximal
j such that there is an edge connecting Sk to Sj for k ≤ i. Note that if i < |S|, then
m(i) ≥ i+ 1 because there must be an edge from Si+1 to Sk for some k ≤ i.

Let Êi = E \⋃j>m(i)Ej , that is, Êi is the set of edges both of whose endpoints are

in
⋃

j≤m(i) Sj. Clearly, Ei ⊆ Êi. It furthermore follows from the definition of m(i) that
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Êi ⊇ Êi−1. Note that ∆ is finite, so the sets Si, Ei and Êi are finite as well. We partition
Ei into the following three sets.

{xy ∈ E(G) : x ∈ Si, y ∈ Sj and j < i},
{xy ∈ E(G) : x ∈ Si, y ∈ Sj and j > i},
{xy ∈ E(G) : x, y ∈ Si}.

We refer to edges in the first set as back edges, to edges in the second set as forward edges,
and to edges in the third set as horizontal edges of Si respectively. Vertices connected to
Si by forward or back edges will be referred to as forward neighbours or back neighbours
of Si respectively. Note that by definition of Si, every vertex in Si is incident to the same
number f of forward edges, the same number b of back edges, and the same number h
of horizontal edges (and clearly f + b+h = ∆). Further note that by definition,

⋃

j<i Sj

contains all vertices that are closer to r than Si (and perhaps some vertices at the same
distance to r). Thus for i > 0 every vertex in Si has at least one back neighbour; in
particular b > 0.

Next, for 0 ≤ i < |S|, we define a colouring ci with colours red, green, and blue, such
that the following properties are satisfied.

(I) r is the only vertex where all incident edges are coloured blue in ci,

(II) for i > 0, the colourings ci−1 and ci only differ on Ei, and

(III) for 0 ≤ j ≤ i, if γ ∈ Aut(G, r) preserves the restriction of ci to Êj, then γ pointwise
fixes Sj .

Before we proceed with the construction, we demonstrate how this yields a distinguishing
edge colouring.

If S is finite, then let c = c|S|−1. By (I), any automorphism preserving c must fix the
root r, and by (III) any such automorphism must pointwise fix every Sj . Any vertex is
contained in some Sj, hence we conclude that c is distinguishing.

Now assume that S is infinite. Let c be the pointwise limit of the ci, in other words,
c(e) takes the same value as all but finitely many ci(e). This exists by (II): if e connects
vertices in Si and Sj, then it has the same colour in every ck for k ≥ max(i, j). It also
follows from (II) that for any finite set E′ ⊆ E there is an index k such that c(e) = ck(e)
for all e ∈ E′. Consequently, since G is locally finite, r is the unique vertex where c
assigns blue to all incident edges. Thus r must be fixed by any automorphism preserving
c. Since Êj is finite for every j, there must be some k ≥ j such that c and ck agree on
Êj . By (III), applied to ck, we conclude that any element of Aut(G, r) which preserves
c must fix Sj pointwise. This holds for every j, and each vertex is contained in some Sj,
hence c is distinguishing.

It remains to construct the colourings ci. For the inductive construction, it will be
useful to ensure that the colourings also satisfy the following technical conditions.

(IV) If e /∈ Ej for any j ≤ i, then ci(e) is green.
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(V) If e ∈ Ej for j > i and ci(e) = blue, then e ∈ E0. In other words, the only blue
edges with respect to ci are between two vertices in

⋃

j≤i Sj, or are incident to r.

Let c0 be the colouring where edges incident to r are coloured blue and all other edges
are coloured green. This trivially satisfies (I) and (III)–(V). Property (II) does not apply
for i = 0.

Now let i > 0 and assume that cj has already been defined for every j < i. By (II), in
order to describe ci it suffices to describe ci on Ei. The construction of the colouring ci
consists of two steps: in the first step we colour the horizontal edges, in the second step
we use a subtle recolouring procedure on the forward and back edges to get rid of any
remaining symmetries.

The first part is fairly straightforward. Let H be the subgraph of G induced by the
horizontal edges of Si.

(H1) If h = 0, then there are no horizontal edges to colour.

(H2) If h = 1, then colour the edges with red, green, and blue such that no orbit
containing at least two edges with respect to the pointwise stabiliser of

⋃

j<i Sj

has more than half of its edges coloured by the same colour.

(H3) Otherwise 2 ≤ h < ∆, so each component K of H is a connected ∆′-regular graph
with 2 ≤ ∆′ < ∆. By our general induction assumption we can find an edge
colouring of K which satisfies (∗) such that any colour preserving automorphism
which setwise fixes K must also fix it pointwise.

Note that the colouring of the horizontal edges defined above generally will not break
all automorphisms acting non-trivially on Si. In case h = 0 we did not break any
automorphisms at all, but even if h ≥ 2 there could be colour preserving automorphisms
which permute the components of . We call an automorphism persistent if it pointwise
fixes every Sj for j < i and preserves the colouring on the horizontal edges defined above.

The second part hinges on the following recolouring procedure for forward and back
edges. A decoration of a componentK ofH is a pair (F,B), with the following properties.

(D1) F is a set of forward edges incident to K.

(D2) B is either the empty set, or a set consisting of a single red back edge incident to
K, or a set consisting of two green back edges incident to K.

We say that we decorate K by (F,B), if we recolour the forward edges incident to K
such that exactly those in F are red and the rest are green, and change the colour of the
back edges in B to blue while all other back edges incident to K are coloured with the
same colour as in ci−1.

Call a decoration (F,B) asymmetric, if any persistent automorphism that fixes K
setwise and maps F and B onto themselves must fix K pointwise. Call two decorations
similar, and write (F,B) ∼ (F ′, B′), if there is a persistent automorphism mapping F to
F ′ and B to B′. Clearly, ∼ is an equivalence relation on the set of all decorations. By

5



definition of ∼, if (F,B) ≁ (F ′, B′) and K and K ′ are decorated by (F,B) and (F ′, B′)
respectively, then no colour preserving, persistent automorphism can map K to K ′.

Our strategy in the second part is to assign asymmetric decorations to components
such that no two decorations are similar, and then decorate every component with the
corresponding decoration.

For this purpose it is enough to show the following claim.

Claim 1. Let DK be the number of non-similar asymmetric decorations available at
some component K, and let NK be the number of components that K can be mapped
to by persistent automorphisms. Then DK ≥ NK .

Indeed, if this is true, then we can greedily assign decorations to components, making
sure that each of them receives a decoration that is not similar to any decorations used
on other components in this orbit.

To bound NK from above, note that every vertex is incident to at least one back
edge. Any persistent automorphism must fix the other endpoint of this back edge, so
NK ≤ ∆. Moreover, if this bound is sharp, then it is only sharp for S1 (and this can only
happen if S1 contains all neighbours of r), otherwise the bound decreases to NK ≤ ∆−1.
Further recall that persistent automorphisms are required to preserve the colouring of
the horizontal edges. Consequently, if h = 1, then our colouring of the horizontal edges
ensures that NK ≤ ⌊∆/2⌋.

Next we establish lower bounds for DK . For this purpose, we construct sets of non-
similar decorations as follows. Let F ∗ be some set of forward edges incident to K. Let
F be a set of subsets of F ∗ all of which have different cardinalities 0, . . . , |F ∗|. Let B∗

be some set of backward edges incident to K not containing any blue edges chosen such
that no persistent automorphism moves one element of B∗ to another. Let B be the set
of subsets of B∗ that satisfy (D2).

It is easy to see that any two members (F,B) 6= (F ′, B′) of F × B are non-similar.
Indeed, if F 6= F ′, then |F | 6= |F ′| and there is no automorphism moving F to F ′. If
B 6= B′ then by the condition on B∗ there cannot be a persistent automorphism mapping
B to B′. In particular DK will be at least the number of asymmetric members of F ×B.

It will be convenient to have a lower bound on the size of F×B. Clearly, |F| = |F ∗|+1
and |B| ≥ 1 because ∅ ∈ B. If B∗ 6= ∅, then |B| = 1 + br +

(

bg
2

)

, where br and bg are the

number of red and green edges in B∗ respectively. As
(

bg
2

)

≥ bg − 1 and |B∗| = br + bg,
we have |B| ≥ max(1, |B∗|), and consequently

|F × B| ≥ (|F ∗|+ 1) ·max(1, |B∗|) ≥ |F ∗|+max(1, |B∗|).

The choices of F ∗ and B∗ depend on the number of horizontal edges incident to each
vertex, we distinguish cases h = 0, h = 1, and h ≥ 2.

First assume that h = 0. Then K consists of a single vertex x incident to f forward
edges and b back edges. Let F ∗ consist of all forward edges incident to x, and let B∗

consist of all non-blue back edges incident to x.
Note that any persistent automorphism must fix all back neighbours of x, whence

there cannot be a persistent automorphism mapping any edge in B∗ to a different one.
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Moreover, any decoration of K is asymmetric, since K only consists of a single vertex.
Thus DK ≥ |F × B|.

Clearly, |F ∗| = f and |B∗| ≥ b− 1 because there is at most one back edge connecting
x to r. If b = 1, then we get

DK ≥ |F × B| ≥ f + 1 = ∆ ≥ NK .

If b > 1, then r is not the only back neighbour of x. Hence i > 1, and in particular
NK ≤ ∆− 1. This means that we get

DK ≥ |F × B| ≥ f + b− 1 = ∆− 1 ≥ NK ,

thus completing the proof of Claim 1 for the case h = 0.
If h = 1, then K consists of two vertices connected by a single edge. Let x be one of

the two vertices, and let F ∗ consist of all forward edges incident to x, and let B∗ consist
of all non-blue back edges incident to x.

Note that the only way a persistent automorphism could fix K setwise, but not point-
wise, is by swapping its two vertices. As in the previous case, any persistent automor-
phism must fix all back neighbours of x and thus there cannot be a persistent automor-
phism mapping any edge in B∗ to a different one. Moreover, a decoration (F,B) ∈ F×B
is asymmetric provided that at least one of F and B is non-empty, so DK ≥ |F ×B|−1.

Similarly as above we have |F ∗| = f +1 and |B∗| ≥ b− 1, so |F ×B| ≥ f + b ≥ ∆− 2.
In particular, since ∆ ≥ 5 we get

DK ≥ |F × B| − 1 ≥ ∆− 3 ≥ ⌊∆/2⌋ ≥ NK ,

which completes the case h = 1.
Finally, assume that h ≥ 2. Then by (∗) there are at least (h+1) vertices in K which

are incident to at least one red or green horizontal edge. Let F ∗ be the set of forward
edges incident to those vertices, and let B∗ be the set of non-blue back edges incident
to them.

Due to the colouring of the horizontal edges, every persistent automorphism which
fixes K setwise must also fix it pointwise, and thus no two different elements in B∗ can
be mapped onto each other by a persistent automorphism. Moreover, any decoration of
K is asymmetric, so DK ≥ |F × B|

As above, clearly |F ∗| ≥ f · (h+ 1) and |B∗| ≥ (b− 1) · (h+ 1). If b = 1, then we get

|F × B| ≥ f(h+ 1) + 1 ≥ f + h+ 1 = ∆ ≥ NK .

If b > 1, then as in the case h = 0, we have NK ≤ ∆ − 1. This means that we get
|F × B| ≥ (h+ 1)(f + b− 1) ≥ f + b+ h− 1 = ∆− 1 ≥ NK . Hence

DK ≥ |F × B| ≥ NK ,

thus completing the proof of Claim 1.
By the above discussion we can choose non-similar asymmetric decorations for all

components of the graph induced by the horizontal edges of Si. If h = 1, then the
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decorations can be chosen such that they contain only edges incident to one of the two
vertices in each component. If h ≥ 2 we can make sure that the decoration does not
contain any edges incident to a vertex all of whose horizontal edges are coloured blue.
Furthermore, we can make sure that one component in each orbit is decorated by (∅, ∅),
unless h = 1 and there is a persistent automorphism swapping the two endpoints of any
component in the orbit.

Let ci be the colouring obtained from ci−1 by colouring the horizontal edges of Si ac-
cording to (H1)–(H3), then choosing non-similar asymmetric decorations for each com-
ponent of H as described above, and decorating the components accordingly. It remains
to show that ci satisfies properties (I)–(V).

For property (I), first observe that we did not change the colour of any edge incident
to r. In particular, all edges incident to r are blue with respect to ci. Further note
that the only edges that are blue with respect to ci, but not with respect to ci−1 are
horizontal and back edges incident to Si. Property (I) holds for ci−1, hence the only way
that ci could violate (I) is, if all edges incident to a vertex in Si or a back neighbour
of Si are blue in ci. We will show that all such vertices have at least one incident edge
coloured red or green.

First, let x ∈ Si. Recall that decorating assigns colour red or green to all forward
edges, so in case f > 0 there is a non-blue edge incident to x. Since (V) holds for
ci−1, there is at most one back edge incident to x coloured blue with respect to ci−1.
Decorating changes the colours of at most two more back edges incident to x. Thus, if
b ≥ 4, then x is incident to at least one red or green back edge. So we may assume that
f = 0 and b ≤ 3, and thus h = ∆−f−b ≥ 2 because ∆ ≥ 5. If x is incident to a non-blue
horizontal edge, then there is nothing to show. If all horizontal edges incident to x are
coloured blue, then our choice of decorations makes sure that no edges incident to x are
used in the decorations. In particular, if all edges incident to x are blue with respect to
ci, then all back edges incident to x must be blue with respect to ci−1. Consequently,
the only back neighbour of x is r. Since f = 0, we conclude that h = ∆−1 which implies
that G is complete, contradicting one of our initial assumptions.

Next, let x 6= r be a back neighbour of Si. By (V), all edges between x and Si are
coloured red or green with respect to ci−1. Note that if x is incident to a vertex y ∈ Si,
then it must be incident to each vertex in the orbit of y under persistent automorphisms.
If h = 1 and there is a persistent automorphism swapping the two vertices of some
component K incident to x, then x is incident to both vertices of K. The decoration of
K only used edges incident to one of the two vertices, so the edge from x to the other
vertex has the same colour in ci as in ci−1 whence x is incident to a non-blue edge. If
h 6= 1, or h = 1 and no persistent automorphism swaps the two vertices of a component
incident to x, then x is incident to a component K with decoration (∅, ∅). All edges
connecting x to K have the same colour in ci as in ci−1, again showing that x must be
incident to a non-blue edge.

To see that property (II) holds for ci, note that in (H1)–(H3) only horizontal edges
incident to Si were recoloured, and that the decorating step only affects forward and
back edges incident to Si. All other edges have the same colour with respect to ci and
ci−1.
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The proof of (III) rests on the following claim.

Claim 2. Let j < i, let γ be an element of Aut(G, r) that preserves the restriction of ci
to Êj , and let e ∈ Êj . Then e and γ(e) have the same colour with respect to ci−1.

Using this claim, it is easy to complete the proof of (III). Indeed, if j < i, then
any automorphism which preserves the restriction of ci to Êj must also preserve the
restriction of ci−1 to Êj . By (III) for ci−1, this implies that any such automorphism
has to fix Sj pointwise. For the case j = i, note that any automorphism preserving the
restriction of ci to Êi must be persistent. Indeed, any such automorphism must pointwise
fix Sj for j < i because Êj ⊆ Êi, and it must preserve the colouring on the horizontal
edges because m(i) ≥ i. The decorations on the components of H were asymmetric and
non-similar, so any persistent automorphism which preserves them must pointwise fix
Si.

It remains to prove Claim 2. Recall that the Si were defined as the orbits with respect
to Aut(G, r). In particular, an automorphism γ as in Claim 2 must setwise preserve
every Si, and thus also every Ei. In particular, if e ∈ E1, then Claim 2 is true by (I). If
e /∈ Ei, then it is true by (II). If e is a forward or horizontal edge of Ei, then so is γ(e),
and by (IV) both of them are green with respect to ci−1, so the claim also holds in this
case.

If e is a red or green back edge, then e was not contained in any of the decorations
used in the recolouring procedure, and thus ci(e) = ci−1(e). The edge γ(e) in this case
is also a red or green back edge, hence we get ci(γ(e)) = ci−1(γ(e)), and consequently
ci−1(e) = ci−1(γ(e)), unless e is a blue back edge.

Finally, consider the case that e is a blue back edge. In this case, e must have been
contained in one of the decorations. By property (D2) of decorations, if e is red in ci−1,
then there are no other blue back edges connected to the same component of H but not
to r. On the other hand, if e is green in ci−1, then there is exactly one more such blue
back edge. Note that if one back edge is contained in Êj , thenm(j) ≥ i and consequently
all back edges are contained in Êj . As γ preserves the restriction of ci to Êj , it cannot
map a component of H with two blue (with respect to ci) back edges not incident to
r to another component with only one such back edge. In particular, it cannot map a
back edge which is blue in ci and red in ci−1 to a back edge which is blue in ci and green
in ci−1. This completes the proof of Claim 2 and thus also of (III).

Property (IV) for ci follows from (II) combined with (IV) for ci−1. Finally, property
(V) follows from (II) together with the fact that decorating a component does not assign
colour blue to any of the forward edges.

3 Graphs with infinite degrees

In this section we will consider the distinguishing index of κ-regular graphs in the case
of infinite κ. We prove that there are arbitrary large cardinals κ with the property that
every connected κ-regular graph has distinguishing index at most two. In other words,
for every cardinal γ, there exists a cardinal κ > γ with said property. For self-sufficiency
of this paper, we will provide some basic definitions and well known facts about these
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cardinals. For a detailed treatment of ordinal and cardinal numbers see for example [9].
As usual in ZFC, we identify cardinal numbers with initial ordinals.

A cardinal number is an ordinal that is not equinumerous with any smaller ordinal.
The least cardinal number that is greater than given cardinal j is called the successor
of j and is denoted by j+.

The aleph hierarchy assigns a cardinal number to every ordinal number. It can be
defined by transfinite induction as follows.

ℵ0 = |N|, the least infinite cardinal,

ℵα+1 = ℵ+
α , for any ordinal α,

ℵα = sup{ℵβ : β < α}, for any limit ordinal α.

Every infinite cardinal number lies in the aleph hierarchy. A cardinal number κ is a
fixed point of the aleph hierarchy if κ = ℵκ.

For every cardinal number λ there is a greater cardinal with this property. Indeed,
consider the sequence given by λ0 = λ, and λn+1 = ℵλn

, for n ≥ 0. Then κ = supn∈N λn

is a limit ordinal and ℵκ = supn∈N ℵλn
= supn∈N λn+1 = κ. This fact was first noticed

by Veblen in [18].
Recall that every ordinal number α is the set of all ordinals smaller than α. Thus

fixed points of the aleph hierarchy may be characterised as exactly these uncountable
cardinals κ, such that the set of cardinals smaller than κ is of cardinality κ.

Theorem 5. Let G be connected κ−regular graph and let κ be a fixed point of aleph
hierarchy i.e. κ = ℵκ. Then D′(G) ≤ 2.

Proof. Let x0, x1, x2 . . . , xα . . . for α < κ be a κ-enumeration of the vertices of G. We
will colour the graph by transfinite induction on i.

Assume that for every ordinal j < i vertex xj has exactly ℵj incident blue edges, the
rest of its incident edges are green, and the remaining edges are uncoloured. Notice
that the only edges incident to xi that are already coloured are edges incident also to
{xj : j < i}. As |{xj : j < i}| ≤ ℵi, vertex xi is incident to at most ℵi blue edges, and
κ edges incident to xi are still uncoloured. As ℵi < ℵκ = κ, we can choose ℵi edges
between xi and the vertices among {xj : j > i} and colour them blue, and we colour the
remaining edges incident with xi with green.

After the induction, every vertex xi has exactly ℵi incident blue edges because xi
has ℵi incident blue edges after the step i, the remaining incident edges are green and
we do not recolour any edge. As every vertex is incident to a different number of blue
edges it is fixed by every colour preserving automorphism and therefore we obtained a
distinguishing edge-colouring of G.

A simple corollary of this theorem is that the class of cardinals κ such that any
connected κ-regular graph admits a distinguishing edge-colouring with 2 colours is un-
bounded (equivalently it is a proper class). We conjecture that every infinite κ has this
property.
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Conjecture 6. Let G be a connected κ-regular graph for some infinite cardinal κ. Then
G admits a distinguishing edge-colouring with two colours.

Although Theorem 5 does not give us results about every cardinal it can be used to
obtain consistency results about some of them. We say that a cardinal number κ is a
regular cardinal if the sum of less than κ sets of cardinality less than κ has cardinality
less than κ. Every cardinal j+ is a regular cardinal as well as the cardinal ℵ0. If a
cardinal κ is a regular infinite cardinal, then it is consistent with ZFC that the cardinal
2κ is a fixed point of the aleph hierarchy. This was first noticed by Solovay [17], for
proofs see Application of Forcing Chapter in Jech [9]. Summarising, we obtained the
following consistency result, which may be interesting even in the case when κ = ℵ0.

Theorem 7. Let κ be a regular infinite cardinal. Then it is consistent with ZFC that
every connected 2κ−regular graph has distinguishing index at most two.
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[16] M. Piĺsniak and T. Tucker. Distinguishing Index of Maps. Europ. J. Comb.,
84:103034, 2020.

[17] R. M. Solovay. Independence results in the theory of cardinals. Notices Amer.
Math. Soc., 10(6):595, 1963.

[18] O. Veblen. Continuous increasing functions of finite and transfinite ordinals. Trans.
Amer. Math. Soc., 9(3), 1908.

12


	1 Introduction
	2 Proof of the main result
	3 Graphs with infinite degrees

