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Abstract

Let S be a set of arbitrary objects, and let Sd = {v1...vd : vi ∈ S}. A polybox code is
a set V ⊂ Sd with the property that for every two words v,w ∈ V there is i ∈ [d] with
v′i = wi, where a permutation s 7→ s′ of S is such that s′′ = (s′)′ = s and s′ 6= s. If |V | = 2d,
then V is called a cube tiling code. Cube tiling codes determine 2-periodic cube tilings of
R
d or, equivalently, tilings of the flat torus T

d = {(x1, . . . , xd)(mod2) : (x1, . . . , xd) ∈ R
d}

by translates of the unit cube as well as r-perfect codes in Z
d
4r+2 in the maximum metric.

By a structural result, cube tiling codes for d = 4 are enumerated. It is computed that
there are 27,385 non-isomorphic cube tiling codes in dimension four, and the total number
of such codes is equal to 17, 794, 836, 080, 455, 680. Moreover, some procedure of passing
from a cube tiling code to a cube tiling code in dimensions d ≤ 5 is given.

Key words: box, code, cube tiling, perfect code.

1 Introduction

Let S be a set of arbitrary objects which will be called an alphabet, and the elements of S will
be called letters. A permutation s 7→ s′ of the alphabet S such that s′′ = (s′)′ = s and s′ 6= s is
said to be a complementation. Through the paper we use a fixed complementation and therefore
the alphabet S will be given in the form S = {a1, a

′
1, ..., ak, a

′
k}. Let Sd = {v1...vd : vi ∈ S}.

Elements of the set Sd are called words. A polybox code (or a polybox genom) is a set V ⊂ Sd

with the property that for every two words v, w ∈ V there is i ∈ [d] = {1, ..., d} with v′i = wi

([13]). If |V | = 2d, then V will be called a cube tiling code ([17]).

A natural model for a polybox code is some special system of boxes, where a box is a set
A ⊆ X = X1 × · · · × Xd of the form A = A1 × · · · × Ad, where Ai ⊆ Xi for each i ∈ [d]. We
assume that |Xi| > 1 for i ∈ [d] and call the box X a d-box. The mentioned system of boxes can
be derived from a code in the following way: For i ∈ [d] let fi : S → 2Xi \ {∅, Xi} be such that
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2 The structure of tilings

fi(s
′) = Xi\fi(s), and let f : Sd → 2X be defined by the formula f(v1 . . . vd) = f1(v1)×· · ·×fd(vd).

If now V ⊆ Sd is a polybox code, then the set f(V ) = {f(v) : v ∈ V } is a system of pairwise
disjoint boxes in X such that for every two boxes K,G ∈ f(V ) there is i ∈ [d] with Ki = Xi \Gi

(compare Figure 1). We call the set f(V ) a realization of V . Boxes K,G with this last property
are called dichotomous. Similarly, two words v, w ∈ Sd are dichotomous if vi = w′

i for some
i ∈ [d]. About the above defined function f we say that it preserves dichotomies.

A 2-periodic cube tiling of Rd can be treated as a realization of a cube tiling code. Recall
that a family [0, 1)d + T = {[0, 1)d + t : t ∈ T} is a cube tiling of R

d if every two cubes in
[0, 1)d + T are disjoint and

⋃

t∈T ([0, 1)d + t) = R
d. A tiling [0, 1)d + T is called 2-periodic if

T + 2Zd = T . To obtain a 2-periodic cube tiling from a cube tiling code V ⊂ Sd let P ⊂ [0, 1)
be a set with k elements, and let fi(aj) = [0, 1) + pj + 2Z, fi(a

′
j) = [1, 2) + pj + 2Z, where

pj ∈ P for j ∈ [k], and i ∈ [d]. The realization f(V ) of V is a partition of the d-box R
d into

2d pairwise dichotomous boxes f(v), v ∈ V . It is easy to see that at the same time it can be
viewed as a 2-periodic cube tiling of Rd (Figure 1). Clearly, the tiling f(V ) determines a tiling
of the flat torus T

d = {(x1, . . . , xd)(mod2) : (x1, . . . , xd) ∈ R
d} by translates of the unit cube

as well as an r-perfect code in Z
d
4r+2 in the maximum metric (Figure 1). Recall that, a set

C ⊂ Z
d
n is an r-perfect code (in the metric δ) if for every x ∈ Z

d
n there is exactly one c ∈ C

such that δ(c, x) ≤ r. In other words, the family {B(c, r) : c ∈ C} consists of mutually disjoint
balls B(c, r) = {x ∈ Z

d
n : δ(c, x) ≤ r} and Z

d
n =

⋃

c∈C B(c, r). Every cube tiling code V ⊆ Sd

induces an r-perfect code C ⊂ Z
d
4r+2, r ∈ N, in the maximum metric δ∞(x, y) = max1≤i≤d |xi−yi|

(compare [2]). Indeed, consider a realization f(V ), where f : Sd → 2Zd
4r+2 preserves dichotomies

and for every i ∈ [d] and every s ∈ S the set fi(s) consists of 2r+1 consecutive integers in Z4r+2.
Obviously, the set of pairwise dichotomous boxes f(V ) is a partition of Zd

4r+2. Since each box in
f(V ) is a ball of radius r in the metric δ∞, taking the centers of each box from f(V ) we obtain
an r-perfect code C.

1

2

Figure 1: Three realizations f i(V ), i = 1, 2, 3, of the cube tiling code V = {aa, aa′, a′b, a′b′}. The realization

f1(V ), where f1

1
(a) = [0, 1) + 2Z, f1

2
(a) = [0, 1) + 2Z and f1

2
(b) = [0, 1) + 1

2
+ 2Z, is a 2-periodic cube tiling of

R
2 (picture on the left); the realization f2(V ), where f2

1 (a) = [0, 1), f2

2 (a) = [0, 1) and f2

2 (b) = [ 1
2
, 3

2
) is a cube

tiling of T2 (picture in the middle). Finally, the realization f3(V ), where f3

1
(a) = {0, 1, 2}, f3

2
(a) = {0, 1, 2} and

f3

2
(b) = {1, 2, 3}, is a tiling of Z2

6
by boxes (balls in the maximum metric), (picture on the right). Corresponding

1-perfect code in the maximum metric is represented by the black dots.

In the presented paper we enumerate all cube tiling codes V ⊂ {a1, a
′
1, ..., a8, a

′
8}

4 which



Kisielewicz 3

leads to a complete classification of cube tiling codes in dimension four and thus, a complete
classification of 2-periodic cube tilings of R

4, cube tilings of T
4 as well as r-perfect codes in

Z
d
4r+2 in the maximum metric. Complete classifications of cube tiling codes V ⊂ {a, a′, b, b′}d

for d ≤ 5 are, so far, known: For d ≤ 4 it was computed by Dutour and Itoh in [5], and for
d = 5 by Mathew, Österg̊ard and Popa in [22]. To classify cube tiling codes V ⊂ S4, where S
is an arbitrary alphabet, we show that every cube tiling code in dimension four can be merged
into one of twenty one codes of some special form (Theorem 2.2). This in turn reveals some
meta-structures of 2-periodic cube tilings of R4 in the spirit of [19].

One of the most known structural problem dealing with cube tilings of Rd is Keller’s con-
jecture ([1, 3, 9, 11, 14, 15, 16, 18, 20, 21]). This conjecture, which says that in every cube
tiling of Rd there is a pair of cubes having a complete facet in common, is however only one of
many interesting problems on the structure of cube tilings ([4, 5, 6, 7, 8, 13, 17, 24, 25]). At the
end of the paper we examine one of such structural problem which was previously considered in
[6, 22] for cube tiling codes V ⊂ {a, a′, b, b′}d for d ≤ 5 (in the language of cube tilings of Td).
It concerns a procedure of passing from a code to a code via a sequence of local transformations
of codes. In the paper we generalize such procedure on arbitrary cube tiling codes V ⊂ Sd in
dimensions up to five (Theorem 4.1).

A non-empty set F ⊆ X is said to be a polybox if there is a set of pairwise dichotomous
boxes F such that

⋃

F = F . The set F is called a suit for F . We add an extra letter ∗ to the
set S and the set S∪{∗} is denoted by ∗S. We assume that ∗′ = ∗ and the star is the only letter
with this property. Two words v, w ∈ (∗S)d are dichotomous if vi = w′

i for some i ∈ [d], where
vi, wi ∈ S, and V ⊂ (∗S)d is a polybox code if it consists of pairwise dichotomous words. A word
containing ∗ is called improper. The meaning of ∗ is that fi(∗) = Xi, while fi(s) ∈ 2Xi \ {Xi, ∅}
for every s ∈ S and every i ∈ [d]. A set V ⊂ (∗S)d of pairwise dichotomous words is said to
be a partition code if any realization f(V ) of V is a suit for a d-box X . Codes V,W ⊂ (∗S)d

are equivalent, which is denoted by V ≡ U , if
⋃

f(V ) =
⋃

f(W ) for every f that preserves
dichotomies (see Figure 4 and 5).

If v ∈ (∗S)d, and σ is a permutation of the set [d], then σ̄(v) = vσ(1) . . . vσ(d). For every
i ∈ [d] let hi : ∗S → ∗S be a bijection such that hi(l

′) = (hi(l))
′ for every l ∈ ∗S and hi(∗) = ∗.

Such hi will be called a position bijection (at position i). Let h : (∗S)d → (∗S)d be defined by
the formula h(v) = h1(v1) . . . hd(vd). The group of all possible mappings h ◦ σ̄ will be denoted
by G((∗S)d) or G(Sd) depending on whether we consider words written down in the alphabet
∗S or in S. Let S and T be two alphabets with complementations, and let |S| ≤ |T |. Two
polybox codes V ⊂ (∗S)d and U ⊂ (∗T )d are isomorphic if there is h ◦ σ̄ ∈ G((∗T )d) such that
U = h ◦ σ̄(i(V )), where i : ∗ S → ∗T is a fixed injection such that i(∗) = ∗ and i(s′) = i(s)′ for
s ∈ S. The composition h◦σ̄ is an isomorphism between V and U . By a set of all non-isomorphic

cube tiling codes in dimension d we mean any set Nd ⊂ Sd such that for every cube tiling code
W ∈ P d there is V ∈ Nd such that V and W are isomorphic.



4 The structure of tilings

2 Enumeration of twin pair free partition codes

Two words v, u ∈ (∗S)d are called a twin pair if there is i ∈ [d] such that vi = u′
i, vi 6= ∗,

and vj = uj for every j ∈ [d] \ {i}. We say that a twin pair v, u is glued at the ith position
if the pair v, u is replaced by the improper word w having the star at the ith position, where
vi = u′

i and wj = vj for all j 6= i. The word w is called a gluing of words v, u. To every polybox
code V we can assign its twin pair free code FV which arises from V by successive gluing of
words which form a twin pair. (Such assignment is not usually unique.) More precisely, in
the first step we glue a twin pair in V , say it is v1v2v3v4 and v1v2v3v

′
4, obtaining the code

V 1 = V \ {v1v2v3v4, v1v2v3v
′
4} ∪ {v1v2v3∗} (if there is no twin pair in V we take FV = V ).

Note that V 1 is a polybox code. If V 1 does not contain a twin pair we take FV = V 1. If
there is a twin pair in V 1 we proceed as above obtaining a code V 2. After n steps, where
n ≤ 2d − 1 and V i contains a twin pair for i ∈ [n − 1], we obtain a twin pair free code V n and
then FV = V n. For example, if V = {aaa, aba′, ab′a′, a′ab, a′ab′, a′a′a′, ba′a, b′a′a}, then
V 1 = {aaa, a ∗ a′, a′ab, a′ab′, a′a′a′, ba′a, b′a′a}, V 2 = {aaa, a ∗ a′, a′a∗, a′a′a′, ba′a, b′a′a},
V 3 = {aaa, a ∗ a′, a′a∗, a′a′a′, ∗a′a}, and then FV = V 3.

1

2
3

Figure 2: A realization of the cube tiling code V = {aaa, aba′, ab′a′, a′ab, a′ab′, a′a′a′, ba′a, b′a′a} (on the

left) and a realization of the code FV = {aaa, a ∗ a′, a′a∗, a′a′a′, ∗a′a} (on the right).

It can happen that FV = {∗ ∗ ∗∗}. This however means that, up to isomorphism, V n−1 =
{v1 ∗ ∗∗, v

′
1 ∗ ∗∗}. This, in turn, means that the code V (as well as V n−1) belongs to the class of

layered codes: A code U ⊂ (∗S)d is layered if there are s ∈ S and i ∈ [d] such that ui ∈ {s, s′}
for every word u ∈ U .

To enumerate all twin pair free partition codes V ⊂ (∗S)4 we shall use an algorithm which
is described in [15]. Let v ∈ (∗S)d, and let

|v| =

d
∏

i=1

(2[vi = ∗] + [vi 6= ∗]), (2.1)

where [p] = 1 if the sentence p is true and [p] = 0 if it is false. It can be proved that a polybox
code V ⊂ (∗S)d is a partition code if and only if

∑

v∈V |v| = 2d ([13]). Thus, denoting by xi

the number of words v in a partition code V such that |v| = 2i, i ∈ {0, 1, 2, 3}, to every code V
we may assign the system of equations

∑3
i=0 xi2

i = 24,
∑3

i=0 xi = k, where k is the number of
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words in V . Moreover, in [13] we showed that every partition code V ⊂ (∗S)d having at least
two words contains a pair of words v, u, such that vi = ui or vi = u′

i for every i ∈ [d] and

|{i : vi = u′
i and vi 6= ∗}| ≡ 1 (mod 2). (2.2)

For the reasons that will be explained below, it is enough to consider the alphabet ∗S =
{a, a′, b, b′, ∗}.

Algorithm 1.

Let ∗S = {a, a′, b, b′, ∗}, V3,0 = {aaaa, a′a′a′a} and V3,1 = {aaa∗, a′a′a′∗}. By (2.2), every
twin pair free partition code V ⊂ (∗S)4 contains, up to isomorphism, the code V3,0 or V3,1. Let
C k be the family of all k-elements twin pair free partition codes V ⊂ (∗S)4 which contain the
code V3,0 or V3,1. Our goal is to find the family C k.

Input. The number k.
Output. The family C k.

1. Let Sk = {(x0, ..., x3) ∈ N
4 :

∑3
i=0 xi2

i = 24 and
∑3

i=0 xi = k}, where N = {0, 1, 2, ...}.
2. For i ∈ {0, ..., 3} indicate the set Ai consisting of all words v ∈ (∗S)4 such that v contains

precisely i letters ∗.
3. Fix x ∈ Sk and let s(x) = {i1 < · · · < im} consists of all ij ∈ {0, ..., 3}, j ∈ [m], for which

xij > 0. Fix V3,i1 ⊂ Ai1. For i ∈ s(x) let Bi = {v ∈ Ai : V3,i1 ∪ {v} is a twin pair free code}.
4. Let I be the multiset containing i1 with the multiplicity xi1 − 2 (recall that xi1 ≥ 2) and

ij with the multiplicity xij for j ∈ {2, ..., m}. By I[j] we denote the jth element of I.
5. Let D2 = {V3,i1}.
6. For l ∈ {2, ..., k− 1} having computed D l we compute the set D l+1: For v ∈ BI[l] and for

U ∈ D l if U ∪ {v} is a twin pair free code, then we attach it to D l+1.
7. Clearly, Dk = Dk(V3,i1 , x) so let C k be the union of the sets Dk(V3,0, x) ∪Dk(V3,1, x) over

x ∈ S k.

To explain why in the above algorithm we may assume that ∗S = {a, a′, b, b′, ∗}, which
simplifies computations, we need to take a look at the structure of a partition code V ⊂ (∗S)d.
If l ∈ ∗S and i ∈ [d], then let V i,l = {v ∈ V : vi = l}. If S = {a1, a

′
1, ..., ak, a

′
k, ∗}, then the

representation
V = V i,a1 ∪ V i,a′1 ∪ · · · ∪ V i,ak ∪ V i,a′

k ∪ V i,∗

will be called a distribution of words in V . For example, if V = {aaaa, aaa′b, aa′a′∗, a ∗ aa′,
a′aab′, a′a ∗ b, a′a′a′a, a′a′ ∗ a′, ∗aa′b′, ∗a′aa}, then

V 4,a = {aaaa, a′a′a′a, ∗a′aa}, V 4,a′ = { a ∗ aa′, a′a′ ∗ a′},

V 4,b = {aaa′b, a′a ∗ b}, V 4,b′ = {a′aab′, ∗aa′b′}, V 4,∗ = {aa′a′∗}.

Any realization of the set V i,l ∪ V i,l′, where V is a partition code, is a cylinder (Figure 2). It is
a set F ⊆ X such that for every set li = {x1} × · · · × {xi−1} ×Xi × {xi+1} × · · · × {xd}, where
xj ∈ Xj for j ∈ [d] \ {i}, one has
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li ∩ F = li or li ∩ F = ∅,

1

2
3

y

x

l

33333

3

Figure 3: The set on the left is a 3-cylinder in X = [0, 1]3, and the set on the right is not, because the set

l3 = {x} × {y} × [0, 1] has a non-empty intersection with this set but l3 is not entirely contained in it.

Since any realization of V i,l ∪ V i,l′, where V is a partition code, is a cylinder we shall say
that a partition code, in particular a cube tiling code, has the cylindrical structure.

Observe that, for every cube tiling code V ⊂ Sd we have |V i,ak ∪ V i,a′
k | ≥ 2, whenever

V i,ak ∪ V i,a′
k 6= ∅. Thus, we get

Lemma 2.1 To obtain a set Nd ⊂ Sd of all non-isomorphic cube tiling codes in dimension d it

is enough to take S = {a1, a
′
1, ..., a2d−1 , a′2d−1}. �

To justify the assumption S = {a, a′, b, b′, ∗} let V i,l
ic = {v1...vi−1vi+1...vd : v ∈ V i,l}. Since

every realization of V i,l∪V i,l′ is a cylinder, it follows that realizations of the sets V i,l
ic and V i,l′

ic are

equal, which means, that the codes V i,l
ic , V

i,l′

ic ⊂ (∗S)d−1 are equivalent. It is easy to check that if
two disjoint codes V, U ⊂ (∗S)3 are twin pair free and equivalent then, there there are improper
words in both codes. Moreover, if a code V i,l ∪ V i,l′ ⊂ (∗S)4 does not contain a twin pair, then
|V i,l ∪ V i,l′| ≥ 4. Therefore, if V ⊂ (∗S)4 is a twin pair free partition code and V i,l ∪ V i,l′ 6= ∅
for l ∈ {a, b, c}, then |V | ≥ 12. Since every solution of the system of equations

∑3
i=0 xi2

i = 24

and
∑3

i=0 xi = k for k ≥ 12 has the property that
∑3

i=1 xi ≤ 4, it follows that in every partition
code V ⊂ (∗S)4 with |V | ≥ 12 there are at most four improper words. On the other hand, as
it was noted above, for every l ∈ {a, a′, b, b′, c, c′} the set V i,l contains an improper word. Thus,
there are at least six improper words in V , which is a contradiction.

Theorem 2.2 There are, up to isomorphism, twenty twin pair free partitions codes in dimension

four. These are:

1. C1 = {a ∗ aa, a ∗ ∗a′, a′ ∗ a∗, a′ ∗ a′a′, ∗ ∗ a′a},

2. C2 = {aaa′a, aa ∗ a′, a′aaa′, a′aa′∗, ∗aaa, ∗a′ ∗ ∗},

3. C3 = {a ∗ aa′, a ∗ ∗a, a′aaa′, a′a ∗ a, a′a′a∗, a′a′a′a, ∗ ∗ a′a′},
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4. C4 = {aaaa′, a ∗ a′∗, a′aa′a, a′a ∗ a′, a′a′a′∗, ∗a′aa′, ∗ ∗ aa},

5. C5 = {aa ∗ a′, aa′a′∗, a ∗ aa, a′aa∗, a′a′ ∗ a, a′ ∗ a′a′, ∗aa′a, ∗a′aa′},

6. C6 = {aaaa, aaa′∗, aa′ ∗ a′, a′a ∗ a, a′a′aa′, a′ ∗ a′a′, ∗aaa′, ∗a′ ∗ a}

7. C7 = {aaaa, aa′a′a′, aa′ ∗ a, a ∗ aa′, a′aaa′, a′a′a′a, a′a′ ∗ a′, a′ ∗ aa, ∗aa′∗},

8. C8 = {aaaa, aa′ ∗ a, a′a′a′a, a′ ∗ aa, ∗aa′∗, ba′a′a′, b ∗ aa′, b′aaa′, b′a′ ∗ a′},

9. C9 = {aaaa, aa′ ∗ a, a ∗ ∗a′, a′a′a′a, a′baa, a′b ∗ a′, a′b′a ∗ a′b′a′a′, ∗aa′a},

10. C10 = {aaaa, a ∗ a′a, a′a ∗ a, a′a′a′a, ba ∗ a′, ba′a∗, ba′a′a′, b′a′aa, b′ ∗ ∗a′}

11. C11 = {aaaa, aa ∗ a′, aa′a′b, aa′ ∗ b′, a′aab, a′a′a′a, a′ ∗ ab′, a′ ∗ a′a′, ∗aa′a, ∗a′ab},

12. C12 = {aaaa, a ∗ a′a, a′a ∗ a, a′a′a′a, ∗a′aa, ∗baa′, b ∗ a′a′, bb′aa′, b′ba′a′, b′b′ ∗ a′},

13. C13 = {aaaa, a ∗ a′a, a′a ∗ a, a′a′a′a, ∗a′aa, ∗a′a′a′, ba ∗ a′, ba′aa′, b′aa′a′, b′ ∗ aa′},

14. C14 = {aaaa, a ∗ a′a, ab ∗ a′, ab′b′a′, a′a ∗ a, a′a′a′a, a′ ∗ b′a′, a′bba′, ∗a′aa, ∗b′ba′},

15. C15 = {aaaa, a ∗ a′a, a′a ∗ a, a′a′a′a, ∗a′aa, ∗bb′a′, b ∗ ba′, bb′b′a′, b′bba′, b′b′ ∗ a′},

16. C16 = {aaaa, aaa′b, aa′a′∗, a ∗ aa′, a′aab′, a′a ∗ b, a′a′a′a, a′a′ ∗ a′, ∗aa′b′, ∗a′aa},

17. C17 = {aaaa, aa′aa′, aa′ ∗ a, a ∗ a′a′, a′aa′a′, a′a′a′a, a′a′ ∗ a′, a′ ∗ aa, ∗aaa′, ∗aa′a},

18. C18 = {aaaa, a ∗ a′a, abaa′, ab′ ∗ a′, a′a ∗ a, a′a′a′a, a′ ∗ aa′, a′b′a′a′, ∗a′aa, ∗ba′a′},

19. C19 = {aaaa, aab′a′, aa′ba, aa′b′∗, abba′, a′a′a′a, a′ ∗ aa, a′b ∗ a′, a′b′b′a′, ∗aa′a, ∗b′ba′},

20. C20 = {aaaa, aaba′, aa′b∗, aa′b′a, ab′b′a′, a′a′a′a, a′baa, a′bba′, a′b′a∗, a′b′a′a′, ∗aa′a, ∗bb′a′}.

�

Each of these twenty codes can be partially visualized. For example, let C = C16. We have

C4,a = {aaaa, a′a′a′a, ∗a′aa}, C4,a′ = { a ∗ aa′, a′a′ ∗ a′},

C4,b = {aaa′b, a′a ∗ b}, C4,b′ = {a′aab′, ∗aa′b′}, C4,∗ = {aa′a′∗}.

The two codes C4,a
4c = {aaa, a′a′a′, ∗a′a} and C4,a′

4c = { a ∗ a, a′a′∗} are equivalent and

similarly the codes C4,b
4c = {aaa′, a′a∗} and C4,b′

4c = {a′aa, ∗aa′} are equivalent. Below we draw
a realizations of C.



8 The structure of tilings

1

2

3

u

u

u

u

u

u

u

u

u

u

1

2

3

4

5

6

7

8

9

10

u1

a

b

Figure 4: In the figure (a) we see a realization of the code (C4,a∪C4,b∪C4,∗)4c (that is, the code C4,a∪C4,b∪C4,∗

with the fourth coordinate removed) and similarly, in (b) we have a realization of the code (C4,a′

∪C4,b′ ∪C4,∗)4c .

The realization f(C) of C = C16 is such that
⋃

f(C) = [0, 2]4, fi(a) = [0, 1) and fi(∗) = [0, 2] for i = 1, 2, 3.

Moreover, f(C4,∗
4c

) = {u1}, f(C4,a′

4c
) = {u2, u3}, f(C4,a

4c
) = {u4, u6, u5}, f(C4,b′

4c
) = {u8, u7} and f(C4,b

4c
) =

{u9, u10}.

Note that Theorem 2.2 describes a meta-structure of a 2-periodic cube tiling of R
4. To

describe it we introduce some definitions. Two cubes in any cube tiling [0, 1)d+T satisfy Keller’s

condition: For every two vectors t, t′ ∈ T there is i ∈ [d] such that ti− t′i ∈ Z\{0}. A set F ⊂ R
d

is said to be a polycube if there is a family of cubes [0, 1)d +T satisfying Keller’s condition, which
is a tiling of F , that is if

⋃

t∈T [0, 1)d+t = F . A non-empty polycube B ⊆ R
d is a block if it is a box

B = B1×· · ·×Bd. A cube tiling [0, 1)d +T is layered if there are a ∈ [0, 1) and i ∈ [d] such that
for every t ∈ T we have ti = a+z for some z ∈ Z. We say that a cube tiling T is blockable if there
is a finite family of disjoint blocks B, |B| > 1 such that every cube from the tiling T is contained
in exactly one block of the family B. Clearly, every layered cube tiling of Rd is blockable. An
interesting question is which non-layered cube tilings of Rd are blockable. In [19] it was showed
that every non-layered cube tiling of R3 is blockable, and in [10] it was proved that the same is
no longer true for cube tilings of Rd for d ≥ 4. Obviously, every 2-periodic cube tiling of Rd is
blockable into 2d blocks, since every f(v), v ∈ V , is a block (recall that f(V ) is a realization of a
cube tiling code V ). Therefore, regarding a 2-periodic cube tiling of Rd it is interesting to obtain
its twin pair free family of blocks B in which union of any two blocks of B is not a block. Thus,
Theorem 2.2 says that cubes of a 2-periodic non-layered cube tiling T of R4 can be arranged
into one of twenty twin pair free families of blocks B. Such families can be obtained from the
codes C i, i ∈ [20], given in Theorem 2.2 in the following way: If T is a realization f(V ) of a
cube tiling code V (the way of such realization is given in Section 1), and FV = C i, then taking
Ai = fi(a), Bi = fi(b) and fi(∗) = R we have B = {f1(v1) × · · · × f4(v4) : v1 . . . v4 ∈ C i}. For
example, if FV = {a ∗ aa, a ∗ ∗a′, a′ ∗ a∗, a′ ∗ a′a′, ∗ ∗ a′a} and fi(a) = A for some fixed proper
subset A ⊂ R and every i ∈ [4], then

B = {A× R× A2, A× R
2 × A′, A′ × R× A× R, A′ × R× (A′)2, R2 ×A′ ×A},

where A′ = R \ A.
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3 Enumeration of cube tiling codes in dimension four

Having computed all twin pair free codes C1 −C20 together with the code C21 = {l ∗ ∗∗, l′ ∗ ∗∗}
we are able to find the family of all codes V ⊂ S4, where S = {a1, a

′
1, . . . , a8, a

′
8}, that is, the

family of all possible cube tiling codes in dimension four. To do this it is enough to replace every
improper word in a code C i, i ∈ [21], by an equivalent code which contains only proper words.
More precisely, if v ∈ C i has, up to isomorphism, the form v = ∗v2v3v4, then it is replaced by
two words: u = pv2v3v4 and w = p′v2v3v4, where p ∈ S; if, up to isomorphism, v = ∗ ∗ v3v4,
then it is replaced by four words: u = psv3v4, w = p′sv3v4, p = ls′v3v4 and q = l′s′v3v4. Since
{∗ ∗ ∗} ≡ {s ∗ ∗, s′ ∗ ∗} and {∗ ∗ ∗} ≡ {sss, s′s′s′, ∗ss′, s′ ∗ s, ss′∗}, a word l ∗ ∗∗ is replaced, up
to isomorphism, by two words ls ∗ ∗ and ls′ ∗ ∗ or by five words lsss, ls′s′s′, l ∗ ss′, ls′ ∗ s, lss′∗.

After those substitutions we obtain a cube tiling code V = V (C i). About such V we shall
say that it is made on the plane of the code C i. (Thus, Theorem 2.2 says that every non-layered
cube tiling code is made on the plane of one of the codes C1 − C20.) For example we find the
general form of the code V (C10). We have:

{b′∗∗a′} ≡ {b′usa′, b′u′sa′, b′ls′a′, b′l′s′a′}, {a∗a′a} ≡ {asa′a, as′a′a}, {a′a∗a} ≡ {a′aqa, a′aq′a},

{ba ∗ a′} ≡ {bapa′, bap′a′}, {ba′a∗} ≡ {ba′aq, ba′aq′}.

Thus,
V (C10) = {aaaa, asa′a, as′a′a, a′aqa, a′aq′a, a′a′a′a, bapa′, bap′a′,

ba′aq, ba′aq′, ba′a′a′, b′a′aa, b′lsa′, b′l′sa′, b′ls′a′, b′l′s′a′},

where l, p, q, s ∈ S.

3.1 Non-isomorphic forms

Let S = {a1, a
′
1, . . . , a8, a

′
8}. Recall that, the elements of the group G(S4) are mappings of the

form h ◦ σ̄, where h and σ̄ were defined in Section 1. It is easy to check that G(Sd) is of order
4!(8!28)4. Clearly, to decide whether two codes V, U ⊂ S4 are isomorphic it is too long to check
all elements of G(S4). In this section we show which elements of G(S4) have to be considered
and next we describe an algorithm that allows us to find all non-isomorphic cube tiling codes in
dimension four.

Let MV = [aij ]4×8, where aij = (|V i,aj |, |V i,a′j |). We shall say that a code V has a compressed

form, if MV has the following two properties: For every i ∈ [4] if aij = (0, 0), then aik = (0, 0)
for every k ≥ j. Secondly, |{k : aik 6= (0, 0)}| ≤ |{k : ajk 6= (0, 0)}| for every i ≤ j. Clearly,
applying step by step position bijections (compare Section 1) and next permuting positions (if
needed) we may pass from V into an isomorphic form V̄ of V which has a compressed form. For
example, if

V = {a1a3a1a1, a1a3a
′
1a1, a1a4a

′
1a1, a1a

′
3a4a1, a1a

′
3a

′
4a1, a1a

′
4a1a

′
1, a

′
1a1a1a

′
1, a

′
1a1a3a1,
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a′1a1a
′
3a1, a

′
1a

′
1a1a2, a

′
1a

′
1a1a

′
2, a

′
1a

′
1a

′
1a1, a2a5a

′
1a

′
1, a2a

′
5a

′
1a

′
1, a

′
2a4a

′
1a

′
1, a

′
2a

′
4a

′
1a

′
1},

then

V̄ = {a1a1a1a2, a1a1a
′
1a2, a1a1a

′
1a3, a1a1a2a

′
2, a1a1a

′
2a

′
2, a1a

′
1a1a

′
3, a

′
1a

′
1a1a1, a

′
1a1a2a1,

a′1a1a
′
2a1, a

′
1a2a1a

′
1, a

′
1a

′
2a1a

′
1, a

′
1a1a

′
1a

′
1, a2a

′
1a

′
1a4, a2a

′
1a

′
1a

′
4, a

′
2a

′
1a

′
1a3, a

′
2a

′
1a

′
1a

′
3},

and

MV̄ =









(6, 6) (2, 2) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(7, 7) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(6, 6) (1, 1) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(3, 3) (2, 2) (2, 2) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0)









From now on, we assume that all codes have compressed forms. A permutation of rows in
MV , a permutation of entries in a row of MV , as well as the permutation of elements in a pair
(n, n), where n > 0 will be called elementary operations on MV . It is easy to see that if two
codes V, U are isomorphic, then the matrices MV and MU are equal, up to permutations of rows
and permutations of entries in a row. (Clearly, the relation V ≈ U if and only if the matrices
MV and MU are equal, up to permutations of rows and permutations of entries in a row is a
equivalence relation.) Moreover, an isomorphism between V and U , if it exists, may be derived
from elementary operations on MV . For example, if

MU =









(1, 1) (7, 7) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(6, 6) (2, 2) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(6, 6) (1, 1) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(3, 3) (2, 2) (2, 2) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0)









then in order to obtain MV̄ from MU we have to permute first two rows in MU and next permute
the entries (1, 1) and (7, 7). Thus, applying the permutation σ = (2134) in every word of
U and next applying the position bijection (a2, a

′
2) → (a1, a

′
1), (a1, a

′
1) → (a2, a

′
2) at position

2 ((ak, a
′
k) → (ak, a

′
k) for k ∈ {3, ..., 8}) we obtain a code U ′ which is isomorphic to U and

MU ′ = MV̄ . Clearly, U ′ need not to be isomorphic to V̄ . To check whether U ′ and V̄ are
isomorphic we have to apply the rest mappings h ◦ σ̄ to U ′, which steam from the elementary
operations on MU ′ and do not change the matrix MU ′. These are: The permutation of the
entries (1, 1) and (1, 1) in the third row (these induces the position bijection (a2, a

′
2) → (a3, a

′
3),

(a3, a
′
3) → (a2, a

′
2) at position 3 and similarly the permutation of the entries (2, 2) and (2, 2)

in the fourth row (these induces the same position bijection as above, but now at position 4).
Additionally, we have to apply permutations of the form (ai, a

′
i) → (a′i, ai) in every case when

|V j,ai| > 0, j ∈ [4], i ∈ [8] (they steam from the permutation of elements in a pair (n, n), n > 0).
Thus, to check whether U ′ and V̄ are isomorphic we have to check 4 × 4 × 16 × 32 mappings
h ◦ σ̄ ∈ G(S4). The last factor is always the biggest as codes are compressed and thanks to
the cylindrical structure of the codes we may skip the computations that correspond to it. To
do that, let I consists of all 4 × 4 × 16 mappings h ◦ σ̄ ∈ G(S4), AV̄ = {V̄ 4,s

4c : s ∈ PV̄ } and
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BU ′ = {(U ′)4,s4c : s ∈ PU ′}, where PU ′, PV̄ ⊂ S contain only the letters that appear at the fourth
position in U ′ and V̄ , respectively. It is easy to see that by the cylindrical structure of cube
tiling code, U ′ and V̄ are isomorphic if and only if there is h ◦ σ̄ ∈ I such that h ◦ σ̄(BU ′) = AV̄ ,
where h ◦ σ̄(BU ′) = {h ◦ σ̄(U ′)4,s4c : s ∈ PU ′}.

Let el(V, U) = 1 if U can be obtained from V by applying one of isomorphisms which steam
from the above described elementary operations, and let el(V, U) = 0 otherwise. Thus, V and
U are isomorphic if and only if el(V, U) = 1.

Before evaluating el(V, U) it is useful to check an isomorphism invariant, especially if such
verification is quick. Let V be a code, and let t(V ) = (t1, t2, t3, t4) be a vector such that ti,
i ∈ [4], is a number of all twin pairs v, u ∈ V such that vi = u′

i. It is easy to see that t(V )
is, up to permutation, an isomorphism invariant. Let tp(V, U) = 1 if t(V ) and t(U) are, up to
permutation, equal and tp(V, U) = 0 otherwise. Clearly, if tp(V, U) = 0, then V and U cannot
be isomorphic and thus el(V, U) = 0.

Let V ⊂ Sd be a cube tiling code (in compressed form), and let Si(V ) be the set of the letters
which appear in the words v ∈ V at a ith position, i ∈ [d]. For example, for a code U with the
matrix MU given above we have S1(U) = S2(U) = {a1, a

′
1, a2, a

′
2}, S3(U) = {a1, a

′
1, a2, a

′
2, a3, a

′
3}

and S4(U) = {a1, a
′
1, ..., a4, a

′
4}. Let N k

4 be a family of all non-isomorphic cube tiling codes in
dimension four such that S4(V ) = {a1, a

′
1, ..., ak, a

′
k}. To compute a set N4 of all non-isomorphic

cube tiling codes in dimension four we shall divide the computations into three parts: In the
first part we shall indicate a family N 6

4 . To do this, we shall proceed as follows:

Algorithm 2.

Input. The family {C i : i ∈ [21]}.
Output. The family N 6

4 .

1. Compute all codes V ⊂ S4, S = {a1, a
′
1, ..., a6, a

′
6}, on the plane of the codes C i for

i ∈ [21] in the manner described in the previous section. Next, every such code is transformed
into compressed form. Denote the family of all such codes by F .

2. Divide the set F into equivalence classes (Fi)i∈[m] of the relation ≈. (V ≈ U if and only
if the matrices MV and MU are equal, up to permutations of rows and permutations of entries
in a row.)

3. For every i ∈ [m] indicate the set N 6
4 (i) consisting of all non-isomorphic codes in Fi.

To find out whether codes V, U ∈ Fi are isomorphic evaluate first tp(V, U) and if tp(V, U) = 1,
evaluate el(V, U). Since codes from different sets N 6

4 (i) and N 6
4 (j) cannot be isomorphic, we

have N 6
4 =

⋃

i∈[m] N
6

4 (i).

Since indication of N 7
4 and N 8

4 according the above algorithm would be unnecessarily long
we shall take a shortcut to compute these two families. Let N3 be a family of all non-isomorphic
cube tilings in dimension three. (The family N3 can be easily indicated even by hand com-
putations.) We have |N3| = 17. The set N 8

4 can be derived immediately from N3 thanks to
the cylindrical structure of a cube tiling code. To see this, let V ⊂ Sd−1 be a cube tiling code
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and let πk
V = {V 1, ..., V k} be a partition of V . Let V s = {v1...vd−1s : v ∈ V } for s ∈ S . It

follows from the cylindrical structure of a cube tiling code that for every pairwise different letters
{ai1, a

′
i1
..., aik , a

′
ik
} ⊂ S and every cube tiling codes V,W ⊂ Sd−1 the set of words

U(πk
V , π

k
W ) = V 1ai1 ∪W 1a′i1 ∪ . . . ∪ V kaik ∪W ka′ik (3.1)

is a cube tiling code in dimension d if and only if V i ≡ W i for every i ∈ [k] (compare [7, 22]).
Since S4(V ) = {a1, a

′
1, ..., a8, a

′
8} for V ∈ N 8

4 , we have V i = W i for every i ∈ [8]. Thus,

N
8

4 = {U(π8
V , π

8
V ) : V ∈ N3}.

In the case of the set N 7
4 we consider a family of codes U(π7

V , π
7
W ) where V,W are cube tiling

codes in dimension three. Since |V | = 8, we have |V i| = |W i| = 2 for exactly one i ∈ [7]. It
is easy to check that in this case V i ≡ W i and V i 6= W i if and only if both codes V i,W i are
twin pairs. Let A be the family of the codes U(π7

V , π
7
V ), V ∈ N3, such that V i is not a twin

pair for each i ∈ [7]. Moreover, let B the family of all codes U(π7
V , π

7
W ), V ∈ N3, where V i is

a twin pair for some i ∈ [7] and W is a cube tiling code in dimension three such that W i ≡ V i

and W j = V j for j 6= i. Since two codes V ∈ A and U ∈ B cannot be isomorphic, to obtain
N 7

4 it is enough to compute sets N (A ) and N (B) of all non-isomorphic codes in A and B,
respectively. We do it in the manner described in the second and the third step of Algorithm 2,
where F ∈ {A ,B}. After this, we get

N
7

4 = N (A ) ∪ N (B)

and finally
N4 = N

6
4 ∪ N

7
4 ∪ N

8
4 .

3.2 The number of all cube tiling codes in dimension four

To compute the number of all cube tiling codes V ⊂ Sd we may first find some smaller set of
codes. To do this, let us note that for a given code V ⊂ Sd the previously defined set of the
letters Si(V ) is usually a proper subset of S. For i ∈ [d] let Hi(V ) be the set of position bijections
hi such that hi(Si(V )) = Si(V ). Moreover, let Σ(V ) consists of all permutations σ of [d] such
that if σ(i) 6= i, then Si(V ) = Sσ(i)(V ) for i ∈ [d]. Observe that if h◦ σ̄ = (h1, ..., hd) ◦ σ̄ ∈ G(Sd)
is such that hi 6∈ Hi(V ) for some i ∈ [d] or σ 6∈ Σ(V ) (recall that σ̄(v) = vσ(1) . . . vσ(d)), then
V 6= h ◦ σ̄(V ). Let us call the set

om(V ) = {h ◦ σ̄(V ) : σ ∈ Σ(V ) and hi ∈ Hi for i ∈ [d]}

a minimal orbit of V . It is easy to see that that having the cardinality of the minimal orbit of a
cube tiling code V ⊂ Sd we are able to calculate the cardinality of the whole orbit o(V ), since

|o(V )| = (d!/|Σ(V )|)

(

k

k1

)

· · ·

(

k

kd

)

|om(V )|, (3.2)
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where S = {a1, a
′
1, ..., ak, a

′
k} and ki = 1

2
|Si(V )| for i ∈ [d]. Therefore, to find the number of all

cube tiling codes in dimension four, which is equal to Md =
∑

V ∈Nd
|o(V )|, where Nd is a family

of all non-isomorphic cube tiling codes in dimension d, it is enough to compute the numbers
(|om(V )|)V ∈Nd

and next apply the formula (3.2). It seems that beside Md it is worth to find the
sum Mm

d =
∑

V ∈Nd
|om(V )|. We call Mm

d the total number of minimal orbits.

Remark 3.1 If the number |om(V )| is interpreted as a measure of the complexity of the code V
it should be low for the simplest codes. A cube tiling code V whose combinatorics is the simplest
is called simple (or regular) code in which vi = ui or vi = u′

i for every v, u ∈ V and every i ∈ [d]
(clearly, it is isomorphic to the binary code {0, 1}d). For example, V = {aa, aa′, a′a, a′a′} is a
simple cube tiling code in dimension two. Then Si(V ) = {a, a′} for i = 1, 2. If we consider
the family of all cube tiling codes in dimension two we have to, by Lemma 2.1, consider codes
written down in the alphabet S = {a, a′, b, b′}. Then |o(V )| = 4 but |om(V )| = 1. Similarly, for
a simple code V ⊂ S4, S = {a1, a

′
1, ..., a8, a

′
8}, we have |o(V )| = 4096 and |om(V )| = 1.

On the other hand every cube tiling code is build up from pieces of simple codes called
simple components, that is, V = P 1 ∪ . . . ∪ P n, where P i = V ∩ U i 6= ∅ and U i is a simple cube
tiling code for i ∈ [n]. (The structure of simple components P i are subjected certain interesting
restrictions, see [13].) In this approach, for the simple code V ∈ Nd the number |o(V )| says how
many ‘building blocks’ to create cube tiling codes we have. Therefore, in the next section we
give both numbers M4 and Mm

4 .

3.3 Results

In the computations we used 8-core 3.4-GHz processor and the indication of a set N4 consisting
of all non-isomorphic cube tiling codes in dimension four took about two days (The code was
written in Python.) By Lemma 2.1, to obtain these cube tiling codes it is enough to consider
codes that are written down in the alphabet S = {a1, a

′
1, ..., a8, a

′
8}.

Theorem 3.1 There are N4 = 27, 385 non-isomorphic cube tiling codes in dimension four, and

the total number of such codes is equal to M4 = 17, 794, 836, 080, 455, 680. Moreover, Mm
4 =

1, 108, 646, 656. In particular, there are N4 non-isomorphic 2-periodic cube tilings of R4, cube

tilings of T4 and r-perfect codes in Z4r+2 in the maximum metric, and the total number and the

total number of minimal orbits of such tilings and codes are equal to M4 and Mm
4 , respectively.

�

Below we present the cardinalities o of orbits o(V ) of the codes V ∈ N4 and the number
N(o) of codes in N4 with the cardinality o.
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o N(o) o N(o) o N(o) o N(o)
4,096 1 924,844,032 105 37,764,464,640 2 906,347,151,360 45

114,688 1 944,111,616 4 38,843,449,344 1091 932,242,784,256 52
344,064 2 990,904,320 9 41,617,981,440 23 971,086,233,600 426
458,752 2 1,011,548,160 2 45,317,357,568 270 1,019,640,545,280 5
917,504 2 1,078,984,704 128 48,554,311,680 282 1,109,812,838,400 26

1,204,224 1 1,083,801,600 1 52,022,476,800 2 1,165,303,480,320 493
1,376,256 4 1,156,055,040 286 55,490,641,920 293 1,223,568,654,336 4
2,408,448 2 1,213,857,792 4 56,646,696,960 29 1,359,520,727,040 136
2,752,512 4 1,258,815,488 1 58,265,174,016 83 1,456,629,350,400 42
3,440,640 1 1,387,266,048 184 60,692,889,600 1 1,553,737,973,760 298
4,128,768 5 1,618,477,056 235 64,739,082,240 594 1,631,424,872,448 29
4,816,896 5 1,734,082,560 27 67,976,036,352 52 1,664,719,257,600 11
5,505,024 2 1,849,688,064 5 69,363,302,400 213 1,699,400,908,800 2
5,619,712 1 1,888,223,232 35 72,831,467,520 1 1,747,955,220,480 5
8,257,536 6 1,981,808,640 1 75,528,929,280 3 1,812,694,302,720 18
9,633,792 11 2,023,096,320 7 77,686,898,688 738 1,942,172,467,200 310
10,321,920 2 2,157,969,408 27 83,235,962,880 56 2,039,281,090,560 15
13,762,560 1 2,312,110,080 476 90,634,715,136 89 2,219,625,676,800 5
16,515,072 23 2,427,715,584 10 97,108,623,360 1052 2,330,606,960,640 399
19,267,584 25 2,517,630,976 2 101,964,054,528 1 2,447,137,308,672 3
20,643,840 5 2,774,532,096 267 104,044,953,600 4 2,719,041,454,080 70
27,525,120 3 3,236,954,112 758 110,981,283,840 168 2,913,258,700,800 136
28,901,376 3 3,468,165,120 112 113,293,393,920 96 3,107,475,947,520 18
33,030,144 6 3,776,446,464 58 116,530,348,032 171 3,262,849,744,896 6
33,718,272 3 4,046,192,640 34 121,385,779,200 16 3,329,438,515,200 1
38,535,168 50 4,335,206,400 1 129,478,164,480 416 3,398,801,817,600 7
41,287,680 9 4,624,220,160 283 135,952,072,704 147 3,495,910,440,960 10
44,957,696 2 4,855,431,168 47 138,726,604,800 182 3,641,573,376,000 2
55,050,240 1 5,549,064,192 249 145,662,935,040 28 3,884,344,934,400 218
57,802,752 27 5,664,669,696 10 155,373,797,376 88 4,078,562,181,120 32
67,436,544 5 6,473,908,224 962 166,471,925,760 53 4,369,888,051,200 1
72,253,440 3 6,936,330,240 351 169,940,090,880 2 4,661,213,921,280 174
77,070,336 28 7,283,146,752 1 194,217,246,720 1557 5,438,082,908,160 20
78,675,968 1 7,552,892,928 69 203,928,109,056 9 5,826,517,401,600 175
82,575,360 31 8,092,385,280 188 208,089,907,200 17 6,117,843,271,680 1
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o N(o) o N(o) o N(o) o N(o)
86,704,128 4 8,670,412,800 13 221,962,567,680 13 6,797,603,635,200 5
89,915,392 2 9,248,440,320 223 226,586,787,840 152 6,991,820,881,920 19
110,100,480 3 9,441,116,160 1 233,060,696,064 259 7,283,146,752,000 6
115,605,504 99 9,710,862,336 252 242,771,558,400 76 7,768,689,868,800 99
134,873,088 19 10,404,495,360 4 258,956,328,960 70 8,157,124,362,240 24
144,506,880 6 11,098,128,384 34 271,904,145,408 186 8,739,776,102,400 2
154,140,672 8 11,329,339,392 63 277,453,209,600 155 9,322,427,842,560 54
165,150,720 26 12,138,577,920 5 291,325,870,080 116 9,710,862,336,000 1
173,408,256 8 12,947,816,448 311 302,115,717,120 3 10,196,405,452,800 1
202,309,632 1 13,872,660,480 577 312,134,860,800 1 10,876,165,816,320 1
231,211,008 227 14,566,293,504 3 332,943,851,520 18 11,653,034,803,200 126
247,726,080 5 15,105,785,856 12 339,880,181,760 24 12,235,686,543,360 2
269,746,176 74 15,173,222,400 1 364,157,337,600 1 13,595,207,270,400 1
289,013,760 21 16,184,770,560 703 388,434,493,440 1372 13,983,641,763,840 12
314,703,872 1 16,994,009,088 2 407,856,218,112 24 14,566,293,504,000 17
330,301,440 20 17,340,825,600 36 416,179,814,400 26 15,537,379,737,600 26
346,816,512 20 18,496,880,640 37 453,173,575,680 101 16,314,248,724,480 3
359,661,568 1 19,421,724,672 747 466,121,392,128 219 17,479,552,204,800 7
404,619,264 5 20,808,990,720 8 485,543,116,800 266 18,644,855,685,120 7
462,422,016 302 22,658,678,784 176 543,808,290,816 70 20,392,810,905,600 2
472,055,808 1 24,277,155,840 34 554,906,419,200 86 23,306,069,606,400 55
495,452,160 1 25,895,632,896 17 582,651,740,160 297 27,967,283,527,680 3
505,774,080 1 27,745,320,960 605 604,231,434,240 1 29,132,587,008,000 14
539,492,352 155 28,323,348,480 4 624,269,721,600 1 31,074,759,475,200 5
578,027,520 106 29,132,587,008 26 679,760,363,520 115 34,959,104,409,600 5
629,407,744 3 30,211,571,712 1 728,314,675,200 7 43,698,880,512,000 1
660,602,880 10 32,369,541,120 1060 776,868,986,880 580 46,612,139,212,800 14
693,633,024 63 33,988,018,176 8 815,712,436,224 38 58,265,174,016,000 8
809,238,528 46 34,681,651,200 117 832,359,628,800 22 69,918,208,819,200 1
867,041,280 3 36,415,733,760 1 873,977,610,240 2

Table 1: The cardinalities o and the number N(o) of codes in N4 with the cardinality o.

In Table 2 we present the numbers n(c) of codes V ∈ N4 with the distribution c = (c1, c2, c3, c4),
where ci, i ∈ [4], is the number of different pairs of letters (aj , a

′
j), j ∈ [8], which appear in the

code V at the ith position, that is, ci = |{j ∈ [8] : V i,aj ∪V i,a′j 6= ∅}|. In more geometric interpre-
tation, ci is the number of cylinders in the ith direction in a realization f(V ) (compare Figure
3).
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We give this classification as the vector c reflects the structure of a cube tiling code. The
codes are presented in compressed forms. There are 90 different distributions c.

c n(c) c n(c) c n(c)
(1, 1, 1, 1)b 1 (1, 2, 2, 2) 417 (1, 3, 4, 6) 12
(1, 1, 1, 2) 13 (1, 2, 2, 3) 2335 (1, 3, 4, 7)l 1
(1, 1, 1, 3) 44 (1, 2, 2, 4) 2120 (1, 3, 5, 5) 9
(1, 1, 1, 4) 66 (1, 2, 2, 5) 955 (1, 3, 5, 6)l 1
(1, 1, 1, 5) 43 (1, 2, 2, 6) 236 (1, 4, 4, 4) 32
(1, 1, 1, 6) 15 (1, 2, 2, 7) 32 (1, 4, 4, 5) 14
(1, 1, 1, 7) 3 (1, 2, 2, 8) 4 (1, 4, 4, 6)l 1
(1, 1, 1, 8) 1 (1, 2, 3, 3) 2972 (1, 4, 5, 5)l 2
(1, 1, 2, 2) 130 (1, 2, 3, 4) 3656 (2, 2, 2, 2)b 183
(1, 1, 2, 3) 768 (1, 2, 3, 5) 1270 (2, 2, 2, 3) 613
(1, 1, 2, 4) 938 (1, 2, 3, 6) 257 (2, 2, 2, 4) 332
(1, 1, 2, 5) 503 (1, 2, 3, 7) 33 (2, 2, 2, 5) 120
(1, 1, 2, 6) 141 (1, 2, 3, 8) 3 (2, 2, 2, 6) 29
(1, 1, 2, 7) 21 (1, 2, 4, 4) 906 (2, 2, 2, 7) 5
(1, 1, 2, 8) 3 (1, 2, 4, 5) 478 (2, 2, 2, 8) 1
(1, 1, 3, 3) 829 (1, 2, 4, 6) 79 (2, 2, 3, 3) 461
(1, 1, 3, 4) 1393 (1, 2, 4, 7) 8 (2, 2, 3, 4) 273
(1, 1, 3, 5) 591 (1, 2, 4, 8)l 1 (2, 2, 3, 5) 63
(1, 1, 3, 6) 140 (1, 2, 5, 5) 60 (2, 2, 3, 6) 9
(1, 1, 3, 7) 20 (1, 2, 5, 6) 14 (2, 2, 3, 7) 1
(1, 1, 3, 8) 2 (1, 2, 5, 7)l 1 (2, 2, 4, 4) 14
(1, 1, 4, 4) 479 (1, 2, 6, 6)l 2 (2, 2, 4, 5) 1
(1, 1, 4, 5) 309 (1, 3, 3, 3) 819 (2, 3, 3, 3) 109
(1, 1, 4, 6) 61 (1, 3, 3, 4) 1013 (2, 3, 3, 4) 57
(1, 1, 4, 7) 7 (1, 3, 3, 5) 264 (2, 3, 3, 5) 10
(1, 1, 4, 8) 1 (1, 3, 3, 6) 44 (2, 3, 3, 6) 1
(1, 1, 5, 5) 47 (1, 3, 3, 7) 6 (2, 3, 4, 4) 3
(1, 1, 5, 6) 13 (1, 3, 3, 8)l 1 (3, 3, 3, 3)b 9
(1, 1, 5, 7) 1 (1, 3, 4, 4) 325 (3, 3, 3, 4) 3
(1, 1, 6, 6) 2 (1, 3, 4, 5) 119 (3, 3, 3, 5) 1

Table 2: The distributions of cylinders. A lamination is marked by cl, and a balanced code by cb.

There are 10 laminations, the codes with the greatest possible number of cylinders in all
directions. It was conjecture in [4] that this number is equal to 2d − 1 and confirmed in [23].
Moreover, there are 193 balanced cube tiling codes (named in [12] as EDL-partition), that is,
codes in which the number of cylinders in all directions is the same.
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In the next table we present a distribution of codes V ∈ N4 depending on a number of letters
used in V . For k ∈ [8] let N k

4 consists of all codes V ∈ N4 such that V ⊂ {a1, a
′
1, ..., ak, a

′
k}

4

and there is i ∈ [4] with V i,aj ∪ V i,a′j 6= ∅ for every j ∈ [k]. In other words, V ∈ N k
4 if and only

if S4(V ) = {a1, a
′
1, ..., ak, a

′
k} (compare the previous section). We have

k |N k
4 | k |N k

4 | k |N k
4 | k |N k

4 |
1 1 3 8959 5 4859 7 139
2 744 4 11610 6 1057 8 17

Table 3: The cardinalities of the sets N k
4 for k ∈ [8].

Finally we present the current state of the classifications of cube tilings codes:

d N2
d Nd

d = 1 1 1
d = 2 2 2
d = 3 9 17
d = 4 744 27,385
d = 5 899,710,227 ?
d ≥ 6 ? ?

Table 4: In the second column the number N2

d of non-isomorphic cube tiling codes in dimension d that are written

down in the alphabet S = {a, a′, b, b′} is given. The number Nd of all non-isomorphic cube tiling codes is given

in the last column.

3.4 A note on the number of cube tiling codes in dimension five

At the end of this section let us discus briefly the problem of an estimation of the number M5.
To do this, we shall give a general formula for Md = |Md|, where Md is the set of all cube tiling
codes in dimension d written down in the alphabet S = {a1, a

′
1, ..., a2d−1 , a′2d−1}. Let S(n, k) be

the number of all partitions of an n-element set into k non-empty subsets (the Stirling number
of the second kind), and let Cn =

∑n

k=2

(

n

k

)

S(n, k)k!. Since the codes from Md are written down
in the alphabet S having 2d−1 pairs of letters ai, a

′
i, the number of all layered cube tiling codes

U(π1
V , π

1
W ) ⊂ Sd (compare (3.1)) is equal to 2d−1(Md−1(S))2, where Md−1(S) is the number of all

cube tiling codes in dimension d−1 but written down in the alphabet S. Additionally, the number
of all codes U(πk

V , π
k
V ) ∈ Md for k ∈ {2, 3, ..., 2d−1} is equal to Md−1(S)C2d−1 . Finally, let Ud be

the family of all cube tiling codes U ⊂ Sd such that U = U(πk
V , π

k
W ), where k ∈ {2, 3, ..., 2d−1}

and V i 6= W i for at least one i ∈ [k]. Thus,

Md = 2d−1(Md−1(S))2 + Md−1(S)C2d−1 + |Ud|. (3.3)

Unfortunately, we are not able to indicate the cardinality of Ud based only on the numbers
Md−1 and C2d−1 . The number |Ud| depends on pairs of polybox codes Vi,Wi ⊂ Sd−1 which are
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equivalent and Vi 6= Wi. The structure of some elements in Ud is substantially new and cannot
be realized by any cube tiling code in lower dimensions. For example, all cube tiling codes in
dimension two are layered, but in dimension three there is an element in U3 which is not a
layered code (Figure 2). Codes in Ud depend on rigid polybox codes: A polybox code Q is rigid
if Q ≡ P implies Q = P . For U(πk

V , π
k
W ) ∈ Ud at least one code V i for some i ∈ [k] is not rigid.

It is known ([11]) that for d = 4 there is, up to isomorphism, only one twin pair free polybox code
Q which is not rigid (Q contains twelve words). All other non-rigid polybox codes Q ⊂ S4 have
to contain a twin pair. So, let us suppose that in a partition πk

V of a cube tiling code V ⊂ Sd−1

there are m ≤ k codes V i from the representation (3.1) each containing a twin pair. Observe
now, that if Q = {v, u} is a twin pair in which for example vr = a1 and u′

r = a′1, then twin pairs
Qj = {vj, uj}, where vjr = aj, u

j
r = a′j , j ∈ {2, ..., 16} and vn = un = vjn = uj

n for n ∈ [4] \ {r},
are equivalent polybox codes to Q and Q ∩ Qj = ∅ for all j. Therefore, if Q ⊂ V i, then
there are at least 15 different codes W i such that V i ≡ W i and V i 6= W i, as it is enough to take
W i = V i\Q∪Qj . Thus, such V generates at least (16m−1)

(

16
k

)

(2k−2)m!(k−m)! codes of the form
U(πk

V , π
k
W ) ∈ U5. It seems that using Theorem 2.2 it is possible to give some estimation of |U5|.

We will not however try to do it here. Instead of it, we give the sum M̃5 = 24(M4(S))2+M4(S)C24 .
We have M4(S) = 619, 671, 688, 833, 358, 364, 672 and C16 = 18, 446, 723, 150, 919, 663, 616 and
consequently M̃5 = 6, 155, 318, 955, 547, 189, 794, 969, 842, 157, 424, 520, 300, 855, 296. Thus,

M5 > 6 × 1042.

4 Glue and cut procedure

Recall that a twin pair v, u is glued at the ith position if v, u is replaced by the improper word
w having the star at the ith position where vi = u′

i and wj = vj for all j 6= i (we called the
word w a gluing of v and u). Conversely, if an improper word w with exactly one star at the ith
position is replaced by a twin pair v, u such that vi = s, ui = s′, where s 6= ∗ and vj = uj = wj

for all j 6= i, then we say that w is cut at the ith position. Let V, U ⊂ (∗S)d be equivalent
polybox codes. We say that the polybox code U is obtained from the polybox code V by the
glue and cut procedure if there is a sequence of gluing and cutting leading from V to U . (The
glue and cut procedure was considered by K. Przes lawski and the author independently from
Dutour and Itoh ([6]). In [6, 22] this procedure is called switching.) For example, in Figure 5 we
see a visualization of passing from one polybox code to another.

In [6] it was shown that for all d ≤ 4 we may pass from an arbitrary cube tiling code
V ⊂ {a, a′, b, b′}d to an arbitrary cube tiling code U ⊂ {a, a′, b, b′}d by the glue and cut procedure,
and in [22] it was proved that the same is true for any two cube tiling codes V, U ⊂ {a, a′, b, b′}5.

Using the above result we are able to prove

Theorem 4.1 For every d ≤ 5 and S it is possible to pass from a cube tiling code V ⊂ Sd to a

cube tiling code U ⊂ Sd by the glue and cut procedure.
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Proof. By the results given before the theorem, it is enough to show that one may pass by the
glue and cut procedure form V to a cube tiling code V̄ ⊂ {a, a′, b, b′}d. It is easy to show that
this is possible for d ≤ 3.

Let d = 4. A twin pair free code FV of V has one of the forms given in Theorem 2.2 or V n−1

is, up to isomorphism, of the form {a ∗ ∗∗, a′ ∗ ∗∗} (see Section 2 for V n−1). Thus, every word
v ∈ FV ∪ V n−1 contains at most three stars. If v contains one, two or three stars and Uv ⊂ V is
the set of words that has been aggregated to v, that is, {v} ≡ Uv, then we may identify Uv with
a cube tiling code in dimension one, two or three, respectively. Thus, by the result mentioned
above, we may pass by the glue and cut procedure, from Uv to a code Ūv ⊂ {a, a′, b, b′}4. Since,
up to isomorphism, FV , V

n−1 ⊂ {a, a′, b, b′, ∗}4, it follows that we may pass by the glue and cut
procedure from V to a cube tiling code V̄ ⊂ {a, a′, b, b′}4.

Let d = 5. If FV = {∗ ∗ ∗ ∗ ∗}, then, up to isomorphism, V n−1 = {a ∗ ∗ ∗ ∗, a′ ∗ ∗ ∗ ∗}. As
above, for v ∈ V n−1 we may identify the codes Uv ⊂ V , where {v} ≡ Uv with cube tiling codes in
dimension four. Thus, by the first part of the proof we may pass by the glue and cut procedure
from V to V̄ ⊂ {a, a′, b, b′}5. Clearly, the same is true if FV 6= {∗∗∗∗∗} and FV ⊂ {a, a′, b, b′, ∗}5,
as each word in FV contains at most four stars.

So assume that there is i ∈ [5], say i = 1, and there are a, b, c ∈ S such that F 1,s
V ∪ F 1,s′

V 6= ∅
for s ∈ {a, b, c}. Thus, for at least one s, say it is s = c, we have

∑

v∈F
1,s

V
|v| ≤ 5 for s ∈ {c, c′}

(see (2.1)). Since FV is a twin pair free code, it is not hard to compute that the set F 1,c
V ∪ F 1,c′

V

has, up to isomorphism, one of the following forms:

1. F 1,c
V = {ca ∗ ∗a, caaaa′} and F 1,c′

V = {c′a ∗ a′a, c′aaa∗, c′aa′aa}

2. F 1,c
V = {ca ∗ a′a, ca ∗ ba′, caab′a′} and F 1,c

V = {c′aaa′∗, c′aaaa′, c′aa′a′a, c′aa′ba′}

3. F 1,c
V = {ca ∗ aa, caa ∗ a′, caa′a′a′} and F 1,c′

V = {c′a ∗ a′a′, c′aaa∗, c′aa′aa}

4. F 1,c
V = {c ∗ aaa, ca ∗ a′b, caaaa′} and F 1,c′

V = {c′aa ∗ b, c′aaab′, c′aa′a′b, c′a′aaa}

5. F 1,c
V = {ca ∗ aa, caa ∗ a′} and F 1,c′

V = {c′aaa∗, c′aa′aa, c′aaa′a′}

6. F 1,c
V = {ca ∗ aa, caaa′a} and F 1,c′

V = {c′aa ∗ a, c′aa′aa}

Let U ⊂ V 1,c∪V 1,c′ be such that U ≡ F 1,c
V ∪F 1,c′

V (that is, U consists of words v ∈ V which have

been glued to words from F 1,c
V ∪F 1,c′

V ). Knowing the forms of F 1,c
V ∪F 1,c′

V we may check that it is
possible to pass from U to a polybox code W by the glue and cut procedure, where W contains
only words with b or b′ at the first position. To do that, note that U1,c ≡ F 1,c

V and U1,c′ ≡ F 1,c′

V .
Let P1 = {v2v3v4v5 : v ∈ U1,c} and P2 = {v2v3v4v5 : v ∈ U1,c′}. It is easy to check that we may

pass from P1 to P2 for each form of F 1,c
V ∪ F 1,c′

V . (At the end of the proof we show how to pass
from P1 to P2 for the codes number one (Figure 5) and four.) Consequently, we can pass from
U1,c∪U1,c′ to cP2∪U1,c′ , where cP2 = {cv : v ∈ P2}. The code cP2∪U1,c′ consists of twin pairs of
the form cv, c′v, where v ∈ P2. Thus, we may pass by the glue and cut procedure from cP2∪U1,c′
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to W , where W contains only twin pairs of the form bv, b′v for v ∈ P2. Clearly, W ≡ F 1,c
V ∪F 1,c′

V .

Let Q = FV \ (F 1,c
V ∪ F 1,c′

V ) ∪W . Note that Q1,c ∪Q1,c = ∅. Thus, repeating such reductions we
may pass from V to Q by the glue and cut procedure, where Q ⊂ {a, a′, b, b′, ∗}5 and therefore,
we may pass by the glue and cut procedure from V to Q̄ ⊂ {a, a′, b, b′}5.

a b

1

2
3

Figure 5: Skipping in F
1,c
V and F

1,c′

V the first two letters we obtain the codes A = {∗ ∗ a, aaa′}, B = {aa∗, a′ ∗

a, aa′a}, respectively. A realization of A is given in the top left corner, and of B in the top right corner. In

picture (a) we have a realization of the code U1,c in which two first letters are skipped and similarly the picture

(b) presents the code U1,c′ with two first letters removed.

Observe that, the codes P1, P2 for the code F 1,c
V ∪ F 1,c′

V at position four cannot be rep-
resent in three dimensions. To show how to pass from P1 to P2 let p, q, s ∈ S, and let P1 =
{asa′b, as′a′b, qaaa, q′aaa, aaaa′}. We have {asa′b, as′a′b} → {aaa′b, aa′a′b} and {qaaa, q′aaa} →
{aaaa, a′aaa}. Next we pass from {aaaa, aaaa′} to {aaab, aaab′}. Thus, we have been passed
by the glue and cut procedure from P1 to the code {aaa′b, aa′a′b, aaab, aaab′, a′aaa}. Now
{aaa′b, aaab} → {aap′b, aapb}, which gives P2 = {aap′b, aapb, aa′a′b, aaab′, a′aaa}. �
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