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PROBABILISTIC ZERO FORCING ON RANDOM GRAPHS

SEAN ENGLISH, PAWE L PRA LAT, AND CALUM MACRURY

Abstract. Zero forcing is a deterministic iterative graph coloring process in which
vertices are colored either blue or white, and in every round, any blue vertices that
have a single white neighbor force these white vertices to become blue. Here we study
probabilistic zero forcing, where blue vertices have a non-zero probability of forcing
each white neighbor to become blue.

We explore the propagation time for probabilistic zero forcing on the Erdős-Réyni
random graph G(n, p) when we start with a single vertex colored blue. We show that

when p = log−o(1) n, then with high probability it takes (1 + o(1)) log2 log2 n rounds

for all the vertices in G(n, p) to become blue, and when logn/n ≪ p ≤ log−O(1) n,
then with high probability it takes Θ(log(1/p)) rounds.

1. Introduction

Zero forcing is an iterative graph coloring procedure which can model certain real
world propagation and search processes such as rumor spreading. Given a graph G
and a set of marked, or blue, vertices Z ⊆ G, the process of zero forcing involves the
application of the zero forcing color change rule in which a blue vertex u forces a non-
blue (white) vertex v to become blue if N(u) \ Z = {v}, that is, u forces v to become
blue if v is the only white neighbor of u.
We say that Z is a zero forcing set if when starting with Z as the set of initially

blue vertices, after iteratively applying the zero forcing color change rule until no more
vertices can force, the entire vertex set of G becomes blue. Note that the order in
which forces happen is arbitrary since if u is in a position in which it can force v, this
property will not be destroyed if other vertices are turned blue. As a result, we may
process vertices sequentially (in any order) or all vertices that are ready to turn blue
can do so simultaneously. The zero forcing number, denoted z(G), is the cardinality of
the smallest zero forcing set of G.
Zero forcing has sparked a lot of interest recently. Some work has been done on

calculating or bounding the zero forcing number for specific structures such as graph
products [8], graphs with large girth [6] and random graphs [1, 11], while others have
studied variants of zero forcing such as connected zero forcing [3] or positive semi-
definite zero forcing [2].
In the present paper we will be mainly concerned with a parameter associated with

zero forcing known as the propagation time, which is the fewest number of rounds
necessary for a zero forcing set of size z(G) to turn the entire graph blue. More formally,
given a graph G and a zero forcing set Z, we generate a finite sequence of sets Z0 (
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Z1 ( · · · ( Zt, where Z0 = Z, Zt = V (G), and given Zi, we define Zi+1 = Zi∪Yi, where
Yi ⊆ V (G)\Zi is the set of white vertices that can be forced in the next round if Zi is the
set of the blue vertices. Then the propagation time of Z, denoted pt(G,Z), is defined
to be t. The propagation time of the graph G is then given by pt(G) = minZ pt(G,Z),
where the minimum is taken over all zero forcing sets Z of cardinality z(G). Propagation
time for zero forcing has been studied in [9].

1.1. Probabilistic zero forcing. Zero forcing was initially formulated to bound a
problem in linear algebra known as the min-rank problem [8]. In addition to this appli-
cation to mathematics, zero forcing also models many real-world propagation processes.
One specific application of zero forcing could be to rumor spreading, but the determinis-
tic nature of zero forcing may not be able to fit the chaotic nature of real-life situations.
As such, probabilistic zero forcing has also been proposed and studied where blue ver-
tices have a non-zero probability of forcing white neighbors, even if there is more than
one white neighbor. More specifically, given a graph G, a set of blue vertices Z, and
vertices u ∈ Z and v ∈ V (G) \ Z such that uv ∈ E(G), in a given time step, vertex u
will force vertex v to become blue with probability

P(u forces v) =
|N [u] ∩ Z|
deg(u)

.

In a given round, each blue vertex will attempt to force each white neighbor indepen-
dently. If this happens, we may say that the edge uv is forced. A vertex becomes blue
as long as it is forced by at least one blue neighbor, or in other words if at least one
edge incident with it is forced. Note that if v is the only white neighbor of u, then with
probability 1, u forces v, so given an initial set of blue vertices, the set of vertices forced
via probabilistic zero forcing is always a superset of the set of vertices forced by tradi-
tional zero forcing. In this sense, probabilistic zero forcing and traditional zero forcing
can be coupled. In the context of rumor spreading, the probabilistic color change rule
captures the idea that someone is more likely to spread a rumor if many of their friends
have already heard the rumor.
Under probabilistic zero forcing, given a connected graph, it is clear that starting

with any non-empty subset of blue vertices will with probability 1 eventually turn the
entire graph blue, so the zero forcing number of a graph is not an interesting parameter
to study for probabilistic zero forcing. Initially in [12], the authors studied a parameter
which quantifies how likely it is for a subset of vertices to become a traditional zero
forcing set the first timestep that it theoretically could under probabilistic zero forcing.
Instead, in this paper, we will be concerned with a parameter that generalizes the

zero forcing propagation time. This generalization was first introduced in [7]. Given a
graph G, and a set Z ⊆ V (G), let ptpzf(G,Z) be the random variable that outputs the
propagation time when probabilistic zero forcing is run with the initial blue set Z. For
ease of notation, we will write ptpzf(G, v) = ptpzf(G, {v}). The propagation time for
the graph G will be defined as the random variable ptpzf(G) = minv∈V (G) ptpzf(G, v).
More specifically, ptpzf(G) is a random variable for the experiment in which n iterations
of probabilistic zero forcing are performed independently, one for each vertex of G, then
the minimum is taken over the propagation times for these n independent iterations.
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It is worth mentioning here that probabilistic zero forcing is closely related to the well-
studied push and pull models in theoretical computer science for rumor spreading. In
push, you start with an infected set of nodes, and at each time step, each infected node
chooses a neighbor independently and uniformly at random, and infects the neighbor, if
the neighbor is not already infected. Similarly in pull, at each time step, each uninfected
node chooses a neighbor uniformly at random, it becomes infected if the chosen neighbor
was already infected. Finally, the two models can be combined, which is denoted
push&pull, where at each time step infected vertices choose a random neighbor to try
to infect, and uninfected vertices choose a random neighbor to try to become infected.
Similarly to probabilistic zero forcing, the main parameter of interest is the propagation
time (or runtime) of these processes. The main differences between push and pull, and
probabilistic zero forcing is that in probabilistic zero forcing, a vertex can force more
than one of its neighbors to become blue at every stage, and the probability that a
specific blue vertex forces a specific white neighbor increases as more neighbors of the
blue vertex become blue. For more information on push, pull and push&pull, see [5, 13].
In [7], the authors studied probabilistic zero forcing, and more specifically the ex-

pected propagation time for many specific structures. A summary of this work is
provided in the following theorem. We write f = O(g) if there exists some absolute
constant c such that f ≤ cg, f = Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and
f = Ω(g).

Theorem 1.1. [7] Let n > 2. Then

• minv∈V (Pn) E(ptpzf(Pn, v)) =

{
n/2 + 2/3 if n is even

n/2 + 1/2 if n is odd,

• minv∈V (Cn) E(ptpzf(Cn, v)) =

{
n/2 + 1/3 if n is even

n/2 + 1/2 if n is odd,

• minv∈V (K1,n) E(ptpzf(K1,n, v)) = Θ(logn),
• Ω(log log n) = minv∈V (Kn) E(ptpzf(Kn, v)) = O(logn).

Recently, in [4], the authors used tools developed for Markov chains to analyze the
expected propagation time for many small graphs. The authors also showed, in addition
to other things, that minv∈V (Kn) E(ptpzf(Kn, v)) = Θ(log logn) and for any connected
graph G, minv∈V (G) E(ptpzf(G, v)) = O(n). This result was then improved very recently
in [14], where the authors showed that

log2 log2(n) ≤ min
v∈V (G)

E(ptpzf(G, v)) ≤ n

2
+ o(n)

for general connected graphs G.
The result of most interest to us is from [7], where in addition to the results mentioned

above, the authors also considered the binomial random graph G(n, p). More precisely,
G(n, p) is a distribution over the class of graphs with vertex set [n] in which every

pair {i, j} ∈
(
[n]
2

)
appears independently as an edge in G with probability p. Note that

p = p(n) may (and usually does) tend to zero as n tends to infinity. We say that G(n, p)
has some property asymptotically almost surely or a.a.s. if the probability that G(n, p)
has this property tends to 1 as n goes to infinity.
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Theorem 1.2. [7] Let 0 < p < 1 be constant. Then a.a.s. we have that

min
v∈V (G(n,p))

E(ptpzf(G(n, p), v)) = O((logn)2).

In addition to this result, the authors in [14] conjectured that for the random graph,
a.a.s. minv∈V (G(n,p)) E(ptpzf(G(n, p), v)) = (1 + o(1)) log logn. The main purpose of the
current work is to explore probabilistic zero forcing on G(n, p) in more detail. Instead
of considering the expectation of the propagation time, we will calculate bounds on the
propagation time that a.a.s. hold. We will write f = o(g) or f ≪ g if f/g → 0 in the
limit, and f ≫ g if g ≪ f . We will write f ∼ g if f = (1 + o(1))g. Our main result is
as follows:

Theorem 1.3. Suppose that p = p(n) is such that pn ≫ log n. Then, for each vertex
v ∈ V (G(n, p)), we have that a.a.s.

ptpzf(G(n, p), v) ≤ (1 + o(1))
(
log2 log2 n+ log3(1/p)

)
, and

ptpzf(G(n, p), v) ≥ (1 + o(1))max
(
log2 log2 n, log4(1/p)

)
.

In particular, if p = log−o(1) n (for example if p is a constant), then a.a.s.

ptpzf(G(n, p), v) ∼ log2 log2 n.

On the other hand, if log n/n ≪ p ≤ log−O(1) n, then a.a.s.

ptpzf(G(n, p), v) = Θ(log(1/p)).

1.2. Notation. We will use the notation N(v) and N [v] to denote the open and closed
neighborhoods of the vertex v, respectively. Given a set S ⊂ V (G), we write N(S)
for

(⋃
v∈S N(v)

)
\ S. Given two disjoint sets of vertices, A,B ⊆ V (G), we will use

E(A,B) to denote the edges with one endpoint in A and one endpoint in B, and
e(A,B) := |E(A,B)|. Similarly, we will write E(A) for the set of edges with both
endpoints in A, while e(A) := |E(A)|.
As mentioned earlier, given two functions f = f(n) and g = g(n), we will write

f = O(g) if there exists an absolute constant c such that f ≤ cg for all n, f = Ω(g) if
g = O(f), f = Θ(g) if f = O(g) and f = Ω(g), and we write f = o(g) or f ≪ g if the
limit limn→∞ f/g = 0. In addition, we write f = ω(g) or f ≫ g if g = o(f), and unless
otherwise specified, ω will denote an arbitrarily function that is ω(1), assumed to grow
slowly. We also will write f ∼ g if f = (1 + o(1))g. Through the paper, all logarithms
with no subscript denoting the base will be taken to be natural. Finally, as typical in
the field of random graphs, for expressions that clearly have to be an integer, we round
up or down but do not specify which: the choice of which does not affect the argument.

2. Probabilistic preliminaries

In this section we give a few preliminary results that will be useful for the proof of
our main result. First, we state a specific instance of Chernoff’s bound that we will find
useful, then we mention some specific expansion properties that G(n, p) has, and finally
we mention some helpful coupling results specific to probabilistic zero forcing that we
will use in the proof of our main result.
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2.1. Concentration inequalities. Throughout the paper, we will be using the follow-
ing concentration inequality. Let X ∈ Bin(n, p) be a random variable with the binomial
distribution with parameters n and p. Then, a consequence of Chernoff’s bound (see
e.g. [10, Corollary 2.3]) is that

P(|X − EX| ≥ εEX)) ≤ 2 exp

(
−ε2EX

3

)
(2.1)

for 0 < ε < 3/2. Moreover, let us mention that the bound holds for the general
case in which X =

∑n
i=1Xi and Xi ∈ Bernoulli(pi) with (possibly) different pi (again,

e.g. see [10] for more details).

2.2. Expansion properties. In this paper, we focus on dense random graphs, that is,
graphs with average degree d = p(n− 1) ≫ log n. Such dense random graphs will have
some useful expansion properties that hold a.a.s.

Theorem 2.1. Let ω = ω(n) be any function that tends to infinity as n → ∞. Suppose
that d = p(n − 1) ≥ ω log n. Let G = (V,E) ∈ G(n, p). Then a.a.s. the following
property holds. Any set S ⊆ V (Gn) of cardinality s = |S| ≤ n/(dω) satisfies

|N(S)| = sd(1 +O(ω−1/2)) ∼ sd.

In particular, we get that ∆(G) = d(1+O(ω−1/2)) ∼ d and δ(G) = d(1+O(ω−1/2)) ∼ d.

Proof. Let S ⊆ V , s = |S|, and consider the random variable X = X(S) = |N(S)|. We
will bound X from above and below in a stochastic sense. There are two things that
need to be estimated: the expected value of X , and the concentration of X around its
expectation.
It is clear that

EX =

(
1−

(
1− d

n− 1

)s)
(n− s)

=

(
1− exp

(
−ds

n
(1 +O(d/n))

))
(n− s)

=
ds

n
(1 +O(ds/n))(n− s)

= ds(1 +O(ω−1)).

We next use Chernoff’s bound, Equation (2.1), which implies that the expected
number of sets S that have

∣∣|N(S)| − d|S|
∣∣ > εd|S| and |S| ≤ n/(dω) is, for ε = 2/

√
ω,



6 SEAN ENGLISH, PAWE L PRA LAT, AND CALUM MACRURY

at most
n/(dω)∑

s=1

2ns exp

(
− ε2sd

3 + o(1)

)
=

n/(dω)∑

s=1

2ns exp

(
− 4s logn

3 + o(1)

)

≤
n/(dω)∑

s=1

2n−s/(3+o(1))

≤ 3 · 2n−1/(3+o(1)) +

n/(dω)∑

s=4

2n−s/(3+o(1))

≤ 6n−1/(3+o(1)) +
n

dω
2n−4/(3+o(1)) = o(1).

It follows immediately from Markov’s inequality that a.a.s. if |S| ≤ n/(dω), then

|N(S)| = d|S|(1 +O(ω−1/2)),

where the constant implicit in O() does not depend on the choice of S. �

2.3. Useful coupling. Before we state the lemma, let us recall a standard, but very
useful proof technique in probability theory that allows one to compare two random
variables or two random processes. Consider two biased coins, the first with probability
p of turning up heads and the second with probability q > p of turning up heads. For
any fixed k, the probability that the first coin produces at least k heads should be less
than the probability that the second coin produces at least k heads. However, proving it
is rather difficult with a standard counting argument. Coupling easily circumvents this
problem. Let X1, X2, . . . , Xn be indicator random variables for heads in a sequence of n
flips of the first coin. For the second coin, define a new sequence Y1, Y2, . . . , Yn such that
ifXi = 1, then Yi = 1; ifXi = 0, then Yi = 1 with probability (q−p)/(1−p). Clearly, the
sequence of Yi has exactly the probability distribution of tosses made with the second
coin. However, because of the coupling we trivially get that X :=

∑
Xi ≤ Y :=

∑
Yi

and so P(X ≥ k) ≤ P(Y ≥ k), as expected. We will say that X is (stochastically)
bounded from above by Y , which we denote by X � Y .
We will be using such coupling to simplify both our upper and lower bounds. Indeed,

for lower bounds, it might be convenient to make some white vertices blue at some
point of the process. Similarly, for upper bounds, one might want to make some blue
vertices white. Given a graph G, S, T ⊆ V (G), and ℓ ∈ N, let A(S, T, ℓ) be the event
that starting with blue set S, after ℓ rounds every vertex in T is blue.

Lemma 2.2. For all sets S1 ⊆ S2 ⊆ V (G), T ⊆ V (G), and ℓ ∈ N,

P(A(S1, T, ℓ)) ≤ P(A(S2, T, ℓ)).

Proof. Let us imagine running two instances of the probabilistic zero forcing process
simultaneously, one with initial blue set S1 and the other with initial blue set S2. The
process with initial blue set S1, which we will call the first process, will proceed purely at
random, while the process with initial blue set S2, henceforth called the second process,
will be coupled with the first process.
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More precisely, our goal is to show that the two processes can be coupled in such a
way that the set of blue vertices in the first process is always a subset of the set of blue
vertices in the second process. Once this is achieved, the claim follows immediately.
Clearly, since S1 ⊆ S2, the desired property initially holds. Suppose that in the first

process, a blue vertex v ∈ S1 ⊆ S2 is adjacent to a white vertex w /∈ S1. Then, v
forces w to become blue with probability p := |N [v] ∩ S1|/ deg(v). Note that v ∈ S2 so
v is also blue in the second process. If w is blue in the second process, then there is
nothing to do. Otherwise, we couple the process as follows. If w becomes blue in the
first process, then it also becomes blue in the second process. If w stays white in the
first process, then w becomes blue in the second process with probability (q−p)/(1−p),
where q := |N [v] ∩ S2|/ deg(v) ≥ p. As a result, w becomes blue in the second process
with probability p + (1 − p) · (q − p)/(1 − p) = p, as required. Finally, if v is blue in
the second process but it is white in the first one (that is, v ∈ S2 \S1), then w becomes
blue in the second process with probability q wheres v has no influence on w in the
first process. We repeat this argument in each round to get that every time a vertex is
forced to become blue in the first process, we will force the same vertex in the second
process, unless it is already blue. �

2.4. Alternative Forcing Processes. In addition to the above techniques, it will also
be useful to consider a more general way in which we may augment the forcing process
without compromising our ability to prove lower bounds on the propagation time.
Let us suppose that a subset B0 of the graph G = (V,E) is initially selected to be

blue, and a subset I ⊆ N0 is decided upon before the process begins. The forcing
process is then started, and is allowed to continue until we reach round i, where i is
the least element of I. At this point, suppose Bi denotes the blue vertices of G and
for each e ∈ E, consider the event in which e is forced in round i + 1 (this event can
occur only if e ∈ E(Bi, V \Bi)). Let Q

i
e denote the probability that this event occurs,

and choose Q̃i
e such that Qi

e ≤ Q̃i
e ≤ 1 for each e ∈ E(Bi, V \ Bi), and Q̃i

e = 0 for

e ∈ E \ E(Bi, V \ Bi) (here Q̃i
e is a random variable which depends on the process up

until time i). Define an alternative forcing rule at this time, where each edge e ∈ E is

instead independently forced with probability Q̃i
e. When an edge is successfully forced

in this framework, any of its remaining white endpoints are turned blue. After this
alternative forcing step is performed, the process continues up until the second smallest
i∗ ∈ I. At this point, step i∗ + 1 is executed in the same manner as step i + 1, and
the process then continues as in the original framework. We then continue in this way
until the entire graph is blue. Let us refer to a random process defined in this way for

index set I and random variables (Q̃i
e)i∈I,e∈E as an alternative forcing process.

We may couple an alternative forcing process with the standard forcing process in
such a way that the blue vertices in the alternative process always contain those of the
original process. More formally, suppose that a forcing process is started with initial
blue vertices S ⊆ V , and let A(S, T, ℓ) denote the event in which T ⊆ V is colored blue

after ℓ ≥ 0 steps. If an alternative forcing process (I, (Q̃i)i∈I,e∈E) is also started at S,

then let Ã(S, T, l) denote the event in which T is colored blue after ℓ steps. Under these
conditions, the following result holds:
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Lemma 2.3. For any alternative forcing process and any subsets S, T ⊆ V ,

P(A(S, T, ℓ)) ≤ P(Ã(S, T, ℓ))

for each ℓ ≥ 0.

3. Upper Bound

This section is devoted to prove the upper bound in the main result, Theorem 1.3.

Theorem 3.1. Suppose that p = p(n) is such that pn ≫ logn. Then for each v ∈
V (G(n, p)) we have that a.a.s.

ptpzf(G(n, p), v) ≤ (1 + o(1)) log2 log2 n + (1 + o(1)) log3(1/p).

Before we move to analyzing the process, let us mention how we are going to apply
Theorem 2.1. This is a standard technique in the theory of random graphs but it is quite
delicate. We wish to use the expansion properties guaranteed a.a.s. in Theorem 2.1,
but we also wish to avoid working in a conditional probability space.
Thus, we will use an unconditioned probability space, but we will provide an argument

that assumes we have the expansion properties of Theorem 2.1. Since these properties
hold a.a.s., the measure of the set of outcomes in which our argument does not apply
to is o(1), and thus can be safely excised at the end of the argument.

Proof of Theorem 3.1. Fix ω = ω(n) to be a function that tends to infinity arbitrarily
slowly so that some inequalities below hold. Let p = p(n) be such that d = p(n− 1) ≥
ω logn.

Phase 1: We start the process with an arbitrary vertex v ∈ V (G) and we expose all
edges from v to the rest of the graph. By Theorem 2.1, we may assume that deg(v) ∼ d.
This phase lasts

t1 :=
log logn

log log log n
= o(log log n)

rounds. We will prove that a.a.s. at the end of this phase at least

b1 := t1

(
1− log log log n

log logn

)
∼ t1

neighbors of v are blue. (Let us mention that the choice of t1 = t1(n) is rather arbi-
trary. Any function tending to infinity as n → ∞ would work. On the other hand,
it is convenient to have t1 = o(log log n) so that the length of this phase is negligible
compared to the total length.)
Fix any w ∈ N({v}). The probability that w is white at the end of Phase 1 is at

most
(
1− 1

deg(v)

)t1

≤ exp

(
− t1
deg(v)

)
= 1− t1

deg(v)
(1 +O(t1/d)) ≤ 1− q1

for

q1 :=
t1

deg(v)

(
1− log log n

log n

)
,
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as d ≫ log n. Hence, the number of neighbors of v that are blue at the end of Phase 1
can be stochastically lower bounded by a random variable X1 ∈ Bin(deg(v), q1) with
E[X1] = t1(1− log logn/ logn). After applying Chernoff’s bound (2.1) with

ε =
(log log logn)2/3

(log log n)1/2

we get that a.a.s. X1 = E[X1](1 + O(ε)) = t1(1 + O(ε)) ≥ b1. (Note that ε2t1 =
(log log logn)1/3 → ∞ as n → ∞.)

Phase 2: We start this phase with b1 blue vertices. Indeed, we know that after
Phase 1, a.a.s. we have at least b1 blue vertices, and via Lemma 2.2, we may assume
that we have exactly b1 vertices while still claiming an upper bound.
We will show that a.a.s., in each round of Phase 2, the number of blue vertices

increases by at least a multiplicative factor of A := 3(1−ω−1/4). This phase ends when
the number of blue vertices exceeds

b2 :=
n

dω
.

Let us note that for very dense graphs it might happen that b2 < b1 and if this happens,
then this phase actually does not occur. For sparser graphs, a.a.s. this phase lasts at
most

t2 := logA

(
b2
b1

)
= logA

(
n log log log n

dω log log n
(1 + o(1))

)
≤ logA(1/p)

=
log3(1/p)

log3A
= (1 +O(ω−1/4)) log3(1/p) ∼ log3(1/p)

rounds, provided that ω = ω(n) tends to infinity sufficiently slowly.
Suppose that at the beginning of some round, blue vertices form set S of size s = |S|,

where b1 ≤ s < b2. By Theorem 2.1, we may assume that |N(S)| = ds(1+O(ω−1/2)) ∼
ds and that δ(G) = ∆(G)(1 + O(ω−1/2)) = d(1 + O(ω−1/2)) ∼ d. Fix any w ∈ N(S)
and let v be a neighbor of w in S (if w has more than one neighbor in S, pick one of
them arbitrarily). Since v is not only blue but it has at least one blue neighbor (note
that the process guarantees that S induces a connected graph), v forces w to become
blue with the probability at least

2

deg(v)
=

2

(1 +O(ω−1/2))d
=

2 +O(ω−1/2)

d
>

2− ω−1/3

d
=: q2.

As a result, the number of vertices in N(S) that become blue at the end of this round
can be stochastically lower bounded by the random variableX2 ∈ Bin(|N(S)|, q2). Since
|N(S)| = ds(1+O(ω−1/2)), we have E[X2] = 2s(1+O(ω−1/3)). It follows from Chernoff’s
bound (2.1) applied with ε = ω−1/2 that X2 = 2s(1 + O(ω−1/3)) with probability
1− exp(−Θ(s/ω)). We will say that the round is bad if at the end of it the number of
blue vertices is less than As = 3s(1− ω−1/4), that is if s+X2 < As, which only occurs
when X2 < 2s(1− ω−1/4).
It is worth noting here that we are performing our calculations here on the assumption

that no bad rounds have occurred previously. This is justified by the observation that
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the probability that some round in Phase 2 is bad is at most
∑

i≥0

exp
(
−Θ

(
Aib1/ω

))
≤

∑

i≥0

2−i exp
(
−Θ

(
b1/ω

))
= 2 exp

(
−Θ

(
b1/ω

))
= o(1),

provided that ω = ω(n) tends to infinity sufficiently slowly. Hence, a.a.s. the second
phase ends with b2 blue vertices in at most t2 rounds (again, provided b2 > b1; otherwise
there is no Phase 2).
At this point, it will be useful to define the set S2 as the set of vertices that were

initially blue in the last round of Phase 2. This definition will be useful once we begin
Phase 4.

Phase 3: Suppose first that b2 ≥ b1, that is,

d =
n

b2ω
≤ n

b1ω
∼ n log log log n

ω log logn
.

The argument for very dense graphs can be easily adjusted, and we will come back to
this once we deal with sparser graphs.
We start this phase with b2 = n/(dω) blue vertices that form the set S. By Theo-

rem 2.1, we may assume that |N(S)| = db2(1+O(ω−1/2)) = (n/ω)(1+O(ω−1/2)) ∼ n/ω.
This phase lasts

t3 :=
log logn

log log log n
= o(log log n)

rounds. We will prove that a.a.s. at the end of this phase at least

b3 :=
n log log n

d(log log logn)2
≫ n

d

vertices of N(S) are blue.
Arguing as in Phase 2, in each round, each white vertex w in N(S) becomes blue

with probability at least q2 = (2 − ω−1/3)/d. Hence, the probability that w is blue at
the end of this phase is at least

1− (1− q2)
t3 ≥ 1− exp(−q2t3) = q2t3(1 +O(q2t3))

=
2t3
d
(1 +O(ω−1/3)) ≥ 2t3

d
(1− ω−1/4) =: q3,

provided that ω = ω(n) tends to infinity sufficiently slowly. As it was done earlier, the
number of vertices in N(S) that become blue at the end of this phase can be lower
bounded by random variable X3 ∈ Bin(|N(S)|, q3) with

E[X3] = |N(S)| · q3 ∼
n

ω
· 2t3
d

≫ n log logn

d(log log log n)2
,

and Chernoff’s bound (2.1) implies the conclusion.
Let S3 denote the initial set of blue vertices in the very last round of Phase 3. It

is worth noting here that the only edges of G(n, p) that are exposed at the end of
this phase are the edges within S3 and edges between S3 and V (G) \ S3. This will be
important in the next phase.



PROBABILISTIC ZERO FORCING ON RANDOM GRAPHS 11

Finally, let us discuss how to deal with very dense graphs. If d ≥ 2n/ log log log n,
then b1 > b3 and so there is nothing to do: there are more than b3 blue vertices at the
end of Phase 1 and so there is no Phase 2 nor Phase 3, so we just proceed immediately
to Phase 4. For d such that

n log log logn

ω log log n
∼ n

b1ω
< d <

2n

log log logn
,

there is no Phase 2 (b1 > b2) but there is Phase 3 (b1 < b3). This time, instead of starting
Phase 3 with all blue vertices, we select (arbitrarily, while retaining connectivity of the
blue subgraph) any subset of b2 blue vertices and proceed with the argument as before.
Lemma 2.2 implies that we may give away these vertices while still maintaining a strict
upper bound on the entire length of the process.

Phase 4: Up until this point, we have done our calculations assuming that the blue
vertices which are performing forces have only one blue neighbor. Heuristically, we
should not have lost too much with this assumption since thus far we have had only
a negligible number of blue vertices in each phase, and thus expect few edges within
the blue subgraph. In this phase, the set of blue vertices will grow to be large enough
that we expect many edge in the blue subgraph. Our analysis will exploit this fact to
provide better bounds on how fast the number of blue vertices grows with every step.
This phase consists of some number of rounds that are going to be indexed with

i ∈ N. At the beginning of this phase, we will partition the blue vertices into two sets,
Y0 and Y1, where

Y0 =





{v} if b1 > b2, b1 > b3
S2 if b2 > b1, b2 > b3

S3 if b3 > b1, b3 > b2,

and Y1 is the set of blue vertices that are not in Y0. Then, at the beginning of Round
i, let Yi be the set of vertices that were turned blue in the previous round. Thus the
Yj’s (0 ≤ j ≤ i) partition the blue vertices at the beginning of Round i. An important
property is that the only edges that are exposed at this point are the edges with at
least one endpoint in Y≤i−1, where Y≤ℓ :=

⋃ℓ
k=0 Yk.

Let us concentrate on a given Round i, i ∈ N. Let yi = |Yi| and suppose that

yi ≥ t2
i−1

p−182−2i ≥ t/p and yi ≤
√

n

pω
.

Let us label vertices of Yi as v1, v2, . . . , vyi. Our fist task is to identify a set Zi ⊆ Yi of
blue vertices with at least yip/3 neighbors in Yi. These vertices have a strong forcing
power; it will be convenient to use them to control the number of white vertices that
become blue at the end of this round. In order to simplify the argument and keep
events independent, let us partition Yi into Y −

i = {vℓ : ℓ ≤ yi/2} and Y +
i = Yi \ Y −

i .
Now, for any vertex v ∈ Y +

i , we expose edges from v to Y −
i and put v into Zi if Xv,

the number of neighbors in Y −
i , is at least yip/3. Note that Xv ∈ Bin(⌊yi/2⌋, p) with

E[Xv] ∼ yip/2 → ∞ so v ∈ Zi with probability at least 1/2 (in fact, it tends to 1).
Hence, |Zi| can be stochastically lower bounded by Bin(⌈yi/2⌉, 1/2) with expectation
at least yi/4. It follows from Chernoff’s bound (2.1) that |Zi| ≥ yi/5 with probability
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1 − exp(−Θ(yi)). If |Zi| < yi/5, then we say that this round fails and we finish the
process prematurely (later we will show that a.a.s. no round will fail).
Our next task is to estimate the number of white vertices (that is, vertices in V \Y≤i)

that are adjacent to at least yip/6 vertices in Zi; we will call them good. Fix w ∈ V \Y≤i.
The expected number of neighbors of w in Zi is equal to |Zi|p ≥ yip/5. Hence, by
Chernoff’s bound (2.1), w is good with probability at least 1/2 (as before, in fact, it
tends to 1). Hence, the number of good vertices is lower bounded by Bin(|V \Y≤i|, 1/2)
with expectation asymptotic to n/2, since

∑
0≤ℓ≤i yℓ = o(n). Hence, with probability

at least 1−exp(−Θ(n)), there are at least n/3 good vertices. (We have a lot of room in
the argument here.) If the number of good vertices is less than n/3, then we say that
this round fails and we finish the process prematurely.
Our final task is to estimate how many good vertices become blue at the end of

Round i. Fix any good vertex w. Since each neighbor of w in Zi forces w to become
blue with probability (yip/3)/d(1 + o(1)), w stays white with probability at most

(
1− yip/3

d(1 + o(1))

)yip/6

≤ exp

(
−y2i p

2

19d

)
≤ exp

(
− y2i p

19n

)

= 1− y2i p

19n
(1 +O(y2i p/n)) ≤ 1− y2i p

20n
,

since y2i p/n ≤ (n/(pω))p/n = 1/ω = o(1). Hence, the expected number of good vertices
that become blue is at least (n/3)(y2i p/(20n)) = y2i p/60. By Chernoff’s bound (2.1),
with probability at least 1− exp(−Θ(y2i p)) there are at least yi+1 := (yi/8)

2p new blue
vertices that form Yi+1. As always, we say that the round fails if there are not enough
new blue vertices and we stop the process prematurely.
Recall that

yi ≥ t2
i−1

p−182−2i

and so

yi+1 =
(yi
8

)2

p ≥ t2
i

p−182−2i+1

.

We will run this phase for at most

t4 := log2 logt/64 n ≤ log2 log2 n

steps. Phase 4 finishes prematurely with probability at most
∑

i≥1

(
exp(−Θ(yi)) + exp(−Θ(n)) + exp(−Θ(y2i p))

)
=

∑

i≥1

exp(−Θ(t2
i−1

p−1))

≤ t4 exp(−Θ(tp−1))

= exp(−Θ(b3)) = o(1).

We will stop phase 4 either once there are more than

b4 :=

√
n

pω

new blue vertices, or t4 steps have passed. Since at the end of Round i, there are
yi+1 ≥ (t/64)2

i

/p ≥ (t/64)2
i

new blue vertices, a.a.s. we have b4 new vertices before t4
total rounds have elapsed, so a.a.s. Phase 4 ends once we have b4 new blue vertices.
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These new vertices will be able to force the rest of the graph blue in the next two
rounds.

Two Last Rounds (Phase 5): Recall that at the beginning of the first round

of Phase 5 there are more than b4 =
√
n/(pω) new blue vertices. We select any

subset of b4 vertices (arbitrarily) and the analysis above implies that a.a.s. at least
(b4/8)

2p = n/(64ω) white vertices become blue; let us put them into a set Y .
At the beginning of the final round of the whole process, similarly to the previous

phase, a.a.s. we can find a set Z ⊂ Y with |Z| ≥ |Y |/5 with every vertex in Z having
at least |Y |p/3 neighbors. Each white vertex expects at least |Y |p/5 = (n/64ω)p/5 ≫
logn neighbors in Z (since d = p(n − 1) ≫ log n and ω = ω(n) is tending to infinity
arbitrarily slowly). By Chernoff’s bound (2.1), the expected number of white vertices
that are not good is at most n exp(−Θ(|Z|p)) ≤ n exp(−2 logn) = n−1 = o(1) and so,
by Markov’s inequality, a.a.s. all white vertices are good. Finally, arguing as before,
the expected number of good (white) vertices that stay white is at most

n exp

(
−Θ

( |Z|2p2
d

))
= n exp

(
−Θ

(
(np)2

dω2

))
= n exp

(
−Θ

(
d

ω2

))

= n exp (−2 logn) = n−1 = o(1).

It follows that a.a.s. all vertices become blue and the process is over.

Adding up the total time, this analysis shows that a.a.s. we have

ptpzf(G(n, p), v) ≤ t1 + t2 + t3 + t4 + 2

≤ o(log log n) + (1 + o(1)) log3(1/p) + o(log log n) + log2 log2 n + 2

= (1 + o(1)) log2 log2 n+ (1 + o(1)) log3(1/p),

as claimed. �

4. Lower Bound

This section is devoted to prove the lower bound in the main result, Theorem 1.3. For
simplicity, we independently consider sparse and dense random graphs, starting from the
dense case that is easier to deal with. Let us point out that Theorem 4.1 yields the bound
of (1 + o(1)) log2 log2 n whereas Theorem 4.4 yields the bound of (1 + o(1)) log4(1/p) =
(1/2 + o(1)) log2(1/p) ≥ (1 + o(1)) log2 log2 n as it holds for 1/p ≥ log2 n. As a result,
both theorems imply a general bound of (1+o(1))max(log2 log2 n, log4(1/p)), as claimed
in the main result. Let us also point out that the claimed lower bound holds with prob-
ability 1−o(n−1) and so, in fact, we get that a.a.s. ptpzf(G(n, p)) ≥ (1+o(1)) log2 log2 n.

Theorem 4.1. Suppose that p = p(n) ≥ 1/ log2 n. Then, for each vertex v ∈ V (G(n, p)),
the following bound holds with probability 1− o(n−1):

ptpzf(G(n, p), v) ≥ (1 + o(1)) log2 log2 n.

Proof. Let ω = ω(n) be any function tending to infinity (slowly enough) as n → ∞.
Since we aim for a lower bound, by Lemma 2.2, we may assume that we begin with a
subset Y0 ⊆ V of size y0 = b0 := ω logn/p, which consists of the vertices of the graph
which are initially blue, including the specified vertex v. The forcing process is then
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started, and for each i ∈ N we denote Yi ⊆ V as the vertices of G(n, p) which are turned

blue in round i. If we fix i ≥ 0, then Y≤i :=
⋃i

j=0 Yj consists of the blue vertices of

G(n, p) after the first i rounds. Finally, let bi := |Y≤i| and yi := |Yi|. We may define the
stopping time τ ≥ 0 to be the first i ≥ 0 such that Y≤i = V . Our goal is to show that
with probability 1− o(n−1) we have τ ≥ (1 + o(1)) log2 log2 n.
In order to achieve this bound, we must control the number of white vertices which

can be forced in a given round. As a result, we need to be careful in which order we
expose edges of G(n, p). We will preserve the following property at the beginning of
round i for each i ≥ 1:

(P0) the edges between V \ Y≤i−1 and Yi−1 are not exposed yet.

Indeed, it will be possible since the forcing at step i has not occurred yet and the pairs
of vertices that are involved were white in the previous step (clearly, edges between
two white vertices cannot contribute to any forcing). On the other hand, the edges
between V \ Y≤i−1 and Y≤i−2 are already exposed (when i ≥ 2). We now expose the
edges between V \ Y≤i−1 and Yi−1 and we check for the following property:

(P1) degYi−1
(v) ≤ 2 p yi−1 for all v ∈ V \ Y≤ i−1.

Finally, the forcing takes place and at the end of this round we investigate the following
property:

(P2) yi ≤ 3 b2i−1.

We say that round i is good provided the two properties (P1) and (P2) are satisfied.
In fact, since we aim for a lower bound, by Lemma 2.2, we may assume that yj = 3 b2j−1;
that is, at the end of each round we may turn some additional vertices blue to satisfy
this equality.
Set

tF := log2

(
log2(n

1/3)

log2(4ω log n/p)

)

= log2 log2 n− log2 log2(4ω logn/p)−O(1)

= log2 log2 n− log2 log2 log2 n− O(1) = (1 + o(1)) log2 log2 n,

as p ≥ 1/ log2 n. Suppose that the first tF rounds are good. Under this assumption, we
have that

bi = bi−1 + yi ≤ (3 + o(1))b2i−1

≤ 22b2i−1 ≤ . . . ≤ 22
i+2i−1+...+2b2

i

0 ≤ 22·2
i

b2
i

0 = (4ω log n/p)2
i

for all 1 ≤ i ≤ tF . This implies that btF ≤ n1/3 < n, and so τ > tF which yields the
desired claim. We shall now prove that with probability 1− o(n−1) the first tF rounds
are good, which will complete the proof.
Let us fix 0 ≤ i < tF , and assume that the first i rounds are good (Note that there is

nothing to assume when i = 0; that is, when we begin the first round). As we previously
noted, we may assume that the edges between Yi and V \ Y≤i are unexposed at this
time— see property (P0). Under these assumptions, we will estimate the probability
that round i+ 1 is good as well.
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Let us start with property (P1). Observe that for each v ∈ V \ Y≤i, we have that
E degYi

(v) = yip. Since the first i rounds are good, yip ≥ y0p = ω log n. By Chernoff’s
bound (2.1), this implies

P(| degYi
(v)− yip| ≥ yip) ≤ 2 exp(−yip/3) ≤ 2n−ω/3

for each v ∈ V \ Y≤i. We may therefore use the union bound to conclude that

P(∪v∈V \Y≤i
| degYi

(v)− yip| ≥ yip) ≤ n−ω/3+1 = n−Θ(ω) = o((ntF )
−1).

As a result, with probability 1− o((ntF )
−1), every vertex of v ∈ V \ Y≤i has degYi

(v) ≤
2yip (that is, property (P1) is satisfied for round i+ 1), provided the first i rounds are
good.
Let us now assume that property (P1) holds and move to investigating property (P2).

Consider the probability that v ∈ V \Y≤i is not forced by u ∈ Y≤i with uv ∈ E(G(n, p)).
Clearly,

P(u does not force v) =

(
1−

degY≤i[u]

deg(u)

)
≥

(
1− bi

δ

)
,

where δ is the smallest degree of G(n, p). Thus,

P(Y≤i does not force v) ≥
(
1− bi

δ

)degY≤i
(v)

≥
(
1− bi

δ

)2bip

,

as we may assume that degY≤i
(v) ≤

∑i
j=0 2yip = 2bip in light of property (P1). By

Theorem 2.1, we may also assume that δ ∼ np. (See the beginning of Section 3 for a
discussion how this theorem is applied.) Note that

bi
np

≤ bi
np

(2bip) =
2b2i
n

≤
2b2tF
n

≤ 2n2/3

n
= o(1)

when i < tF . Thus,

P(Y≤i does not force v) ≥
(
1− bi

np

)2bip

= exp

(
−2b2i p

np
(1 + o(1))

)

= 1− 2b2i
n

(1 + o(1)).

We may therefore conclude that

P(Y≤i forces v) ≤ (1 + o(1))
2b2i
n

,

for all v ∈ V \ Y≤i. Let us now consider Yi+1, the vertices forced by Y≤i in a single
round. If we assume that the above claims hold, then we have that

E|Yi+1| =
∑

v∈V \Y≤i

P(Y≤i forces v) ≤ (1 + o(1))2b2i .

Now the first i rounds are assumed to be good, so we know that bi ≥ b0 = ω logn/p.
We may therefore use Chernoff’s bound (2.1) to observe that
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P(|Yi+1| ≥ 3b2i ) ≤ exp

(−(2 + o(1))b2i
3

)
≤ exp

(
−ω2 log2 n

3p2

)
≤ exp

(
−ω2 log2 n

3

)

= n−ω2 logn/3 = o((ntF )
−1).

As a result, we have that with probability 1−o((ntF )
−1), |Yi+1| ≤ 3 b2i , and so the total

number of blue vertices in Yi+1 is of the desired amount (property (P2)).
Combining the two concentration results, we get that if the first i rounds are good,

then with probability 1− o((ntF )
−1) round i+1 is good as well. We remark that when

i = 0, the above analysis shows that with probability 1 − o((ntF )
−1) round 1 is good.

In order to complete the proof, observe that

P(∪tF
i=1Round i is bad) =

tF∑

i=1

P(Round i is bad and the earlier rounds are good)

≤ tF · o((ntF )−1) = o(n−1),

and the proof is complete. �

Let us now move to the sparse case. Before we prove our lower bound in this regime,
let us discuss how the techniques used here differ from those seen in the previous
section. Suppose that Y0 ⊆ V is initially colored blue, and a forcing process is begun.
Specifically, let Yi denote the blue vertices of G(n, p) which are forced in round i for
each i ≥ 1. As before, we use Y≤i to denote the collection of blue vertices after i ≥ 0
rounds.
In the previous arguments, we have been careful to ensure that the edges with one

endpoint in V \ Y≤i and one in Yi remain unexposed by the time we consider the
vertices forced in round i+1, namely Yi+1 ⊆ V \ Y≤i. This allows us to ensure that the
edges between Y≤i and V \ Y≤i are distributed as Bin(|Y≤i||V \ Y≤i|, p), which proves
convenient in our computations. In particular, we are able to guarantee that each vertex
v ∈ V \ Y≤i has E(degY≤i

(v)) → ∞, which makes proving concentration via Chernoff’s
bound amenable.
While such techniques work when p(n) ≥ 1/ logn, this is a corollary of range of |Y≤i|

which we concern ourselves with in the above argument; namely, when |Y≤i| ≫ logn/p.
When p(n) < 1/ logn, we are instead interested in analyzing |Y≤i| up until the point at
which |Y≤i| = O(1/p). As a result, we do not have sharp degree concentration through-
out the range we must analyze. Specifically, if |Y≤i| = O(1/p), then E(degY≤i

(v)) = O(1)

for each v ∈ V \ Y≤i, and so degY≤i
(v) does not witness sharp concentration as n → ∞.

In order to circumvent these issues, we first restrict ourselves to an alternative forcing
process (recall that alternative forcing processes were described in Section 2.4) defined
as follows. We first work with the index set taken to be all of N0. Thus, we shall apply
alternative forcing rules throughout every step of the process. If we then consider the

round i ∈ N0, u ∈ Y≤i forces its white neighbors with probability min{degY≤i
[u]/d̃L, 1},

where d := (n− 1)p and d̃L := (1− ω−1)d (here ω tends to infinity arbitrarily slowly).

As a.a.s. each vertex of G(n, p) has degree at least d̃L, we know that this alternative
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forcing process is valid a.a.s.; that is, the conditions defined in Section 2.4 are satisfied.
As a result, we may apply Lemma 2.3 to couple this alternative forcing process with
the standard forcing process for all but o(1) of the instances of G(n, p). Specifically, any
a.a.s. lower bound on this alternative forcing process will imply an a.a.s. lower bound
on the standard forcing process. In what follows, all our results shall be with respect
to this alternative forcing process. We shall use the same terminology as before, as it
should be unambiguous regarding which process we are referring to.
Before continuing, let us motivate why it is convenient to work with this alternative

forcing rule. If we consider a vertex v ∈ V \ Y0 and u ∈ Y0, then the probability that u

forces v in a single round is p (min{1, degY0
[u]/d̃L}), as degY0

[u] is independent of the

event (u, v) ∈ G(n, p) and d̃L is a fixed value. This observation allows us to prove the
following lemma easily. The proof of this auxiliary lemma can be found in Section 5.

Lemma 4.2. Suppose that we are given G(n, p) on vertex set V , with Y0 ⊆ V initially
blue where |Y0| = k and Y0 = {u1, . . . , uk}. For each u ∈ Y0, denote Y1(u) as the
vertices of V \ Y0 which are forced by u after a single round.

(i) If Su1
, . . . , Suk

⊆ V \ Y0, then for each u ∈ U and v ∈ V \ Y0 ∪ Su,

P((u, v) ∈ G(n, p) | ∩k
j=1 Y1(uj) = Suj

) ≤ p.

(ii) The indicator random variables {1[(u,v)∈G(n,p)]}u∈Y0,v∈V \Y0∪Su
are conditionally

independent of the event ∩k
j=1{Y1(uj) = Suj

}.
While the above lemma appears as if it can only be applied to the first round of

the forcing process, it can in fact be used through the subsequent rounds as well. To
see how this can be done, observe that once Y1 is conditioned upon and all the edges
contained within Y≤1 are exposed, the indicator variables {1[(u,v)∈G(n,p)]}u∈Y≤1,v∈V \Y≤1

are independent and each occur with probability at most p. Moreover, the edges within
V \ Y≤1 are independent of Y≤1, and thus each occur independently with probability p.
At this point, let us denote G1 as G(n, p) conditioned on the vertices Y≤1 and the

edges within this set. More precisely, we are conditioning on Y1, the resulting vertices
after one round of probabilistic zero forcing, followed by the edges in G(n, p) within Y≤1.
Moreover, let us consider another random graph G2, whose edges in Y≤1 are the same
as that of G1. On the other hand, the edges from Y≤1 into V \Y≤1 and edges completely
within V \ Y≤1 are each defined to occur independently with probability exactly p.
As each edge of G1 from V \ Y≤1 into Y≤1 occurs with probability at most p, G2 can
be constructed such that G1 ⊆ G2, while maintaining the distributional properties we
desire. Combining this construction with the observation that the alternative forcing
process is edge monotonic, we get that ptpzf(G1, Y≤1) ≥ ptpzf(G2, Y≤1). As a result, any
lower bound on ptpzf(G2, Y≤1) yields a lower bound on ptpzf(G1, Y≤1). Moreover, the
structure of G2 is amenable to an application of Lemma 4.2.
Let us now summarize the main result we shall use throughout the proof of the lower

bound in the sparse regime. We remark that while the result is stated for round i ≥ 0
of the forcing process in G(n, p), the above coupling of G1 ⊆ G2 allows us to assume
that i = 0 in the proof of the statement. The proof of Corollary 4.3 can be found in
Section 5.
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Corollary 4.3. Suppose that Y≤i ⊆ V consists of the blue vertices after i ≥ 0 rounds.
Let Yi+1 =

⋃
u∈Y≤i

Yi+1(u) denote the blue vertices forced in round i+ 1, where Yi+1(u)

corresponds to the white vertices forced by u in round i + 1. If S ⊆ V \ Y≤i and we
condition on the event in which Yi+1 = S, as well as Y≤i and the edges within it,
then e(Y≤i, Yi+1) is stochastically upper bounded by |S| + Bin(|Y≤i||S|, p). Moreover,
if S∗ ⊆ V \ (Y≤i ∪ S), then e(Y≤i, S ∪ S∗) is stochastically upper bounded by |S| +
Bin(|Y≤i||S|+ |Y≤i||S∗|, p) given Yi+1 = S (and Y≤i together with the edges within Y≤i).

We are now ready to prove our lower bound in the sparse regime. It will be convenient

to define d̃U := (1 + ω−1)d, where d := (n − 1)p, as a means to a.a.s. upper bound
the maximum degree ∆ of G(n, p). The result will follow by considering C2 → 1 and
C1 → 0, both tending to the corresponding constants slowly enough as n → ∞, such
that the asymptotic computations in the below argument continue to hold. For instance,
we may take C1(n) ≫ max{1/ log log n, log log log(1/p)/ log(1/p)} and 1 − C2(n) ≫
log log(1/p)/ log(1/p), while still ensuring that C1 → 0 and C2 → 1.

Theorem 4.4. Suppose that log(n)/n ≪ p = p(n) ≤ 1/ log2 n and 0 < C1 < C2 < 1.
Then, if v ∈ V is fixed, the following bound holds a.a.s.:

ptpzf(G(n, p), v) ≥ (C2 − C1) log4(1/p).

Proof. As in the proof of Theorem 4.1, we begin with a subset Y0 ⊆ V of size b0 := 1/pC1

consisting of the vertices of the graph which begin initially blue, including the given
v ∈ V (observe b0 < n as p ≫ logn/n). The forcing process is then started, and for
each i ∈ N we denote Yi ⊆ V as the vertices of G(n, p) which are turned blue in round
i. If we fix i ≥ 0, then Y≤i := ∪i

j=0Yj consists of the blue vertices of G(n, p) after the
first i rounds.
We may define the stopping time τ ≥ 0 to be the first i ≥ 0 such that |Y≤i| >

2(1/p)C2 (note 2(1/p)C2 < n since p ≫ log n/n). Our goal is to show that a.a.s.
τ ≥ (C2 − C1) log4(1/p). It will be convenient to once again control how the rounds of
the forcing process progress. In order to do so, we first introduce some notation. For
each j ≥ 0, let bj := |Y≤j|, Avg(Y≤j) :=

∑
u∈Y≤j

degY≤j
(u)/|Y≤j|, and ε = ε(n) := pC1/3.

(Note that ε = o(1), as p = o(1).) Also, recursively define each ηj, where η0 := 0 and

ηj+1 :=

(
3

4
+

ε

2

)
ηj +

3

2
ε+ 6p

1−C2
2 (4.1)

for j ≥ 0. We then say that round j ≥ 1 is good provided the following two properties
are satisfied:

(P1) |Yj| = (3 + ηj−1)(1 + ε) bj−1,
(P2) Avg(Y≤j) ≤ 2 + ηj .
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Observe that if the first tF := (C2 − C1) log4(1/p) many rounds satisfy (P1), then

|Y≤tF | =
tF∏

j=1

[1 + (3 + ηj)(1 + ε)](1/p)C1

=

tF∏

j=1

[4 + 3ε+ ηj + ηjε](1/p)
C1

≤ [4 + 7ε+ 12p
1−C2

2 ]tF (1/p)C1

= 4tF
[
1 +

7

4
ε+ 3p

1−C2
2

]tF
(1/p)C1 ,

as ηj ≤ 3ε+ 12p
1−C2

2 for each j ≥ 0. Yet ε = pC1/3, p
1−C2

2 → 0 as n → ∞, and so since
tF = O(log(1/p)),

[
1 +

7

4
ε+ 3p

1−C2
2

]tF
= exp

[
tF

(
7

4
ε+ 3p

1−C2
2

)
(1 + o(1))

]

= eo(1) = 1 + o(1).

As a result,
|Y≤tF | ≤ (1 + o(1))4tF (1/p)C1 = (1 + o(1))(1/p)C2

after substituting tF = (C2 − C1) log4(1/p), and so we have that |Y≤tF | ≤ 2(1/p)C2.
Thus, under these conditions, τ ≥ tF . If we can therefore prove that a.a.s. the first
(C2 − C1) log4(1/p) many rounds are good, then the proof will be complete.
We begin by considering the number of edges with both endpoints in Y0. Observe

that

E
e(Y0)

|Y0|
=

(
|Y0|
2

)
p

|Y0|
= Θ(|Y0|p) = Θ(p1−C1) = o(1),

as p ≤ 1/ log2 n and C1 < 1 by assumption. Thus, we may use Markov’s inequality to
conclude that a.a.s. Avg(Y0) ≤ 2. When this event holds, we say that round 0 is good.
We shall assume that this is the case in what follows.
Let us now fix i ≥ 0 and condition on Y≤i as well the edges within it. Under the

assumption that the first i rounds are good, we shall lower bound the probability that
round i+1 is good as well. In addition to the previous information, let us now condition
on the random subset Yi+1 ⊆ V \ Y≤i. If |Yi+1| > (3 + ηi)(1 + ε)|Y≤i|, then the round
is bad and we stop the analysis (we shall later show that this occurs with sufficiently
small probability). Otherwise, we continue and show that (P2) holds with probability

at least 1− 2p
1−C2

2 .
Our goal at this point is to control the average degree of Y≤i+1, namely Avg(Y≤i+1).

We first observe that we may decompose the random variable e(Y≤i+1) into three terms
where

e(Y≤i+1) = e(Y≤i) + e(Y≤i, Yi+1) + e(Yi+1).

Observe that since round i was assumed to be good, we know by (P2) that

2 e(Y≤i) ≤ (2 + ηi)|Y≤i|.
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Moreover, we have assumed that |Yi+1| ≤ (3+ηi)(1+ε)|Y≤i|, so we can apply Lemma 2.2
and add white vertices to Yi+1 to ensure that |Yi+1| = (3 + ηi)(1 + ε)|Y≤i|. Thus, we
have that |Y≤i+1| = (1 + (3 + ηi)(1 + ε))|Y≤i|. As a result,

2 e(Y≤i) ≤
(2 + ηi)|Y≤i+1|

1 + (3 + ηi)(1 + ε)
.

If we now consider e(Yi+1), then observe that the edges within Yi+1 are distributed

as Bin(
(
|Yi+1|

2

)
, p). Thus,

2E e(Yi+1)

|Yi+1|
≤ p|Yi+1|.

Since we have assumed that the first i rounds satisfy property (P2) and that i < tF ,
we know that |Yi+1| ≤ 2(1/p)C2. As a result, p|Yi+1| ≤ 2p1−C2 . By Markov’s inequality,
this implies that

2 e(Yi+1)

|Y≤i+1|
≤ 2p

1−C2
2

with probability at least 1− p
1−C2

2 , as C2 < 1.
It remains to control the edges between Y≤i and Yi+1. By Corollary 4.3, we know

that

e(Y≤i, Yi+1) � |Yi+1|+ Bin(|Y≤i||Yi+1|, p).
Now if X ∈ Bin(|Y≤i||Yi+1|, p), then EX /|Y≤i+1| ≤ p|Yi+1|. As before, we may conclude
that

X

|Y≤i+1|
≤ 2p

1−C2
2

with probability at least 1− p
1−C2

2 by Markov’s inequality. On the other hand,

|Yi+1|/|Y≤i+1| = (3 + ηi)(1 + ε)/(1 + (3 + ηi)(1 + ε))

as |Y≤i+1| = (1 + (3 + ηi)(1 + ε))|Y≤i|. To conclude, we get that

Avg(Y≤i+1) =
2[e(Y≤i) + e(Y≤i, Yi+1) + e(Y≤i+1)]

|Y≤i+1|

≤ 2 + ηi
1 + (3 + ηi)(1 + ε)

+
2((3 + ηi)(1 + ε))

1 + (3 + ηi)(1 + ε)
+ 6p

1−C2
2

=
2 + ηi

4 + 3ε+ ηi + εηi
+

6 + 2(3ε+ ηi + εηi)

4 + 3ε+ ηi + εηi
+ 6p

1−C2
2

≤ 2 +
ηi
4
+

3ε+ ηi + εηi
2

+ 6p
1−C2

2

= 2 +

(
3

4
+

ε

2

)
ηi +

3

2
ε+ 6p

1−C2
2

= 2 + ηi+1

with probability at least 1 − 2p
1−C2

2 . Thus, round i + 1 satisfies property (P2) with

probability at least 1−2p
1−C2

2 , provided it satisfies (P1) and the first i rounds are good.
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Our next goal will be to lower bound the probability that (P1) is satisfied, under
the assumption that the first i rounds are good. We remark that for the purpose
of the following analysis, we condition on the outcome of Y≤i and the edges within
it, but not the newly forced vertices Yi+1. For each u ∈ Y≤i, we let Yi+1(u) denote
the vertices of V \ Y≤i which are forced by u in round i + 1. Observe that since we
know the value of degY≤i

(u) for each u ∈ Y≤i, the random variables {Yi+1(u)}u∈Y≤i
are

independent. Moreover, since we may assume that ∆(G(n, p)) ≤ d̃U , it follows that

|Yi+1(u)| � Bin(d̃U , degY≤i
[u]/d̃L) for all u ∈ Y≤i, and so we may conclude that |Yi+1| �∑

u∈Y≤i
Bin(d̃U , degY≤i

[u]/d̃L) (recall that d̃U := (1 + ω−1)d and d̃L = (1 − ω−1)d are

upper and lower bounds on the degrees that hold a.a.s.). Thus, since d̃U/d̃L = 1+ o(1),

E|Yi+1| ≤ (1 + o(1))
∑

u∈Y≤i

degY≤i
[u]

= (1 + o(1))(|Y≤i|+
∑

u∈Y≤i

degY≤i
(u))

= (1 + o(1))(1 + Avg(Y≤i))|Y≤i|
≤ (1 + o(1))(3 + ηi)|Y≤i|,

where the last line follows from the assumption that round i satisfies (P2). We may now

apply a generalized version of Chernoff’s bound (2.1) to
∑

u∈Y≤i
Bin(d̃U , degY≤i

[u]/d̃L)

with ε = pC1/3 to conclude that |Yi+1| ≤ (3 + ηi)(1 + ε)|Y≤i| with probability at least
1 − exp(−|Y≤i|p2C1/3/3) ≥ 1 − exp(−Θ((1/p)C1/3)). By Lemma 2.2, we may in fact
assume that |Yi+1| = (3 + ηi)(1 + ε)|Y≤i|, thus showing that (P1) holds for round i+ 1
with probability at least 1 − exp(−Θ((1/p)C1/3)), assuming the previous rounds are
good.
Combining the above results, the probability that round i+1 is bad and the previous

rounds are good, is at most

2p
1−C2

2 + exp(−Θ((1/p)C1/3)) = o((tF )
−1).

In order to complete the argument, we need only bound the probability that one of the
first tF many rounds is bad. Observe,

P(∪tF
j=1Round j is bad) =

tF∑

j=1

P(Round j is bad and the earlier rounds are good)

≤ tF · o((tF )−1) = o(1),

and so the proof is complete. �

5. Proofs of Auxiliary Lemmas

Proof of Lemma 4.2. In what follows, we consider the alternative forcing process in

which each edge (u, v) ∈ G(n, p) is forced with probability min{1, degY0
[u]/d̃L} for

u ∈ Y0 and v ∈ V \ Y0. Moreover, we expose the edges with both endpoints in Y0

ahead of time, so that degY0
[u] is known for each u ∈ Y0 (while we condition on these
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random edges, we do not include this in the probability notation for simplicity). For

convenience, the following computations are done assuming degY0
[u]/d̃L < 1 for each

u ∈ Y0.
Let us first fix 1 ≤ j ≤ k and the subset Sj := Suj

of V \ Y0. Observe that we have

P(Y1(uj) = Sj) =
∏

w1∈Sj

P(uj forces w1)
∏

w2∈V \Y0∪Sj

P(uj does not force w2).

Using the independence of degY0
[uj] and the edges from Y0 into V \ Y0, we know that

P(uj forces w1) = p

(
degY0

[uj ]

d̃L

)
,

and

P(uj does not force w2) = 1− p

(
degY0

[uj]

d̃L

)
,

for each w1 ∈ Sj and w2 ∈ V \ Y0 ∪ Sj . Thus,

P(Y1(uj) = Sj) = p|Sj |

(
degY0

[uj]

d̃L

)|Sj | (
1− p

(
degY0

[uj]

d̃L

))|V |−|Y0|−|Sj|

.

On the other hand, clearly the random variables Y1(u1), . . . , Y1(uk) are independent, as
the edges in Y0 have already been exposed. It follows that

P(∩k
j=1{Y1(uj) = Sj}) =

k∏

j=1

p|Sj |

(
degY0

[uj]

d̃L

)|Sj |(
1− p

(
degY0

[uj]

d̃L

))|V |−|Y0|−|Sj |

.

Let us now fix some u ∈ Y0, together with v ∈ V \ (Y0 ∪ Su). We shall consider the
probability that the events ∩k

j=1{Y1(uj) = Sj} and (u, v) ∈ G(n, p) both occur. We first
observe that

P((u, v) ∈ G(n, p) and ∩k
j=1Y1(uj) = Sj)

= P((u, v) ∈ G(n, p) and Y (u) = Su)P(∩uj 6=uY (uj) = Sj),

as the events {(u, v) ∈ G(n, p)}∩{Y1(u) = Su} and ∩uj 6=u{Y1(uj) = Sj} are independent.
A similar argument also shows that

p

(
1− degY0

[u]

d̃L

)
p|Su|

(
degY0

[u]

d̃L

)|Su|(
1− p

(
degY0

[u]

d̃L

))|V |−|Y0|−|Su|+1

corresponds to P((u, v) ∈ G(n, p) and Y1(u) = Su). After dividing the above probabili-
ties, it follows that

P((u, v) ∈ G(n, p)| ∩k
j=1 Y1(uj) = Sj) = p

(
1− degY0

[u]

d̃L

)(
1− p

degY0
[u]

d̃L

)
≤ p.

Thus,
P((u, v) ∈ G(n, p)| ∩k

j=1 Y1(uj) = Sj) ≤ p.

for each u ∈ Y0 and v ∈ V \Y0∪Su. The second property of equation 4.2 can be verified
by generalizing the above computations to collections of vertices outside of Y0. �
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Proof of Corollary 4.3. We shall assume, without loss of generality, that i = 0 in what
follows. Let us suppose that Y0 = {u1, . . . , uk} for k ≥ 1, and we fix S1, . . . , Sk ⊆ V \Y0

together with S := ∪k
j=1Sj . In all of the following computations, we condition on the

events {Y1(uj) = Sj}kj=1 and the random variables {degY0
[uj]}kj=1. For convenience, we

omit these assumptions from the notation in the following computations.
Fix 1 ≤ j ≤ k, and consider the random variable e(uj, S) which counts the edges from

uj into S, conditioned on the above events. Clearly, e(uj, S) = e(uj, Sj) + e(uj, S \ Sj),
where the latter random variables are defined analogously. As Sj consists of the vertices
outside of B which are forced by uj, we know that e(uj, Sj) = |Sj |. On the other
hand, we may apply both statements from Lemma 4.2 to conclude that e(uj, S \ Sj) is
stochastically upper bounded by |Sj|+ Bin(|S \ Sj|, p).
Observe now that e(Y0, S) =

∑k
i=1 e(uj , S). As the random variables {e(uj, S)}kj=1

are conditionally independent of the above events by the second property of Lemma 4.2,
it follows that e(Y0, S) is stochastically upper bounded by |S|+

∑k
i=1 Bin(|S|, p). This

final random variable is distributed as |S|+ Bin(|S||Y0|, p) and so the claim follows.
If we now take S∗ ⊆ V \ (B ∪ S), then Lemma 4.2 implies that e(Y0, S

∗) is stochas-
tically upper bounded by Bin(|S∗||Y0|, p). The independence of e(Y0, S) and e(Y0, S

∗)
guaranteed by equation 4.2 ensures that e(Y0, S ∪ S∗) is stochastically upper bounded
by |S|+ Bin(|Y0||S|+ |Y0||S∗|), p). �
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