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Abstract

Let G be a graph, and let w be a positive real-valued weight function on
V (G). For every subset S of V (G), let w(S) =

∑
v∈S w(v). A non-empty

subset S ⊂ V (G) is a weighted safe set of (G,w) if, for every component C
of the subgraph induced by S and every component D of G − S, we have
w(C) ≥ w(D) whenever there is an edge between C and D. If the subgraph
of G induced by a weighted safe set S is connected, then the set S is called a
connected weighted safe set of (G,w). The weighted safe number s(G,w) and
connected weighted safe number cs(G,w) of (G,w) are the minimum weights
w(S) among all weighted safe sets and all connected weighted safe sets of
(G,w), respectively. Note that for every pair (G,w), s(G,w) ≤ cs(G,w) by
their definitions. In [7], it was asked which pair (G,w) satisfies the equality
and shown that every weighted cycle satisfies the equality. In this paper,
we give a complete list of connected bipartite graphs G such that s(G,w) =
cs(G,w) for every weight function w on V (G).

Keywords: Weighted safe set, Weighted safe number, Connected weighted
safe number, Bipartite graph

1. Introduction

We use [4] for terminology and notation not defined here. Only finite,
simple (undirected) graphs are considered. For a graph G, the subgraph of
G induced by a subset S ⊆ V (G) is denoted by G[S]. We often abuse or
identify terminology and notation for subsets of the vertex set and subgraphs
induced by them. In particular, a component is sometimes treated as a subset
of the vertex set. For a subset S of V (G), we denote G[V (G) \ S] by G− S.
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For a graph G, when A and B are disjoint subsets of V (G), the set of edges
joining some vertex of A and some vertex of B is denoted by EG(A,B). If
EG(A,B) 6= ∅, then A and B are said to be adjacent. A (vertex) weight
function w on V (G) means a mapping associating each vertex in V (G) with
a positive real number. We call (G,w) a weighted graph. For every subset
X of V (G), let w(X) =

∑
v∈X w(v), and we also write w(X) for w(G[X]).

Let G be a connected graph. A non-empty subset S ⊆ V (G) is a safe set
if, for every component C of G[S] and every component D of G−S, we have
|C| ≥ |D| whenever EG(C,D) 6= ∅. If G[S] is connected, then S is called a
connected safe set. In [2], those notions are extended to (vertex) weighted
graphs. Let w be a weight function on V (G). A non-empty subset S ⊂ V (G)
is a weighted safe set of (G,w) if, for every component C of G[S] and every
component D of G − S, we have w(C) ≥ w(D) whenever EG(C,D) 6= ∅.
The weighted safe number of (G,w) is the minimum weight w(S) among all
weighted safe sets of (G,w), that is,

s(G,w) = min{w(S) | S is a weighted safe set of (G,w)}.

If S is a weighted safe set of (G,w) and w(S) = s(G,w), then S is called a
minimum weighted safe set . Similar to connected safe sets, if S is a weighted
safe set of (G,w) and G[S] is connected, then S is called a connected weighted
safe set of (G,w). The connected weighted safe number of (G,w) is defined
by

cs(G,w) = min{w(S) | S is a connected weighted safe set of (G,w)},

and a minimum connected weighted safe set is a connected weighted safe set
S of (G,w) such that w(S) = (G,w). It is easy to see that for every weighted
graph (G,w), s(G,w) ≤ cs(G,w) by their definitions. Throughout this paper,
we often abbreviate ‘weighted’ to a weighted safe set or a connected weighted
safe set when it is clear from the context.

The notion of a safe set was originally introduced by Fujita et al. [8]
as a variation of facility location problems. A lot of work has been done in
this topic. For example, Kang et al. [11] explored the safe number of the
Cartesian product of two complete graphs, and Fujita and Furuya [6] studied
the relationship between the safe number and the integrity of a graph. For a
real application, the weighted version of this notion was proposed by Bapat
et al. [2]. Let (G,w) be a weighted graph. We can regard (G,w) as a kind
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of network with certain properties. As discussed in [2], the concept of a safe
set can be thought of a suitable measure of network majority and network
vulnerability.

In view of such applications, weighted safe set problems in graphs attract
much attention, especially from the algorithmic point of view. Let us briefly
look back some known results. Fujita et al. [8] showed that computing the
connected safe number of (G,w) when w is a constant weight function is
NP-hard in general. However, when G is a tree and w is a constant weight
function, they constructed a linear time algorithm for computing the con-
nected safe number of G. Águeda et al. [1] gave an efficient algorithm for
computing the safe number of an unweighted graph with bounded treewidth.
Bapat et al. [2] showed that computing the connected weighted safe number
in a tree is NP-hard even if the underlyining tree is restricted to be a star.
They also constructed an efficient algorithm computing the safe number for
a weighted path. Furthermore, Fujita et al. [7] constructed a linear time
algorithm computing the safe number for a weighted cycle. Ehard and Raut-
enbach [5] gave a polynomial-time approximation scheme (PTAS) for the
connected safe number of a weighted tree. The parameterized complexity of
safe set problems was investigated by Belmonte et al. [3].

In contrast with the above algorithmic approaches, in this paper, we
are concerned with a more combinatorial aspect on weighted safe set prob-
lems. Namely, we would like to find graphs G with a stable structure such
that s(G,w) = cs(G,w) holds for any choice of the weight function w on
V (G). From the inequality s(G,w) ≤ cs(G,w), it would be natural to ask
which pair (G,w) satisfies the equality. In this paper, we focus on a much
stronger property: Namely, we would like to characterize a graph G such
that s(G,w) = cs(G,w) not only for a fixed w, but also for any arbitrary
choice of w. As a purely combinatorial problem, it would be interesting to
investigate the structure in such special graphs.

Returning to the application aspect on safe set problems, let us recall that
the notion of safe sets in graphs was invented for finding a safe place in some
graph network model. If the minimum safe place has a connected structure,
then it would definitely be convenient for the refugees to communicate with
each other on the safe place. Note that, in the weighted case, one can regard
the weight on a vertex as the capacity of the number of people to stay there.
From this point of view, we can say that a graph G has a stable structure if
s(G,w) = cs(G,w) holds for any choice of the weight function w on V (G).
For convenience, let us define Gcs by the family of all graphs G such that
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s(G,w) = cs(G,w) holds for every weight function w on V (G).
As a related work, we found a common property in terms of the weighted

safe number sometimes yields a characterization of graphs. Indeed, Fujita et
al. [7] showed that a graph G is a cycle or a complete graph if and only if
s(G,w) ≥ w(G)/2 for every weight function w on V (G). In the process of
this work, the authors already proposed our main problem as the following
open problem.

Problem 1.1 ([7]). Determine the family of graphs Gcs.

By definition, when we check whether a graph G belongs to Gcs or not,
we must look at (G,w) in all possible weights yielded by w, meaning that we
must always deal with infinite cases of w. Naturally, it would be a difficult
question to ask whether G ∈ Gcs or not for a given graph G. However, if
we could have a complete answer to Problem 1.1, then it would contribute
to the real applications such as network majority and network vulnerability.
This is because, the invariable property from any choice of w as defined in
Gcs often plays an important role in stable networks. We also remark that,
as demonstrated in [7], some consideration on paths and cycles in view of Gcs
provides a nice observation on a problem in combinatorial number theory to
find some special partitions of number sequences (see [7] for details). Thus,
our problem is important in both theoretical and practical directions.

Unfortunately we could not give the complete answer to Problem 1.1. Yet
we achieved a substantial progress on this problem. To state this, we start
with the following observation on Gcs.

It is clear that a complete graph is in Gcs. In [7], it was shown that a
graph G with ∆(G) = |V (G)| − 1 belongs to Gcs and the following theorem
was obtained.

Theorem 1.2 ([7]). A cycle belongs to Gcs.

In this paper, we completely characterize all chordal graphs and all bipar-
tite graphs in Gcs. A dominating clique is a dominating set which is a clique,
that is, it induces a complete graph and every vertex v not in the clique has
a neighbor in the clique.

Theorem 1.3. Let G be a connected chordal graph. The following are equiv-
alent:

(i) G has a dominating clique;
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(ii) diam(G) ≤ 3;

(iii) G ∈ Gcs.

In addition, we show that a triangle-free graph in Gcs has small diameter.

Theorem 1.4. If G is a triangle-free connected graph in Gcs which is not a
cycle, then diam(G) ≤ 3.

The following, the main result of the paper, gives the complete list of the
connected bipartite graphs in Gcs. A double star is a tree with diameter at
most three.

Definition 1. Let m, n, p, q be nonnegative integers. Let D(m,n; p, q)
(resp. D∗(m,n; p, q)) be a connected bipartite graph with bipartition (X1 ∪
X2 ∪ P, Y1 ∪ Y2 ∪Q), where the unions are disjoint, satisfying (1)-(4):

(1) |X1| = m, |Y1| = m+ 1, |X2| = n+ 1, |Y2| = n, |P | = p, and |Q| = q;

(2) Both G[X1 ∪ Y1] and G[X2 ∪ Y2] are complete bipartite graphs;

(3) The vertices in P are pendant vertices which are adjacent to a vertex
y ∈ Y1 and the vertices in Q are pendant vertices which are adjacent to
a vertex x ∈ X2;

(4) EG(X1, Y2) = ∅ and G[X2 ∪ Y1] is a complete bipartite graph (resp. a
double star with a dominating edge xy).

Note that each of D(m,n; p, q) and D∗(m,n; p, q) has a dominating edge xy
(x ∈ X2 and y ∈ Y1), where a dominating edge is a dominating clique of
order two. See Figure 1 for examples.

The m-book graph, denoted by Bm, is the Cartesian product of a star
K1,m and a path P2. See Figure 2. The following is our main theorem, which
gives a full list of graphs in Gcs for the bipartite case.

Theorem 1.5 (Main Theorem). A connected bipartite graph G belongs to
Gcs if and only if G is one of the following:

(I) an even cycle C2n with n ≥ 2;

(II) a double star;
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X1 X2, |X2| = |Y2|+ 1

y

x

Y1, |Y1| = |X1|+ 1 Y2

D∗(4, 2; 3, 2)

y

x

D(3, 0; 0, 0)

y

x

D∗(3, 0; 2, 3)

x y

D(0, 0; 0, 5)

x y

D(0, 0; 4, 3)

Figure 1: Examples of graphs D(m,n; p, q) or D∗(m,n; p, q).

B2 B3 B4

Figure 2: Examples of book graphs.

(III) a book graph Bn with n ≥ 1;

(IV) a graph obtained from K3,3 by deleting an edge;

(V) D(m,n; p, q) or D∗(m,n; p, q), with m ≥ 2, n 6= 1 and p, q ≥ 0,

From our main theorem, we see that if a bipartite graph G belongs to
Gcs, then G is an even cycle or G has a dominating edge. When considering
a safe set S of a graph G, note that we always observe the bipartite structure
between G[S] and G − S. From this view point, we believe that our main
theorem settles an essential case of Problem 1.1, which is very far from trivial
to prove.

In fact we prepare a companion paper [9] in which we show that, for any
graph G in the list of Theorem 1.5 and for any non-negative weight function
w of G, there exists a fully polynomial-time approximation scheme (FPTAS)
for computing a minimum connected safe set of (G,w), and moreover, we give
a linear time algorithm to decide whether a graph is in the list of Theorem 1.5
or not. As byproduct of the above results, it is also shown in [9] that there
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exists an FPTAS for computing a minimum connected safe set of a weighted
tree. This made a substantial progress on the relevant work due to Ehard
and Rautenbach [5].

This paper is organized as follows. Section 2 gives preliminaries. Sec-
tion 3 provides some lemmas concerning the graphs not in Gcs in view of
a contraction argument, which are useful to prove our main results in the
subsequent sections. Section 4 finds some graphs in Gcs with a dominating
clique, especially focusing on chordal graphs and bipartite graphs. This sec-
tion also provides the proof of Theorem 1.3. Finally, Section 5 provides the
proofs of our main results, Theorems 1.4 and 1.5.

2. Preliminaries

For a connected graph G and S ⊂ V (G), we denote by β(G,S) the graph
whose vertices are the components of G[S] and of G − S, and two vertices
of A and B are adjacent in β(G,S) if and only if EG(A,B) 6= ∅ (Figure 3).
Note that β(G,S) is always a bipartite graph.

S
v3

v4

v5
v6

v1

v2

v7

v8

A graph G and S = {v1, v3, v4}

{v3, v4} {v1}

{v8} {v2} {v5, v6, v7}

G[S]

G− S

β(G,S)

Figure 3: An example of β(G,S).

Lemma 2.1. Let G be a connected graph not in Gcs. If S is a minimum
safe set of (G,w) for some weight function w on V (G) such that s(G,w) <
cs(G,w), then β(G,S) 6∈ Gcs.

Proof. Let β := β(G,S) and let wβ be a weight function on V (β) defined by
wβ(D) := w(D) for each vertex D of β. Let S be the set of the components
of G[S]. Then clearly, S is a safe set of (β, wβ), and therefore, s(β, wβ) ≤
wβ(S) = w(S). Suppose that s(β, wβ) = cs(β, wβ). Then there is a connected
safe set S ′ of (β, wβ) such that cs(β, wβ) = wβ(S ′), which implies that S ′ =
∪D∈S′D is a connected safe set of (G,w). In addition, w(S ′) = wβ(S ′) =
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cs(β, wβ) = s(β, wβ) ≤ w(S), which is a contradiction. Hence, s(β, wβ) 6=
cs(β, wβ) and so β does not belong to Gcs.

The following proposition is a direct consequence of Lemma 2.1.

Proposition 2.2. For a connected graph G, if β(G,S) ∈ Gcs for every S ⊂
V (G), then G belongs to Gcs.

Now we give the following observation.

Lemma 2.3. Let G be a connected graph such that s(G,w) < cs(G,w) for
some weight function w, and S be a minimum safe set of (G,w). Then G−S
is disconnected.

Proof. Let D1, . . . , Dk be the components of G[S]. Note that k ≥ 2, since
s(G,w) < cs(G,w). Without loss of generality, we may assume that w(D1) =
min{w(D1), . . . , w(Dk)}. If G−S is connected, then V (G)\D1 is a connected
safe set of (G,w) whose weight is at most w(S), which is a contradiction.

The graph family Gcs is not changed even if we allow a weight function
to include 0. A nonnegative weight function on V (G) means a mapping
associating each vertex with a nonnegative real number, and note that the
notions of s(G,w) and cs(G,w) are well-defined for a graph G and a nonneg-
ative weight function w on V (G). Let Gcs0 be the set of graphs G such that
s(G,w) = cs(G,w) for every nonnegative weight function w on V (G). As the
family Gcs is defined by assuming that the values of all weight functions have
positive real numbers, it is clear that Gcs0 ⊂ Gcs. In fact, the equality holds.

Proposition 2.4. It holds that Gcs = Gcs0 .
Proof. Suppose that Gcs 6= Gcs0 . Since Gcs0 ⊂ Gcs, there exist a connected
graph G ∈ Gcs \ Gcs0 and a nonnegative weight function w on V (G) such that
s(G,w) < cs(G,w) and {x ∈ V (G) : w(x) = 0} 6= ∅. For simplicity, let
Z = {x ∈ V (G) : w(x) = 0}.

Suppose that U is a minimum safe set of (G,w), and so w(U) = s(G,w).
For every positive real number ε, let us define a positive weight function wε
on V (G), as follows:

wε(x) :=


w(x) + ε|Z| if x ∈ U,
ε if x ∈ Z \ U,
w(x) otherwise.

8



Then for every component D of G[U ] and every component T of G−U such
that EG(T,D) 6= ∅, it holds that

wε(T ) ≤ w(T ) + ε|Z| ≤ w(D) + ε|Z||D| = wε(D),

which implies that U is a safe set of (G,wε). Thus

∀ε > 0, s(G,wε) ≤ wε(U). (2.1)

In addition, wε(U) = w(U) + ε|Z||U |. Thus, together with the fact that
w(U) = s(G,w),

wε(U) = s(G,w) + ε|Z||U |.
Let ε1 be a positive real number so that s(G,w) + ε1|Z||U | < cs(G,w). Let
εi+1 = εi/2 for i ≥ 1. Then

∀i ≥ 1, wεi(U) < cs(G,w). (2.2)

For every integer i ≥ 1, let Si be a minimum connected safe set of (G,wεi).
Then wεi(Si) = cs(G,wεi) = s(G,wεi) by the assumption that G ∈ Gcs and
the fact that wεi is a positive weight function. Together with (2.1) and (2.2),

wεi(Si) = s(G,wεi) ≤ wεi(U) < cs(G,w),

which implies that Si cannot be a connected safe set of (G,w).
Since V (G) is finite, there exists S ⊂ V (G) such that S appears infinitely

many times in the sequence {Si}∞i=1. Then there exists an integer-valued
function σ such that S = Sσ(i) and σ(i) < σ(i+ 1) for every positive integer
i.

Clearly, S = Si for some i, and so G[S] is connected. Note that for every
positive integer i, for every component T of G−S, wεσ(i)(T ) ≤ wεσ(i)(S). Since
the sequence {wεσ(i)}∞i=1 converges (uniformly) to w, it holds that w(T ) ≤
w(S) for every component T of G − S, which implies that S is a connected
safe set of (G,w). We reach a contradiction to the observation that Si cannot
be a connected safe set of (G,w).

Thanks to Proposition 2.4, we allow a nonnegative weight function on the
vertex set of a graph when we determine whether a given graph belongs to
Gcs or not.
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Proposition 2.5. Let G be a connected graph in Gcs with a cut vertex v. For
each component D of G− v, G[D ∪ {v}] is in Gcs.

Proof. Let H = G[D ∪ {v}] where D is a component of G− v, and suppose
that H is not in Gcs. Then there is a weight function wH on V (H) such that
s(H,wH) < cs(H,wH). We define a vertex weight function w on V (G) by

w(x) =

{
wH(x) if x ∈ V (H)

0 otherwise.

Let S be a minimum safe set of (H,wH(x)). By the definition of w, it is
easy to observe that S is also a safe set of (G,w) and so s(G,w) ≤ w(S) =
wH(S) = s(H,wH), and thus,

s(G,w) ≤ s(H,wH). (2.3)

Now we take a minimum connected safe set U of (G,w), i.e., w(U) = cs(G,w).
Let UH = U\(V (G)\V (H)). From the facts that w(x) = 0 for all vertices x in
V (G)\V (H) and v is a cut vertex, UH is a connected safe set of (H,wH) and
so cs(H,wH) ≤ wH(UH) = w(U) = cs(G,w). Thus cs(H,wH) ≤ cs(G,w).
Hence, together with (2.3),

s(G,w) ≤ s(H,wH) < cs(H,wH) ≤ cs(G,w),

which implies that G 6∈ Gcs, a contradiction.

From Proposition 2.5, it follows that for a connected graph G in Gcs, each
block of G is in Gcs. Hence, if we add a pendant edge to a graph not in Gcs,
then the resulting graph is also not in Gcs.

3. Contractions and the graphs not in Gcs

A graph G is contractible to a graph H (or H-contractible) if H can
be obtained from a partition of V (G) by contracting each part to a ver-
tex. Equivalently, a graph G is contractible to H if there is a surjection
φ : V (G)→ V (H) satisfying the following:

EG(φ−1(hi), φ−1(hj)) 6= ∅ if and only if hihj ∈ E(H), for every hi, hj ∈
V (H).
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For each h ∈ V (H), φ−1(h) is called a bag. A bag is said to be connected if
it induces a connected graph in G.

In this section, we present several sufficient conditions for a graph not to
be in Gcs in terms of the above contraction argument. The lemmas obtained
in this section play an important role in proving our main results.

3.1. Graphs contractible to a subgraph of K2,3

In this subsection, we discuss some graphs contractible to some subgraphs
of K2,3. More precisely, we consider Hi-contractible graphs where Hi are the
graphs as described in Figure 4, such that the bags corresponding to u2 and
u4 are always connected.

We remark that for each i ∈ {1, 2, 3}, Hi does not belong to Gcs. Here
α is a real number such that α > 1 and let wi be a weight function on
V (Hi) defined by wi(u4) = wi(u5) = α and wi(u2) = α + 1. If i = 1, then
w1(u1) = α + 1 and w1(u3) = 1. If i 6= 1, then wi(u1) = wi(u3) = α. Then
for each i ∈ {1, 2, 3}, {u2, u4} is a unique minimum safe set of (Hi, wi) and
therefore s(Hi, wi) < cs(Hi, wi).

H1

u1

u2

u3

u4

u5

H2

u1

u2

u3

u4

u5

H3

u1

u2

u3

u4

u5

Figure 4: All subgraphs of K2,3 not in Gcs.

Here are several assumptions and common notation throughout this sub-
section (in Lemmas 3.1 - 3.3). We assume that G is a connected graph which
is contractible to Hi for some i ∈ {1, 2, 3}, and let Vj be the bag correspond-
ing to uj of Hi for each j ∈ {1, . . . , 5}. In addition, we assume that V2 and
V4 are connected bags and let α > 1 be a sufficiently large real number.

Lemma 3.1. Let G be a connected graph contractible to H1. Then G 6∈ Gcs.
Proof. Take vj ∈ Vj for each j ∈ {1, . . . , 5} so that v1v2 ∈ E(G) and v4v5 ∈
E(G). We define a weight function w on V (G) such that

w(x) =


α + 1 if x ∈ {v1, v2},
α if x ∈ {v4, v5},
1/|V3| if x ∈ V3,
0 otherwise.
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Then V2 ∪ V4 is a safe set of (G,w) with w(V2 ∪ V4) = 2α+ 1. Suppose that
G ∈ Gcs. Then there is a connected safe set S of (G,w) with weight at most
2α+1. If {v1, v2} ⊂ S then w(S) ≥ 2α+2 > 2α+1, which is a contradiction.
If {v1, v2}∩S = ∅, then G−S has a component of weight at least 2α+2, which
is a contradiction to the definition of a safe set. Thus, |{v1, v2}∩S| = 1, and
therefore w(S ∩ (V1 ∪V2 ∪V3)) ≤ α+ 2. If {v4, v5}∩S = ∅, then G−S has a
component of weight at least 2α and w(S) ≤ α+ 2, which is a contradiction
to the definition of a safe set. Hence {v4, v5}∩S 6= ∅. Since G[S] is connected,
S ∩ V3 6= ∅, and therefore

w(S) ≥ w(S∩{v1, v2})+w(S∩{v4, v5})+w(S∩V3) ≥ 2α+1+w(S∩V3) > 2α+1,

a contradiction.

Lemma 3.2. Let G be a connected graph contractible to H2. If |EG(V1, V2)| =
|EG(V2, V3)| = 1, then G 6∈ Gcs.

Proof. Take vj ∈ Vi for each j ∈ {1, . . . , 5} so that v1v2, v4v5 ∈ E(G) and v3
has a neighbor in V2. Let ε be a sufficiently small positive real number. We
define a weight function w on V (G) so that

w(x) =



α if x ∈ {v1, v3, v5},
α + 1 if x = v2,

α− (1 + ε)(|V4| − 1) if x = v4,

1 + ε if x ∈ V4 \ {v4},
0 otherwise.

Then V2 ∪ V4 is a safe set of (G,w) with w(V2 ∪ V4) = 2α+ 1. Suppose that
G ∈ Gcs. Then there is a connected safe set S of (G,w) with weight at most
2α + 1.

Since w(v1) + w(v2) + w(v3) = 3α + 1, |S ∩ {v1, v2, v3}| ≤ 2. If S ∩
{v1, v2, v3} = ∅, then by the assumption that |EG(V1, V2)| = |EG(V2, V3)| = 1,
we have V2 ∩ S = ∅ and so V2 ∪ {v1, v3} is in the same component of G− S
whose weight is 3α + 1, which is a contradiction to the definition of a safe
set. Thus 1 ≤ |S ∩ {v1, v2, v3}| ≤ 2.

Suppose that v2 6∈ S. If S ∩ {v1, v2, v3} = {v1, v3}, then, for G[S] being
connected, S∩V4 6= ∅, which implies that w(S) ≥ w(v1)+w(v3)+w(S∩V4) >
2α + 1, a contradiction. Suppose that S ∩ {v1, v2, v3} = {v1} or {v3}. Then
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w(S) 6= 2α+ 1 by the definition of the weight function w, which implies that
w(S) < 2α + 1. On the other hand, the vertices in {v1, v2, v3} \ S are in the
same component of G−S whose weight is at least 2α+ 1, a contradiction to
the definition of a safe set.

Now suppose that v2 ∈ S. If S ∩ V4 = ∅, then since |EG(V1, V2)| =
|EG(V2, V3)| = 1, for some j ∈ {1, 3} Vj ∪ V4 ∪ V5 is in the same component
of G − S whose weight is 3α, a contradiction to the definition of a safe set.
Thus S ∩ V4 6= ∅. Then for G[S] being connected, S contains v1 or v3, which
implies that w(S) ≥ 2α+1+w(V4∩S) ≥ 2α+1+(1+ε), a contradiction.

Lemma 3.3. Let G be a connected graph contractible to H3. Suppose that
|V1| = |V2| = 1, V3 is connected, and there is a vertex v4 ∈ V4 such that
EG({v4}, V3) 6= ∅ and EG({v4}, V5) = EG(V4, V5). Then G 6∈ Gcs.

Proof. To reach a contradiction, suppose that G ∈ Gcs. We have the following
claim.

Claim 3.4. There is a component D of G[V5] such that EG(D, V2) 6= ∅ and
EG(D, V4) 6= ∅.

Proof. Note that for every component D of G[V5], either EG(D, V2) 6= ∅ or
EG(D, V4) 6= ∅. Let U be the union of the components D of G[V5] with
EG(D, V2) = ∅. Then EG(U, V4) 6= ∅ and EG(U, V (G) \ (V4 ∪ U)) = ∅.
Similarly, let W be the union of the components D of G[V5] with EG(D, V4) =
∅. Then EG(W,V2) 6= ∅ and EG(W,V (G) \ (V2 ∪W )) = ∅. Suppose that
V5\(U∪W ) = ∅. SinceG isH3-contractible, both U andW are nonempty. By
contracting V ′j ’s where V ′1 = W , V ′2 = V2, V

′
4 = V4, V

′
5 = U , and V ′3 = V (G) \

(V ′1 ∪ V ′2 ∪ V ′4 ∪ V ′5), G is H1-contractible for the graph H1 in Figure 4, which
implies that G 6∈ Gcs by Lemma 3.1, a contradiction. Hence, V5 \ (U ∪W ) is
not empty, and so the claim holds.

Now we let V1 = {v1} and V2 = {v2}. Take a neighbor v3 ∈ V3 of
v4. By Claim 3.4, G[V5] has a component D such that EG(D, V2) 6= ∅ and
EG(D, {v4}) 6= ∅. We take a neighbor v5 of v4 from D.

Now ε3 > ε5 > ε4 > 0 are sufficiently small real numbers so that 1
n
> ε3 >

2nε5 > 2n2ε4, where n = |V (G)|. We define a weight function w on V (G) as
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follows:

w(a) =



α if a = v1

α + 1 if a = v2

1 + ε3 if a ∈ V3 \ {v3}
ε4 if a ∈ V4 \ {v4}
ε5 if a ∈ V5 \ {v5},

and then we determine the weights of v3, v4, v5 so that w(V3) = w(V4) =
w(D) = α.

Since G ∈ Gcs and V2∪V4 is a safe set of (G,w) with w(V2∪V4) = 2α+1,
there is a connected safe set S of (G,w) with weight at most 2α + 1. For
simplicity, let X = S ∩ {v1, v2, v3, v4, v5}. Since w(S) ≤ 2α + 1, |X| ≤ 2.
Moreover, we have the following claim.

Claim 3.5. We have |X| = 2, and the following hold.

(1) |X ∩ {v1, v2}| = 1 and |X ∩ {v3, v4, v5}| = 1.

(2) |X ∩ {v2, v4}| = 1 and |X ∩ {v1, v3, v5}| = 1.

Proof. To show (1), suppose that {v3, v4, v5} ∩ X = ∅. Then {v3, v4, v5} is
contained in a component of G−S, which is a contradiction to the definition
of a safe set, since (note that α is sufficiently large.)

w(v3) + w(v4) + w(v5) = 3α− (1 + ε3)(|V3| − 1)− ε4(|V4| − 1)− ε5(|V5| − 1)

> 2α + 1 + (α− n(1 + ε3 + ε4 + ε5)) ≥ w(S).

Suppose that {v1, v2} ∩ X = ∅. Since w({v1, v2}) = 2α + 1, {v1, v2} is a
component of G− S. Hence, at least one vertex of V3, say z3, belongs to S.
Moreover, w(S) = 2α+1. Since w(V3∪V4) = 2α, it follows that w(V5∩S) ≥ 1,
and therefore the vertex v5 must be in S. Since S is connected, the vertex
v4 must be in S. It follows that

w(S) ≥ w(z3) + w(v4) + w(v5) ≥ 1 + ε3 + α− (|V4| − 1)ε4 + α− (|V5| − 1)ε5

> 2α + 1 + (ε3 − nε4 − nε5)
> 2α + 1,

a contradiction, where the last inequality follows from the choice of ε3, ε4,
and ε5. As |X| ≤ 2, (1) holds. We note that (1) also implies that |X| = 2.
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Now we show (2). If X = {v2, v4}, then S has at least one vertex in
V1 ∪ V3 ∪ V5 for G[S] being connected, which implies that w(S) ≥ w(v2) +
w(v4) + min{w(x) | x ∈ S ∩ (V1 ∪V3 ∪V5)} ≥ α+ 1 + (α−nε4) + ε5 > 2α+ 1
by the assumption on ε4 and ε5, a contradiction. Hence |X ∩ {v2, v4}| ≤
1. Since |X| = 2, X ∩ {v1, v3, v5} 6= ∅. By (1), it remains to show that
|X ∩ {v1, v3, v5}| 6= 2. Suppose that |X ∩ {v1, v3, v5}| = 2. Then {v2, v4} ⊂
V (G) \ S. By the assumption that V2 = {v2} and v4 is a unique vertex in
V4 that has a neighbor in V5, if S ∩ V5 6= ∅, then S ⊂ V5, a contradiction
to the assumption that |X ∩ {v1, v3, v5}| = 2. Thus S ∩ V5 = ∅, and so the
vertices in D ∪ {v2, v4} are in the same component of G − S, with weight
more than 2α + 1, a contradiction to the definition of a safe set. Hence
|X ∩ {v1, v3, v5}| 6= 2 and so (2) holds.

By Claim 3.5, X = {v2, v3}, {v2, v5} or {v1, v4}. Suppose that X =
{v2, v3}. Since v4, v5 are in the same component of G − S and its weight is
at least 2α − nε5, it holds that 2α − nε5 ≤ w(S). Let k be the number of
vertices x in V3∩S such that w(x) = 1 + ε3 (|V3|− 1 ≥ k). Then, since every
element in S \ (V2 ∪ V3) has weight at most ε5,

2α− nε5 ≤ w(S) < α + 1 + (α− (|V3| − 1)(1 + ε3)) + k(1 + ε3) + nε5.

If k < |V3| − 1, then (α− (|V3| − 1)(1 + ε3)) + k(1 + ε3) ≤ α− 1− ε3 and so

2α− nε5 ≤ w(S) ≤ 2α− ε3 + nε5,

a contradiction since ε3 > 2nε5. Hence, k = |V3| − 1 and so w(S) = 2α + 1
and moreover, S = V2 ∪ V3. Then V1 ∪ V4 ∪ V5 is the component of G − S
whose weight is more than 2α+ 1, which is a contradiction to the definition
of a safe set.

Suppose that either X = {v2, v5} or X = {v1, v4}. Then w(X) ≥ 2α−nε4.
If S ∩ V3 6= ∅, then together with the fact that nε4 < ε3, we have

w(S) ≥ w(X) + w(S ∩ V3) ≥ 2α− nε4 + (1 + ε3) > 2α + 1,

a contradiction to the assumption that w(S) ≤ 2α + 1. Hence, S ∩ V3 = ∅.
Then in each case, we will reach a contradiction to the definition of a safe
set. If X = {v2, v5}, then by the assumptions on the vertex v4 and the fact
that v4 6∈ S, we have S ⊂ V2 ∪ V5 and so the vertices in V1 ∪ V3 ∪ V4 are
contained in the same component of G−S whose weight is more than 2α+1.
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If X = {v1, v4}, then S ⊂ V1∪V4∪(V5\{v5}) and so w(S) ≤ 2α+nε5 < 2α+1,
but the component containing V2∪V3 of G−S has weight at least 2α+1.

3.2. Graphs contractible to Km,n

In this subsection, we add one more observation on a contractible struc-
ture of a connected graph not in Gcs.

Lemma 3.6. Let G be a connected graph contractible to Km,n, where m 6= n
and m,n ≥ 2, such that there is at most one bag Z with |Z| ≥ 2. If Z is
connected, then G 6∈ Gcs.

Proof. LetX and Y be the partite sets ofKm,n such thatX = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}. If there is no bag Z with |Z| ≥ 2, then G = Km,n

and then it is easy to show that for a constant weight function w(x) = 1 ,

s(G,w) = min{|X|, |Y |} < |X|+|Y |
2
≤ cs(G,w), which implies that G 6∈ Gcs.

Now suppose that there is a bag Z with |Z| ≥ 2. We may assume that
x1 ∈ X is the vertex in Km,n corresponding to Z. For simplicity, let X ′ =
X \ {x1}. For a sufficiently large real number α > 1, a sufficiently small real
number ε so that 1 > ε(|Z| − 1) > 0, and a fixed vertex z ∈ Z, we define a
weight function w on V (G) as follows:

w(v) =


α− ε(|Z| − 1) if v = z,

ε if v ∈ Z \ {z},
α otherwise.

Then both X ′ ∪ Z and Y are safe sets of (G,w) such that w(X ′ ∪ Z) = mα
and w(Y ) = nα. Suppose that G ∈ Gcs. Then there is a connected safe set
S of (G,w) with weight at most min{mα, nα}.

Firstly, suppose that the vertices in (X ′ ∪ {z} ∪ Y ) \ S are in the same
component of G− S. Then, by the definition of a safe set,

w(S) ≥ w((X ′∪{z}∪Y )\S) ≥ w(X ′∪{z}∪Y )−w(S) = α(m+n)−ε(|Z|−1)−w(S),

and so
2w(S) ≥ α(m+ n)− ε(|Z| − 1).

Thus, together with the fact that w(S) ≤ min{mα, nα}, we have

ε(|Z|−1) ≥ α(m+n)−2w(S) ≥ α(m+n)−2 min{mα, nα} = α|m−n| > 1,
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a contradiction by the choice of ε.
Secondly, we consider the case where the vertices in (X ′ ∪ {z} ∪ Y ) \ S

are not in the same component of G− S. Then the following claim holds.

Claim 3.7. It holds that X ′ \ S 6= ∅ and Y \ S 6= ∅.

Proof. Note that S 6= Y and so it is clear that Y \ S 6= ∅. To show that
X ′\S 6= ∅ by contradiction, suppose that X ′ ⊂ S. Since S is a connected safe
set of (G,w), S∩Y 6= ∅ and so w(S∩Y ) ≥ α. Since mα ≤ w(X ′)+w(S∩Y ) =
w(S) ≤ mα, this implies that S = X ′ ∪ {yi} for some yi ∈ Y . Then, since
V (G) \ S = (X ′ ∪ Z ∪ Y ) \ S = (Y \ {yi}) ∪ Z and every vertex in Y has a
neighbor in Z, G−S has only one component (Y \{yi})∪Z. Then the vertices
in (X ′ ∪ {z} ∪ Y ) \ S are in the same component of G − S, a contradiction
to the case assumption. Hence, X ′ 6⊂ S and so X ′ \ S 6= ∅.

Since G[X ′ ∪ Y ] is isomorphic to Km−1,n, the vertices in (X ′ ∪ Y ) \ S are
in the same component of G − S by Claim 3.7. By the definition of a safe
set,

w(S) ≥ w((X ′∪Y )\S) ≥ w(X ′∪Y )−w(S) = α(m+n−1)−ε(|Z|−1)−w(S),

which implies that ε(|Z| − 1) ≥ α(m+ n− 1)− 2w(S). Thus, since w(S) ≤
min{mα, nα},

ε(|Z| − 1) ≥ α(m+ n− 1)− 2 min{mα, nα} = α|m− n| − α.

If |m−n| ≥ 2, we reach a contradiction by the choice of ε. Hence |m−n| = 1.
Since {z} and (X ′ ∪ Y ) \ S belong to different components in G − S

(by the case assumption), it implies that z 6∈ S and S ∩ Z 6= ∅. Then
α > w(S ∩ Z) > 0. Since αmin{m,n} = min{mα, nα} ≥ w(S) = w(S ∩
(X ′ ∪ Y )) + w(S ∩ Z) > w(S ∩ (X ′ ∪ Y )) = α|S ∩ (X ′ ∪ Y )|, together with
the fact that both |S ∩ (X ′ ∪ Y )| and min{m,n} are integers, it follows that
min{m,n} − 1 ≥ |S ∩ (X ′ ∪ Y )| and so

α(min{m,n} − 1) ≥ w(S ∩ (X ′ ∪ Y )).
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Then

w((X ′ ∪ Y ) \ S) = w(X ′ ∪ Y )− w(S ∩ (X ′ ∪ Y ))

≥ α(m− 1 + n)− α(min{m,n} − 1)

= max{mα, nα} > min{mα, nα} ≥ w(S),

a contradiction to the definition of a safe set.

We finish the section with a corollary, which follows from Lemma 3.6
immediately.

Corollary 3.8. Suppose that there is a vertex v in a connected graph G such
that degG(v) ≥ 3, NG(v) is an independent set, every vertex in NG(v) has
degree at least two, and G−NG[v] is connected. Then G 6∈ Gcs.

Proof. Let degG(v) = d and let Z = V (G) − NG[v]. Since NG(v) is an
independent set and every vertex in NG(v) has degree at least two, this
implies that Z 6= ∅. Then contracting Z into one vertex results in K2,d and
d ≥ 3. By Lemma 3.6, G 6∈ Gcs.

4. Dominating cliques and the graphs in Gcs

In this section, we consider some chordal graphs and bipartite graphs in
Gcs having a dominating clique. We give following observation.

Lemma 4.1. Let G be a connected graph with a dominating clique K such
that s(G,w) < cs(G,w) for some weight function w. For every minimum
safe set S of (G,w), the following hold.

(i) Each of the sets S \K, K \ S and S ∩K is nonempty.

(ii) Each component of G[S] is adjacent to at least two components in G−S.

Proof. Since we have s(G,w) < cs(G,w), note that G[S] is disconnected. If
S ⊂ K or K ⊂ S then by the fact that K is a dominating clique, G[S] is
connected, a contradiction. Thus S\K 6= ∅ and K\S 6= ∅. Arguing similarly,
we see that, if K ⊂ V (G) \ S, then G − S is connected, a contradiction by
Lemma 2.3. Thus, K ∩ S 6= ∅, and therefore (i) holds.

Let D1, . . ., Dk (k ≥ 2) be the components of G[S], and assume that D1

is the component containing K∩S. Let T1, . . ., Tl (l ≥ 2) be the components
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of G− S, and assume that T1 is the component containing K \ S. Note that
each Di is adjacent to T1 and each Tj is adjacent to D1 by the definition of
a dominating clique, and so for each i and j,

w(T1) ≤ w(Di) and w(Tj) ≤ w(D1). (4.1)

To show (ii) by contradiction, suppose that there is a component Di of G[S]
that is adjacent to only one component of G−S. Then Di is adjacent to only
T1 among all Tj’s. Without loss of generality, we may assume that i = 2.
Let S ′ = (S \D2) ∪ T1. Since K ⊂ S ′, it follows that G[S ′] is connected. In
addition, by (4.1), w(S ′) = w(S) − w(D2) + w(T1) ≤ w(S). Note that the
components of G−S ′ are T2, . . ., Tl, and D2. For a component Tj of G−S ′,
w(Tj) ≤ w(D1) ≤ w(S ′) by (4.1). If w(D2) ≤ w(S ′), then S ′ is a connected
safe set with weight at most w(S), a contradiction. Thus

w(S ′) < w(D2). (4.2)

Suppose that w(D2) > w(S ′) + w(T2) + · · · + w(Tl) = w(V (G) \D2). Since
G−D2 is connected, then D2 is a connected safe set of (G,w) and w(D2) <
w(S), a contradiction. Thus w(D2) ≤ w(S ′) + w(T2) + · · ·+ w(Tl). We take
the smallest integer m with 2 ≤ m ≤ l such that w(D2) ≤ w(S ′) + w(T2) +
· · · + w(Tm). Let S ′′ = S ′ ∪ T2 ∪ . . . ∪ Tm. Note that the components of
G − S ′′ are D2 and some Tj’s, where j > m. Then clearly, by the choice of
m, w(D2) ≤ w(S ′′). By (4.1), w(Tj) ≤ w(D1) ≤ w(S ′′) for all j > m. Hence,
S ′′ is a connected safe set of (G,w).

If m = 2, then w(S ′′) = w(S ′) + w(T2) < w(D2) + w(D1) ≤ w(S) where
the first inequality follows from (4.1) and (4.2). If m ≥ 3, then

w(S ′′) = (w(S ′) + w(T2) + · · ·w(Tm−1)) + w(Tm) ≤ w(D2) + w(D1) ≤ w(S),

where the first inequality follows from the choice of m and (4.1). Then S ′′ is
a connected safe set of (G,w), a contradiction.

4.1. Chordal graphs: Proof of Theorem 1.3
In this subsection, we show that the existence of a dominating clique in a

chordal graph G implies G ∈ Gcs and the converse is also true. The following
are two known results on chordal graphs.

Theorem 4.2 ([10]). Every connected chordal graph G can be contracted to
a path of length diam(G) so that each bag is connected.
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Theorem 4.3 ([12]). A connected chordal graph G has a dominating clique
if and only if diam(G) ≤ 3.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 4.3, it remains to show that (ii) and (iii)
are equivalent. Suppose that diam(G) ≥ 4. Then by Theorem 4.2, G is
contractible to a path of length at least four so that each bag is connected.
Let V1, V2, . . ., Vd be the connected bags corresponding to that path, where
d = diam(G)+1 ≥ 5. By considering the partition with V1, V2, V3, V4, V (G)\
(V1 ∪ · · · ∪ V4), we can see that G is contractible to a path of length exactly
four so that each bag is connected and therefore G 6∈ Gcs by Lemma 3.1.
Thus, (iii) implies (ii).

To show that (ii) implies (iii), suppose that diam(G) ≤ 3. By Theo-
rem 4.3, there is a dominating clique K of G. To reach a contradiction,
suppose that G 6∈ Gcs. Then there is a weight function w on V (G) such
that s(G,w) < cs(G,w). Let S be a minimum safe set of (G,w). By
Lemma 4.1 (i), S \ K 6= ∅, K \ S 6= ∅ and S ∩ K 6= ∅. Let D1, D2,
. . . , Dk be the components of G[S] and T1, T2, . . ., Tl be the components of
G− S. We assume that D1 contains S ∩K and T1 contains K \ S.

If EG(Di, Tj) 6= ∅ for some i, j ≥ 2, then the union of Di, T1, D1, Tj con-
tains a cycle and its shortest cycle is an induced cycle of length at least four,
a contradiction to the fact that G is chordal. Thus for each i ∈ {2, . . . , k}, Di

is adjacent to only T1 among all Tj’s, which is a contradiction to Lemma 4.1
(ii).

Together with Theorem 1.3, the following corollary holds immediately.

Corollary 4.4. For a tree T , T ∈ Gcs if and only if T is a double star.

In view of Lemma 3.1, it is easy to check that a path Pn is in Gcs if and
only if n ≤ 4.

4.2. Bipartite graphs

In this subsection, we shall investigate the structure of bipartite graphs
in Gcs. First, we show that every book graph belongs to Gcs.

Proposition 4.5. For a positive integer m, the m-book graph Bm belongs to
Gcs.
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Proof. Let (X, Y ) be the bipartition of Bm, and xy be a dominating edge,
x ∈ X and y ∈ Y . Suppose that G 6∈ Gcs. Then there is a weight function
w on V (G) such that s(G,w) < cs(G,w). Take a minimum safe set S of
(G,w). By Lemma 4.1 (i), we may assume that S ∩{x, y} = {x}. Let Dx be
the component of G[S] containing x and let Dy be the component of G− S
containing y. Note that all of the components of G[S] other than Dx are
isolated vertices in the set X \ {x}. Let S \Dx = {x1, . . . , xl} and let {yi} =
NG(xi) \ {y} for each i ∈ {1, . . . , l}. Then {y1, . . . , yl}∩S = ∅. Let us define
Sx = Dx∪{y1, . . . , yl} and Sy = V (G)\Sx. Note that Sy = Dy∪{x1, . . . , xl}.
Then by the definition of a safe set,

w(S) = w(Dx) + w(x1) + . . .+ w(xl) ≥ w(Dx) + w(y1) + . . .+ w(yl) = w(Sx)

w(S) = w(Dx) + w(x1) + . . .+ w(xl) ≥ w(Dy) + w(x1) + . . .+ w(xl) = w(Sy)

and so w(S) ≥ max{w(Sx), w(Sy)}. Since both G[Sx] and G[Sy] are con-
nected and V (G) is a disjoint union of Sx and Sy, at least one of Sx and Sy
must be a connected safe set of (G,w) whose weight is at most w(S), which
is a contradiction.

In the following, we characterize all graphs D(m,n; p, q) or D∗(m,n; p, q)
(see Definition 1) in Gcs.

Note that a double star with at least two vertices is D(0, 0; p, q) for
some p, q, and K3,3 minus an edge is equal to D(1, 1; 0, 0). In addition,
D(1, 0; 0, 0) = D∗(1, 0; 0, 0) = C4 = B1 and D∗(1, 1; 0, 0) = B2. Hence, the
following proposition shows that the graphs described in (II), (IV), or (V) of
Theorem 1.5 are in Gcs.
Proposition 4.6. For nonnegative integers m, n, p and q with m ≥ n, let
G be a graph either D(m,n; p, q) or D∗(m,n; p, q). Then G belongs to Gcs if
and only if one of the followings holds: (a) m,n ≥ 2; (b) m 6= 1 and n = 0;
(c) (m,n; p, q) = (1, 1; 0, 0); (d) (m,n; p, q) = (1, 0; 0, 0).

Proof. Let (X1 ∪ X2 ∪ P, Y1 ∪ Y2 ∪ Q) be the bipartition of G (following
Definition 1). For simplicity, let

X ′ = X1∪X2, X = X ′∪P, Y ′ = Y1∪Y2, Y = Y ′∪Q, G′ = G[X ′∪Y ′].

See Figure 6.
Suppose thatm, n, p, and q satisfy none of (a)-(d). Then either (m,n; p, q) =

(m, 1; p, q) for some m ≥ 2, or (m,n; p, q) ∈ {(1, 1; p, q), (1, 0; p, q)} for some
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p, q with p > 0 or q > 0. Then, in each case, it is easy to see that G is
H2-contractible for the graph H2 in Figure 4 so that the bags are V1, . . ., V5
with |EG(V1, V2)| = |EG(V2, V3)| = 1, and so G 6∈ Gcs by Lemma 3.2. More
precisely, if m = 1 then let V2 := X1 and if n = 1 then let V2 := Y2. Hence
the ‘only if’ part holds.

To show the ‘if’ part by contradiction, suppose that one of (a)-(d) holds
and G 6∈ Gcs. Suppose that we take such G so that (1) |V (G′)| is minimum,
and (2) |V (G)| is minimum subject to (1). Then there is a weight function w
on V (G) such that s(G,w) < cs(G,w). Take a minimum safe set S of (G,w).
Let β = β(G,S). Note that β 6∈ Gcs by Lemma 2.1.

Claim 4.7. It holds that m ≥ 2.

Proof. If m = 0, then G = D(0, 0; p, q) = D∗(0, 0; p, q) is a double star and so
G ∈ Gcs by Corollary 4.4, a contradiction. Now suppose thatm = 1. Then (c)
or (d) holds. Since D(1, 0; 0, 0) = D∗(1, 0; 0, 0) = C4 ∈ Gcs by Theorem 1.2,
it holds that (m,n; p, q) 6= (1, 0; 0, 0). Since D∗(1, 1; 0, 0) = B2 ∈ Gcs by
Proposition 4.5, (m,n; p, q) 6= D∗(1, 1; 0, 0). Hence, to prove the claim, it is
sufficient to show that G 6= D(1, 1; 0, 0).

Suppose to the contrary that G = D(1, 1; 0, 0). Note that G is a graph
obtained from K3,3 by deleting an edge, and let the vertices of G be la-
beled as the graph in Figure 5. Since each of x2y1, x2y2, x3y1, x3y2 is

x2

y3

x3

y1

x1

y2

Figure 5: K3,3 − e, where e = x1y3.

a dominating edge, we may assume that x2, x3 ∈ S and y1, y2 6∈ S by
Lemma 4.1 (i). If y3 ∈ S, then, for G[S] being disconnected, x1 ∈ S and so
S = {x1, x2, x3, y3}, which implies that β(G,S) is a cycle of length four and
so β ∈ Gcs by Theorem 1.2, a contradiction. Thus y3 /∈ S. If x1 6∈ S, then
β(G,S) is a cycle of length four, again a contradiction, and therefore x1 ∈ S.
Hence, S = {x1, x2, x3}. By the definition of a safe set, w(xi) − w(yi) ≥ 0
for each i. Take i∗ ∈ {1, 2} such that w(xi∗) − w(yi∗) is minimum. Let
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S ′ = (S \ {xi∗}) ∪ {yi∗}. Then G[S ′] is connected, and moreover,

w(S ′)− w(V (G) \ S ′) =
3∑
i=1

(w(xi)− w(yi))− 2(w(xi∗)− w(yi∗)) ≥ 0

and so S ′ is a connected safe set whose weight is not greater than S. Thus
s(G,w) = cs(G,w), which is a contradiction. Hence, m ≥ 2 and the claim
holds.

Let xy be a dominating edge of G where x ∈ X2 and y ∈ Y1. Note
that by Lemma 4.1 (i), |S ∩ {x, y}| = 1. Let ux and uy be the vertices of
β corresponding to the components of G − S or G[S] containing x and y,
respectively. Hence, uxuy is a dominating edge of β.

P

Q

X1 X2

Y1 Y2

X ′

Y ′

y

x

G′

Figure 6: A graph G, where G[X2 ∪ Y1] induces either Kn+1,m+1 or a double star.

Claim 4.8. It holds that β = G.

Proof. Note that m ≥ 2 by Claim 4.7 and so one of (a) or (b) holds. Suppose
that β 6= G. First we claim that some edge of G′ is contracted to obtain β.
If not, then β = D(m,n; p′, q′) for some p′, q′ with p′ + q′ < p+ q (satisfying
the conditions (a) or (b)), which implies that β ∈ Gcs by the minimality of
|V (G)|, a contradiction.

Suppose that (b) holds. Since n = 0, G′ is a complete bipartite graph.
Thus β(G′, S ∩ V (G′)) is a star by the fact that every edge in G′ is a dom-
inating edge of G′, which implies that β is a double star. Thus β ∈ Gcs by
Corollary 4.4, a contradiction.

Suppose that (a) holds. Without loss of generality we may assume that
x ∈ S and y 6∈ S by Lemma 4.1 (i).

Subclaim 4.9. The following hold:
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(i) Each of S∩V (G′) and (V (G)\S)∩V (G′) induces a disconnected graph
in G.

(ii) X2 ⊂ S.

(iii) Y1 ∩ S = ∅.

Proof. If S ∩ V (G′) or (V (G) \ S) ∩ V (G′) is connected, then it is easy to
check that β is a double star with the dominating edge uxuy, a contradiction.
Thus (i) holds.

To show (ii), suppose to the contrary that X2 \S 6= ∅. If X1 \S 6= ∅, then
(V (G) \ S) ∩ V (G′) induces a connected graph, a contradiction to (i). Thus
X1 ⊂ S. Suppose that Y1 ∩ S 6= ∅. If Y2 ∩ S 6= ∅ or G = D(m,n; p, q), then
S∩V (G′) induces a connected graph, a contradiction to (i). If Y2∩S = ∅ and
G = D∗(m,n; p, q), then β is a double star with the dominating edge uxuy, a
contradiction. Thus Y1∩S = ∅. If G = D(m,n; p, q), then (V (G)\S)∩V (G′)
induces a connected graph, a contradiction to (i). Thus, G = D∗(m,n; p, q).
Then β = D(m, 0; p′, q′) for some p′, q′ ≥ 0 (See Figure 7). By minimality of
|V (G′)|, β ∈ Gcs, a contradiction.

P

Q

X1 X2

y

x

uy
Y1 Y2

Figure 7: An illustration for the proof of Subclaim 4.9 (ii).

To show (iii), suppose that Y1 ∩ S 6= ∅. Note that X2 ⊂ S by (ii). If
Y2 ∩ S 6= ∅ or G = D(m,n; p, q), then S ∩ V (G′) induces a connected graph,
a contradiction to (i). Thus Y2 ∩ S = ∅ and G = D∗(m,n; p, q). Then
β = D(0, n; p′, q′) for some p′, q′ ≥ 0. By minimality of |V (G′)|, β ∈ Gcs, a
contradiction.

We prove that X ′ ⊂ S and Y ′∩S = ∅. From (ii) and (iii) of Subclaim 4.9,
it is sufficient to check X1 ⊂ S and Y2 ∩ S = ∅. If X1 6⊂ S and Y2 ∩ S 6= ∅,
then β is a double star with the dominating edge uxuy, a contradiction. If
X1 6⊂ S and Y2 ∩ S = ∅, then β = D(0, n; p′, q′) for some p′ and q′, a
contradiction to the minimality of |V (G′)|. If X1 ⊂ S and Y2 ∩ S 6= ∅, then
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β = D(m, 0; p′, q′) for some p′ and q′, a contradiction to the minimality of
|V (G′)|. Hence, X ′ ⊂ S and Y ′ ∩ S = ∅. This contradicts the observation
that some edge of G′ must be contracted to obtain β. This completes the
proof of the claim.

By Claim 4.8, either S = X or S = Y . Without loss of generality,
we may assume that S = X. By Lemma 4.1 (ii), it follows that p = 0.
Let X1 = {x1, . . . , xm} and Y1 \ {y} = {y1, . . . , ym} (recall that m,n ≥ 2).
Without loss of generality, we assume that w(x1) ≤ w(xi) for all i.

(Case 1) Suppose that w(y1) ≤ w(y)+w(X2\{x}). Let S ′ = (S\{x1})∪{y}.
Then w(S ′) = w(S) − w(x1) + w(y) ≤ w(S), since x1y ∈ E(G) and S is a
safe set. Moreover, since the dominating edge xy is in S ′, G[S ′] is connected.

Take a component D of G − S ′. If D is a singleton, say D = {y′}, then
y′ ∈ Y2 ∪ Q and so w(y′) ≤ w(x) ≤ w(S ′), where the first inequality follows
from the fact that S is a safe set. Suppose that D is not a singleton. Then
D = {x1, y1, . . . , ym}. Note that w(x1) ≤ w(xi), w(yi) ≤ w(xj), w(yi) ≤ w(x)
for every i, j. Then by the case assumption, w(D) = w(x1)+w(y1)+(w(y2)+
· · ·+w(ym)) ≤ w(x2) + (w(y) +w(X2 \ {x})) + (w(x3) · · ·+w(xm) +w(x)) =
w(S ′). This implies that S ′ is a connected safe set of (G,w), a contradiction.

(Case 2) Suppose that w(y) + w(X2 \ {x}) < w(y1). Then clearly, we have
G = D∗(m,n; 0, q). We take a vertex x′ ∈ X2 \{x}. By the case assumption,
we have w(y) + w(x′) < w(y1). Thus

w(x′) < w(y1)− w(y) < w(y1) ≤ w(x1). (4.3)

Let S ′ = (X \ {x′})∪{y}. Then w(S ′) = w(S)−w(x′) +w(y) ≤ w(S), since
x′y ∈ E(G) and S is a safe set. Moreover, since the dominating edge xy is
in S ′, G[S ′] is connected.

Take a component D of G − S ′. If D is a singleton, say D = {y′}, then
y′ ∈ Y1 ∪ Q and so w(y′) ≤ w(x) ≤ w(S ′), where the first inequality is
from the fact that S is a safe set. Suppose that D is not a singleton. Then
D = {x′}∪Y2. By (4.3) and the fact that there is a perfect matching between
Y2 and X2 \ {x′}, we have

w(D) = w(x′) + w(Y2) ≤ w(x1) + w(X2 \ {x′}) ≤ w(S ′).

This implies that S ′ is a connected safe set of (G,w), a contradiction.
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5. Proofs of Theorems 1.4 and 1.5

5.1. Proof of Theorem 1.4

In this subsection, we often use the lemmas in Section 3. Throughout the
proof, we obtain a partition {V1, . . . , V5} of V (G) so that V2 and V4 induce
connected graphs (with some additional conditions according to the lemmas),
and then we apply those lemmas.

Proof of Theorem 1.4. Suppose to the contrary that there is a triangle-free
connected graph G ∈ Gcs, not a cycle, such that diam(G) ≥ 4. Let u and v
be vertices such that distG(u, v) = diam(G). Note that every neighbor of u
or v has degree at least two by the maximality of distG(u, v). For simplicity,
let Hu = G−NG[u] and Hv = G−NG[v].

Claim 5.1. For a ∈ {u, v}, if Ha is connected, then degG(a) ≤ 2.

Proof. Suppose that Ha is connected and degG(a) ≥ 3. Since G is triangle-
free, NG(a) is an independent set. Moreover, by the maximality of distG(u, v),
each neighbor of a has degree at least two. By Corollary 3.8, G does not
belong to Gcs, which is a contradiction.

Claim 5.2. At least one of Hu and Hv is disconnected.

Proof. Suppose that Hu and Hv are connected. By Claim 5.1, degG(u) ≤ 2
and degG(v) ≤ 2.

Subclaim 5.3. For a ∈ {u, v}, degG(a) = 2 and the graph Ha−x is discon-
nected for every vertex x with distG(a, x) ≥ 3.

Proof. Suppose that degG(u) = 1 and degG(v) = 1. Let V1 = {u}, V2 =
NG(u), V4 = NG(v), V5 = {v}, V3 = V (G) \ (V1 ∪ V2 ∪ V4 ∪ V5). Note
that V3 6= ∅ since diam(G) ≥ 4. In addition, G[V2] and G[V4] are connected.
By contracting Vj’s, G is H1-contractible for the graph H1 in Figure 4, and so
G 6∈ Gcs by Lemma 3.1, which is a contradiction. Without loss of generality,
we may suppose that degG(u) = 2, and let NG(u) = {z1, z2}. Suppose
that Hu − x is connected for some vertex x with distG(u, x) ≥ 3. Then let
V1 = {z1}, V2 = {u}, V3 = {z2}, V5 = {x}, V4 = V (G) \ (V1 ∪ V2 ∪ V3 ∪ V5).
Note that V4 6= ∅ since V4 = V (Hu−x). Clearly, V2 and V4 induce connected
graphs and |EG(V1, V2)| = |EG(V2, V3)| = 1. Moreover, since distG(u, x) ≥ 3,
we have xzi 6∈ E(G) for each i ∈ {1, 2}. By contracting Vj’s, G is H2-
contractible for the graph H2 in Figure 4 and so G 6∈ Gcs by Lemma 3.2,
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which is a contradiction. Thus Hu − x is disconnected for every vertex x
with distG(u, x) ≥ 3. Then Hu−v is disconnected and so degG(v) 6= 1, which
implies that degG(v) = 2. By the symmetry of the roles of u and v, we can
show that Hv−x is disconnected for every vertex x with distG(v, x) ≥ 3.

LetNG(u) = {z1, z2} andNG(v) = {w1, w2}. Note that EG({z1, z2}, {w1, w2})
= ∅ because distG(u, v) ≥ 4. We divide the proof into two cases, whether
G− {u, v} is connected or not. See Figures 8 and 9 for illustrations.

(Case 1) Suppose that G − {u, v} is connected. Let D1 and D2 be the
components of Hu − v, and we may assume that wi ∈ Di and zi has a
neighbor in Di. From the case assumption together with the fact that
EG({z1, z2}, {w1, w2}) = ∅, we have EG({z2}, D1−w1)∪EG({z1}, D2−w2) 6=
∅. Note that if G[Di∪{zi}]−wi is connected for each i ∈ {1, 2}, then Hv−u
is connected, which is a contradiction to Subclaim 5.3. Hence we may assume
that G[D1 ∪ {z1}]− w1 is disconnected.

D1

D2

u v

z1

z2

w1

w2

Figure 8: An illustration for (Case 1) of Claim 5.2.

Let D∗z1 be the component of G[D1 ∪ {z1}] − w1 containing z1, and let
V1 = {u}, V2 = {z2}, V3 = D2 ∪ {v}, V4 = D∗z1 ∪ {w1}, V5 = V (G) \
(V1∪V2∪V3∪V4). We reach a contradiction by showing that all the conditions
of Lemma 3.3 are satisfied. Note that each of V1, V2, V3, and V4 induces a
connected graph, and since V5 = D1 \ (D∗z1 ∪ {w1}), V5 6= ∅. In addition, w1

is a unique vertex of V4 having a neighbor in V5 and w1 has a neighbor v in
V3.

Now it remains to show that G is H3-contractible by contracting Vj’s
for the graph H3 in Figure 4. Since both Hv − u and Hu − v are dis-
connected by Subclaim 5.3, EG(V2, V4) = ∅ and EG(V3, V5) = ∅. Since
NG(u) ∩ V3 = NG(u) ∩ V5 = ∅, it is clear that EG(V1, V3) = EG(V1, V5) = ∅.
By the structure, it is clear that each of EG(V1, V2), EG(V1, V4), EG(V3, V2),
EG(V3, V4) and EG(V5, V4) is nonempty. To check that EG(V2, V5) 6= ∅, take
a pendant vertex x of a spanning forest of G[V5∪{w1}] other than w1. Then

27



Hu − x is connected. Hence, x ∈ NG[z1]∪NG[z2]. Since x is not in the same
component with z1 in G[D1 ∪ {z1}] − w1, x 6∈ NG[z1] and so xz2 ∈ E(G).
Thus EG(V2, V5) 6= ∅, and therefore by contracting Vj’s, G is H3-contractible
for the graph H3 in Figure 4.

(Case 2) Suppose that G − {u, v} is disconnected. Note that both G − u
and G− v are connected from the assumption that distG(u, v) is maximum.
Thus, since degG(u) = degG(v) = 2, G− {u, v} has exactly two components
D1 and D2. Without loss of generality, let D1 ⊃ {z1, w1} and D2 ⊃ {z2, w2}.

D1

D2

u v

z1

z2

w1

w2

Figure 9: An illustration for (Case 2) of Claim 5.2.

Since G is not a cycle, one of D1 and D2, say D2, is not a path joining
z2 and w2. Hence D2 has a spanning tree T with a pendant vertex x with
x 6∈ {w2, z2}. Then x is not a cut vertex of D2 and so D2 − x is connected.
Let V1 = {u}, V2 = D1, V3 = {v}, V4 = D2 \ {x}, and V5 = {x}. Clearly,
V2 and V4 induce connected graphs and |EG(V1, V2)| = |EG(V2, V3)| = 1. By
contracting Vj’s, G is H2-contractible for the graph H2 in Figure 4 and so
G 6∈ Gcs by Lemma 3.2, which is a contradiction. We have completed the
proof of Claim 5.2.

For each pair (x, y) of two vertices with distG(x, y) = diam(G), we denote
by N(x; y) the set of neighbors of x which are on some shortest (x, y)-path,
that is,

N(x; y) = {a ∈ NG(x) | distG(a, y) = diam(G)− 1}.

For simplicity, let n(x,y) = |N(x; y)| + |N(y;x)|. Suppose that we take two
vertices u and v with distG(u, v) = diam(G) so that (1) n(u,v) is minimum
and (2) degG(u) + degG(v) is minimum subject to the condition (1).

Claim 5.4. Suppose that Ha is disconnected for some a ∈ {u, v}. Then there
is a partition {A1, A2, A3} (Ai 6= ∅ for each i) of V (G) satisfying all of the
following (See Figure 10.):
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(i) A2 = NG[a] (and therefore G[A2] is connected);

(ii) G[A3] induces a connected graph and b ∈ A3, where {b} = {u, v} \ {a};

(iii) for each vertex z ∈ A1, NG(z) = NG(a).

NG(u)

A1

A2 A3

G[A3] is connected

u

Figure 10: An illustration for Claim 5.4.

Proof. Without loss of generality, we may assume that a = u. Let A2 =
NG[u], A3 be the component of Hu such that v ∈ A3, and A1 = V (G) \ (A2∪
A3). Then (i) and (ii) follow immediately. We will show (iii).

Take a component D of Hu other than A3. Note that every path from
a vertex in D to the vertex v contains a vertex in NG(u). So if there is a
vertex z ∈ D such that EG(z,N(u; v)) = ∅, then dist(z, v) > distG(u, v) =
diam(G), a contradiction. Hence, each vertex in D has a neighbor in N(u; v).
Moreover, dist(z, v) = distG(u, v) and N(z; v) ⊂ N(u; v) for all z ∈ D. We
also have N(v; z) ⊂ N(v;u) for all z ∈ D. By the minimality of n(u,v), we
have N(z; v) = N(u; v). Moreover, if |D| ≥ 2, then an edge of D and a
vertex in N(u; v) create a triangle. Thus |D| = 1. Let D = {z}. Since
degG(z) ≤ degG(u), from the minimality of degG(u) + degG(v), it follows
that NG(u) = NG(z). Therefore, it completes the proof of Claim 5.4.

By Claim 5.2, we may assume that Hu is disconnected. Then there is a
partition {A(u)

1 , A
(u)
2 , A

(u)
3 } of V (G) satisfying (i)-(iii) of Claim 5.4, by apply-

ing the claim for the vertex u. First, suppose that Hv is connected. Then by
Claim 5.1, degG(v) ≤ 2. Suppose that degG(v) = 1. Let

V1 = A
(u)
1 , V2 = A

(u)
2 , V3 = A

(u)
3 \NG[v], V4 = NG(v), V5 = {v}.
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Note that G[V2] and G[V4] are connected. By contracting Vj’s, G is H1-
contractible for the graph H1 in Figure 4. Then G 6∈ Gcs by Lemma 3.1,
which is a contradiction. Suppose that degG(v) = 2, say NG(v) = {w1, w2}.
Let

V1 = {w1}, V2 = {v}, V3 = {w2}, V5 = A
(u)
1 , V4 = V (G)\(V1∪V2∪V3∪V5).

Note that G[V4] induces a connected graph from the assumption that Hv is
connected. By contracting Vj’s, G is H2-contractible for the graph H2 in
Figure 4. Then G 6∈ Gcs by Lemma 3.2, which is a contradiction.

Secondly, suppose that Hv is disconnected. Then there is a partition
{A(v)

1 , A
(v)
2 , A

(v)
3 } of V (G) satisfying (i)-(iii) of Claim 5.4, by applying the

claim for the vertex v. Let

V1 = A
(u)
1 , V2 = A

(u)
2 , V4 = A

(v)
2 , V5 = A

(v)
1 , V3 = V (G)\(V1∪V2∪V4∪V5).

We reach a contradiction by showing that the conditions of Lemma 3.1 are
satisfied. Note that G[V2] and G[V4] are connected. Since G is connected
graph, V3 6= ∅. It remains to show that by contracting Vj’s, G is H1-
contractible for the graph H1 in Figure 4,

Since distG(u, v) = diam(G) ≥ 4 and V3 = A
(u)
3 ∩ A(v)

3 , EG(V2, V4) = ∅
and EG(V1, V5) = EG(V3, V5) = ∅. If a vertex a in V5 is adjacent to a vertex
b in V2, then b is also a neighbor of v by the property (iii) of Claim 5.4,
which is a contradiction to distG(u, v) = diam(G) ≥ 4. Thus EG(V2, V5) = ∅.
Similarly, EG(V1, V3) = EG(V1, V4) = ∅, and therefore by contracting Vj’s, G
is H1-contractible.

5.2. Proof of Theorem 1.5

Note that the ‘if’ part of Theorem 1.5 follows by Theorem 1.2, Corol-
lary 4.4, Propositions 4.5, and 4.6. We devote this subsection to prove the
‘only if’ part of Theorem 1.5.

For a bipartite graph G = (X, Y ), a vertex x in X (resp.y in Y ) is called
a universal vertex if NG(x) = Y (resp.NG(y) = X). Otherwise, we say x
(resp.y) is non-universal. Note that for an edge xy of a bipartite graph G,
both x and y are universal vertices if and only if xy is a dominating edge.

Lemma 5.5. Let G = (X, Y ) be a connected bipartite graph.

(i) If diam(G) ≤ 3, then any two vertices in the same partite set have a
common neighbor.
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(ii) If G ∈ Gcs, diam(G) ≤ 3 and δ(G) ≥ 2, then for every vertex v with
degG(v) ≥ 3, there is at most one component of G−NG[v] that is not
a singleton.

(iii) If G ∈ Gcs and |V (G)| ≥ 5, then no two vertices of degree two have the
same neighborhood.

Proof. Since diam(G) ≤ 3, it is trivial to see that (i) holds. Suppose that G ∈
Gcs, diam(G) ≤ 3, δ(G) ≥ 2 and let D0, D1, . . . , Dm−1 be the components
in G−NG[v] for a vertex v with degG(v) ≥ 3. By Corollary 3.8, G−NG[v]
is disconnected and so m ≥ 2. Without loss of generality, we assume that
|D0| ≥ |D1| ≥ · · · |Dm−1|. To show (ii), it is equivalent to show that |D1| = 1.
Suppose that |D1| ≥ 2. Without loss of generality, let v ∈ X. Then for each
i ∈ {0, 1}, Di ∩ Y 6= ∅ and take a vertex yi ∈ Di ∩ Y . Note that y0 and y1
cannot have a common neighbor, a contradiction to (i). Hence, |Di| = 1 for
each i ∈ {1, . . . ,m− 1}.

To show (iii), suppose that there are two vertices of degree two, say v1
and v3, which have the same neighborhood. Let NG(v1) = NG(v3) = {v2, v4}.
Let Vi = {vi} for each i ∈ {1, 2, 3, 4}, and let V5 = V (G) \ (V1∪V2∪V3∪V4).
Since |V (G)| ≥ 5, V5 6= ∅. By contracting Vj’s, G is either H2-contractible or
H3-contractible for the graphs H2 and H3 in Figure 4. If G is H2-contractible,
then clearly |EG(V1, V2)| = |EG(V2, V3)| = 1, and so G 6∈ Gcs by Lemma 3.2,
which is a contradiction. If G is H3-contractible, then clearly |V1| = |V2| = 1,
V3 is connected, and the vertex v4 ∈ V4 satisfies EG({v4}, V3) 6= ∅ and
EG({v4}, V5) = EG(V4, V5). Then G 6∈ Gcs by Lemma 3.3, which is a contra-
diction.

Proof of the ‘only if ’ part of Theorem 1.5. Suppose that there is a connected
bipartite graph G ∈ Gcs, none of the graphs described in (I)-(V). We take
such G so that |V (G)| is as small as possible. Then G is neither a cycle nor
a double star. By Theorem 1.4, G has diameter at most three. Suppose that
diam(G) ≤ 2. Then G is a complete bipartite graph G = Km,n where m ≤ n.
If m = 1 then G is a star, a contradiction. Suppose that m ≥ 2. If m 6= n
then by Lemma 3.6, G 6∈ Gcs, a contradiction. Thus m = n. If m = 2, then
G = C4, a contradiction. If m ≥ 3, then G = D(m − 1, 0; 0, 0) (a graph
described in (V)), a contradiction.

Now suppose that diam(G) = 3. Let G = (X, Y ). If either |X| = 1 or
|Y | = 1 or |X| = |Y | = 2, then diam(G) ≤ 2, a contradiction. Suppose that
|X| = 2 and |Y | ≥ 3. Then each vertex in Y has degree at most two. By
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Lemma 5.5 (iii), there is exactly one vertex y ∈ Y of degree two and the other
vertices in Y are pendant. By Lemma 5.5 (i), such all pendant vertices in Y
have the same neighbor in X, and so G is a double star (a graph described
in (II)) a contradiction. The case where |X| ≥ 3 and |Y | = 2 is excluded
similarly. Hence, in the following, we assume that |X|, |Y | ≥ 3.

Claim 5.6. It holds that δ(G) ≥ 2 and moreover, each partite set has a
vertex of degree at least three.

Proof. Suppose that there is a vertex x of G such that degG(x) = 1. Without
loss of generality, let x ∈ X. By Proposition 2.5, G−x ∈ Gcs. Clearly, G−x is
a bipartite graph. By minimality of |V (G)|, G−x is one of graphs described
in (I)-(V). In addition, 2 ≤ diam(G− x) ≤ 3.

• Suppose that G − x is a cycle (a graph described in (I)). Then G is
a cycle of length at least four plus a pendant vertex, which is H2-
contractible for the graph H2 in Figure 4. By Lemma 3.2, G 6∈ Gcs,
which is a contradiction.

• Suppose that G− x is a double star (a graph described in (II)). Since
G has diameter at most three, G is also a double star, a contradiction.

• Suppose that G− x is a book graph Bn (n ≥ 2) (a graph described in
(III)). Let x∗ ∈ X and y∗ ∈ Y be the universal vertices of G−x. Since
n ≥ 2, we can take a 4-cycle v1v2x

∗y∗ of G − x such that each of v1
and v2 is not adjacent to x. Let Vi = {vi} for i ∈ {1, 2}, V3 = {x∗},
V5 = {x}, and V4 = V (G) \ (V1 ∪ V2 ∪ V3 ∪ V5). By contracting Vj’s,
G is H2-contractible for the graph H2 in Figure 4 and |EG(V1, V2)| =
|EG(V2, V3)| = 1. ThenG 6∈ Gcs by Lemma 3.2, which is a contradiction.

• Suppose that G − x is the graph D(1, 1; 0, 0) (a graph described in
(IV)). To have diam(G) = 3, we must have D(1, 1; 0, 1), which implies
that G 6∈ Gcs by Proposition 4.6.

• Suppose that G−x is either D(m,n; p, q) or D∗(m,n; p, q) (m ≥ n) with
m ≥ 2, n 6= 1, and p, q ≥ 0 (a graph described in (V)). Together with
Lemma 5.5 (i), to have diam(G) = 3, G must be a graph D(m,n; p′, q′)
or D∗(m,n; p′, q′) for some p′, q′ ≥ 0 (a graph described in (V)), a
contradiction.
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Hence, G has no pendant vertex in X and so δ(G) ≥ 2. To show the
‘moreover’ part, suppose that all vertices of a partite set, say X, have de-
gree 2. By Lemma 5.5 (i) and (iii), for two vertices x1 and x2 in X, we
may let NG(x1) = {y1, y2} and NG(x2) = {y2, y3}. By Lemma 5.5 (i), y1
and y3 have a common neighbor in X, say x3. Then NG(x3) = {y1, y3}
by our assumption. Moreover, Lemma 5.5 (i) implies that any two ver-
tices of X have a common neighbor in Y , which implies that the neighbor-
hood of a vertex in X is equal to one of {y1, y2}, {y2, y3}, and {y1, y3}.
Since G is connected, Y = {y1, y2, y3}. If |X| = 3, then G is a cycle
x1, y1, x3, y3, x2, y2 of length six, a contradiction. If |X| ≥ 4, then there is a
vertex x4 ∈ X \{x1, x2, x3} such that NG(x4) = NG(xi) for some i ∈ {1, 2, 3},
a contradiction to Lemma 5.5 (iii). Hence, each partite set has a vertex of
degree at least three.

By Claim 5.6, we can take a vertex x∗ ∈ X with degG(x∗) ≥ 3 so that

(i) the order of a largest component of G−NG[x∗] is as large as possible,

(ii) the number of components in G−NG[x∗] is as small as possible, subject
to the condition (i),

(iii) the degree of x∗ is as small as possible, subject to the conditions (i)
and (ii).

Let D0, D1, . . . , Dm−1 be the components in G−NG[x∗]. By Corollary 3.8,
m ≥ 2.

Claim 5.7. If Di = {xi} for some i ∈ {0, 1, . . . ,m−1}, then either degG(xi) =
2 or NG(xi) = NG(x∗).

Proof. Suppose that Di = {xi} for some i ∈ {0, 1, . . . ,m− 1}, degG(xi) ≥ 3
and NG(xi) 6= NG(x∗). Then NG(xi) ( NG(x∗) and so degG(xi) < degG(x∗).
Note that the maximum order of a component of G−NG[xi] is not less than
that of G − NG[x∗], the number of components in G − NG[xi] is at most
m. This contradicts the choice of degG(x∗), a contradiction. Thus the claim
holds.

Without loss of generality, we assume that |D0| ≥ |D1| ≥ · · · ≥ |Dm−1|.
By Lemma 5.5 (ii), |Di| = 1 for each i ∈ {1, . . . ,m− 1}, and let Di = {xi}.
In addition, it is clear that NG(xi) ⊆ NG(x∗) for each i ∈ {1, . . . ,m − 1}.
Now we divide the proof into two cases according to the order of D0.
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(Case 1) Suppose that |D0| ≥ 2. We will reach a contraction, by showing
that G is either D(m,n; 0, 0) or D∗(m,n; 0, 0) (a graph described in (V))
where n = |D0 ∩ Y | ≥ 2. Since D0 induces a connected graph, D0 ∩ Y 6= ∅
and so the following claim holds.

Claim 5.8. There is a vertex in D0 ∩ Y of degree at least three.

Proof. Suppose that a vertex y in D0 ∩ Y has degree two. Let NG(y) =
{x′1, x′2}. Note that NG(y) ⊂ V (D0) by the definition of Di’s. Suppose
that G − NG[y] is connected. Then G − (NG[y] ∪ {z}) is also connected for
some z ∈ {x1, . . . , xm−1}. Then let V1 = {x′1}, V2 = {y}, V3 = {x′2}, and
V5 = {z}, and let V4 = V (G) \ (V1 ∪ V2 ∪ V3 ∪ V5). Note that G[V4] =
G − (NG[y] ∪ {z}) is connected. By contracting Vj’s, G is H2-contractible
for the graph H2 in Figure 4. Note that |EG(V1, V2)| = |EG(V2, V3)| = 1, and
thus G 6∈ Gcs by Lemma 3.2, which is a contradiction. Thus G − NG[y] is
disconnected. To have diam(G) ≤ 3, every component of G−NG[y], except
the component containing x∗, must be a singleton in D0 ∩ Y . Moreover,
as we have δ(G) ≥ 2, each such singleton component has the neighborhood
{x′1, x′2}. Then by contracting the largest component of G−NG[y] into one
vertex, we obtain a complete bipartite graph K2,|D0∩Y |+1. By Lemma 3.6,
G 6∈ Gcs, a contradiction. Hence, D0 ∩ Y has a vertex of degree at least
three.

D0

D0 ∩X

D0 ∩ Y

x∗ x1 x2 xm−1

NG(x
∗)

Figure 11: An illustration for (Case 1) of the proof of Theorem 1.5.

Claim 5.9. For each i ∈ {1, . . . ,m− 1}, NG(xi) = NG(x∗). (See Figure 11
for an illustration.)

Proof. Suppose that for some i ∈ {1, . . . ,m − 1}, NG(xi) 6= NG(x∗). By
Claim 5.7, degG(xi) = 2. By Claim 5.8, we can take a vertex y ∈ D0 ∩ Y of
degree at least three. Then G−NG[y] is disconnected by Corollary 3.8. Note
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that the component containing V (G)\D0 of G−NG[y] is a largest component
and each of the other components of G−NG[y] is a singleton, which is a vertex
in D0 ∩ Y , by Lemma 5.5 (ii). Take a singleton {y′}, which is a component
of G − NG[y]. Then NG(y′) ⊂ NG(y), and so V (G) \ (NG[xi] ∪ {y′}) is
connected. Let V1 = {y1}, V2 = {xi}, V3 = {y2} where NG(xi) = {y1, y2}.
We let V5 = {y′}, and let V4 = V (G) \ (V5 ∪ V1 ∪ V2 ∪ V3). Then G is
H2-contractible for the graph H2 in Figure 4. By Lemma 3.2, G 6∈ Gcs, a
contradiction. Hence, the claim holds.

By Lemma 5.5 (i) and Claim 5.9, G is contractible to Km+1,|NG(x∗)| with
exactly one bag D0 of order at least two. Hence, by Lemma 3.6, since G ∈ Gc,
it follows that (3 ≤)m+ 1 = |NG(x∗)|.

Now we take a vertex y∗ ∈ Y ∩ D0 of degree at least three, so that a
largest component of G−NG[y∗] is maximum, the number of components in
G−NG[y∗] is minimum, and we select one with minimum degree among such
vertices. Then by the same argument with y∗ instead of x∗ in Claims 5.7
- 5.9, we can show that NG(y∗) = NG(y′) for all y′ ∈ D0 ∩ Y , and then by
applying Lemma 3.6 again, we obtain |D0∩Y |+1 = |NG(y∗)|. In addition, if
(D0∩X)\NG(y∗) 6= ∅, then D0 cannot be a connected graph, a contradiction.
Hence, NG(y∗) = D0 ∩X and so |D0 ∩ Y | + 1 = |D0 ∩X|(≥ 3). Therefore,
we note that Claim 5.10 is enough to finish the proof of (Case 1).

Claim 5.10. G[NG(x∗)∪ (D0 ∩X)] is either a complete bipartite graph or a
double star.

Proof. Note that, by Lemma 5.5 (i), each vertex in NG(x∗) has a neighbor
in D0 ∩X by considering a vertex in NG(x∗) and a vertex in D0 ∩ Y . By the
same reason, by considering the vertex x∗ and a vertex in D0 ∩X, it holds
that each vertex in D0 ∩X has a neighbor in NG(x∗).

Suppose that G[NG(x∗) ∪ (D0 ∩ X)] is not a complete bipartite graph.
Then there is a vertex y ∈ NG(x∗) such that NG(y) ∩ D0 is not equal to
D0 ∩X. We take such y with minimum degree. Let A be the set of vertices
in NG(x∗) that have the same neighborhood as y, that is, A = {y′ ∈ NG(x∗) |
NG(y′) = NG(y)}. If A = NG(x∗), then for G being connected, NG(y) = X,
which is a contradiction to the fact that y is not universal. Thus A is a proper
subset of NG(x∗) and so |A| ≤ |NG(x∗)|−1 = m. Let Z = V (G)\(NG[y]∪A),
and then let H = G/Z, which is the graph obtained from G by contracting
Z into a one vertex. Note that by the choice of y, every vertex in NG(x∗) \A
has a neighbor in Z and therefore G[Z] is a connected graph and |Z| ≥ 2.
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Then H is a complete bipartite graph with partite sets of order |A|+ 1 and
|NG(y)|. Since G ∈ Gcs, it follows that |A| + 1 = |NG(y)| from Lemma 3.6.
Then

m+ 1 ≥ |A|+ 1 = |NG(y)| ≥ m+ |NG(y) \ {x∗, x1, . . . , xm−1}| ≥ m+ 1,

which implies that |A| = m and |NG(y)| = m + 1. Therefore, each vertex
in A has exactly one neighbor x0 in NG(y) \ {x∗, x1, . . . , xm−1}. Note that
degG(x0) = |NG(x0)∩D0|+ |A| ≥ 1 +m ≥ 3. Since |NG(x∗)| = m+ 1, there
is a unique vertex y0 in NG(x) \ A. Then, since diam(G) = 3, all vertices in
(D0 ∩ X) \ {x0} must be adjacent to y0. If x0y0 6∈ E(G), then G − NG[x0]
is connected, a contradiction to Corollary 3.8. Thus x0y0 is an edge, and
therefore G[NG(x∗) ∪ (D0 ∩X)] is a double star.

(Case 2) Suppose that |D0| = 1. Let D0 = {x0}. Then x∗ is a universal
vertex and by Claim 5.7, for every x′ ∈ X, either degG(x′) = 2 or NG(x′) =
NG(x∗) = Y . If there is a non-universal vertex y ∈ Y with degree at least
three, then G − NG[y] has a component of order at least two, which can be
shown by the same argument as in (Case 1). Thus, we may assume that for
every y ∈ Y , either degG(y) = 2 or NG(y) = X. Then, by Claim 5.6, it
follows that there is a universal vertex in Y .

If there is no degree two vertex in X (or Y ), then G is isomorphic to
Kn,n, and so diam(G) = 2, a contradiction. Suppose that each of X and
Y has a vertex with degree two. Thus each part has at most two universal
vertices. We will show that each partite set has exactly one universal vertex.
Suppose that one of the partite sets, say X, has exactly two universal vertices
x1 and x2. If there are two non-universal vertices y1 and y2 in Y , then
NG(y1) = NG(y2) = {x1, x2}, which is a contradiction by Lemma 5.5 (iii).
Thus Y has exactly one non-universal vertex, say y1. Then degG(y1) = 2
and the vertices of Y other than y1 are universal vertices, and therefore
|Y | = 3. If |X| = 3, then G is the graph K3,3 minus an edge (a graph
described in (IV)), a contradiction. Thus |X| ≥ 4. Let V1 = {x1}, V2 =
{y1}, V3 = {x2}. By taking a vertex x3 ∈ X \ {x1, x2}, let V5 = {x3} and
V4 = V (G)\(V1∪V2∪V3∪V5). Note that V4 is connected, since the vertices in
Y \{y1}, which are universal vertices, are in V4 and V4∩X 6= ∅. By contracting
Vj’s, G is H2-contractible for the graph H2 in Figure 4. Then G 6∈ Gcs by
Lemma 3.2, which is a contradiction. Therefore, each partite set has exactly
one universal vertex and all the other vertices have degree 2, which implies
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that G is a book graph (a graph described in (III)), a contradiction. We have
completed the proof.
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