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Abstract

A graph puzzle Puz(G) of a graph G is defined as follows. A
configuration of Puz(G) is a bijection from the set of vertices of a
board graph to the set of vertices of a pebble graph, both graphs being
isomorphic to some input graph G. A move of pebbles is defined as
exchanging two pebbles which are adjacent on both a board graph and
a pebble graph. For a pair of configurations f and g, we say that f is
equivalent to g if f can be transformed into g by a finite sequence of
moves.

Let Aut(G) be the automorphism group of G, and let 1G be the
unit element of Aut(G). The pebble exchange group of G, denoted by
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Peb(G), is defined as the set of all automorphisms f of G such that
1G and f are equivalent to each other.

In this paper, some basic properties of Peb(G) are studied. Among
other results, it is shown that for any connected graph G, all auto-
morphisms of G are contained in Peb(G2), where G2 is a square graph
of G.

keywords: pebble motion, motion planning, graph puzzle, automorphism

1 Introduction

Let G be a finite and undirected graph with no multiple edge or loop. The
vertex set of G and the edge set of G are denoted by V (G) and E(G),
respectively. Let P = {1, . . . , k} be a set of pebbles with k < |V (G)|. An
arrangement of P on G is defined as a function f from V (G) to {0, 1, . . . , k}
with |f−1(i)| = 1 for 1 ≤ i ≤ k, where f−1(i) is a vertex occupied with the
ith pebble for 1 ≤ i ≤ k and f−1(0) is a set of unoccupied vertices. A move
is defined as shifting a pebble from a vertex to some unoccupied neighbour.
The pebble motion problem on the pair (G,P ) is to decide whether a given
arrangement of pebbles reachable from another by executing a sequence of
moves. The well-known puzzle named “15-puzzle” due to Loyd [10] is a
typical example of this problem where the graph G is a 4× 4-grid.

The pebble motion problem is studied intensively [1–5,8,9,11–14], because
of its considerable theoretical interest as well as its wide range of applications
for computer science and robotics, such as management of indivisible packets
of data moving on wide-area communication network and motion planning
of independent robots. In 1974, Wilson [14] solved completely the feasibility
problem (i.e. the problem of determining whether all the configurations of the
puzzle are rearrangeable from one another or not) for the case of |f−1(0)| = 1
on general graphs, and it followed by the result of Kornhauser, Miller and
Spirakis (FOCS ’84) [9] for the case of |f−1(0)| ≥ 2. Papadimitriou, Ragha-
van, Sudan and Tamaki (FOCS ’94) [11] consider the case that there exists a
single special pebble (“robot”) and that the other pebbles (“obstacles”) are
indistinguishable. They focus on the time complexity problems for optimal
number of moves from an arbitrary given arrangement of the pebbles to a
proper goal arrangement in which the robot is on the desired vertex. In 2012,
Fujita, Nakamigawa and Sakuma [5] generalized the problem to the case of
“colored pebbles”, where each pebble of P is distinguished by its color. They
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also completely solved the feasibility problem for their model.

In 2015, Fujita, Nakamigawa and Sakuma [6] generalized the pebble mo-
tion problem as follows: For two graphs G and H with a common number
of vertices, let us consider a puzzle Puz(G,H), where G is a board graph
and H is a pebble graph. We call a bijection f from V (G) to V (H) a
configuration of Puz(G,H), and we denote the set of all configurations of
Puz(G,H) by C(G,H). Given a configuration f , if f(x) = y, we consider
that the vertex x of the board is occupied by the pebble y. In Puz(G,H),
two pebbles y1 = f(x1) and y2 = f(x2) can be exchanged if x1x2 ∈ E(G) and
y1y2 ∈ E(H). Then the resultant configuration g satisfies that g(x1) = y2,
g(x2) = y1 and g(x) = f(x) for any x ∈ V (G) \ {x1, x2}. We call the opera-
tion a move. If a configuration f is transformed into another configuration g
with a finite sequence of moves, we say that f and g are equivalent, denoted
by f ∼ g. Puz(G,H) is called feasible if all the configurations of the puzzle
are equivalent to each other.

In [6], the above mentioned graph puzzle was formally introduced and
some more necessary/sufficient conditions of the feasibility of the puzzle was
studied. This model has again a wide range of real world applications, espe-
cially for robot motion planning problems and facility relocation problems.
Please see [6] for details.

In this paper, we will shed light on some algebraic property of the puzzle,
which is of not only theoretical interest, but also practical importance, as
will be discussed later.

In the following, we only consider the case where a board graph and a
pebble graph are the same, and we denote C(G,G) and Puz(G,G) simply by
C(G) and Puz(G), respectively.

The automorphism group of a graph G, denoted by Aut(G), is the group
which consists of all bijections f from V (G) to V (G) such that f(x1)f(x2) ∈
E(G) if and only if x1x2 ∈ E(G). Let 1G, or simply 1, denote the identity
element of Aut(G). Let us introduce the pebble exchange group of G, denoted
by Peb(G), as the group which consists of all automorphisms f of G such
that 1G and f are equivalent in Puz(G).

In application, when a graph G represents some system, an automor-
phism f of G corresponds to a rearrangement of possible arrangements of
the system. If f is contained in Peb(G), the corresponding rearrangement
is realizable with a sequence of local changes step by step. Hence if we
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can show the equation Peb(G) = Aut(G) here, it means that practically all
the necessary and sufficient arrangements are mutually reachable from one
another.

However, it seems to be a highly nontrivial and difficult problem to
characterize completely the graphs whose pebble exchange groups are equal
to their automorphism groups. Hence, before to attack this problem di-
rectly, in this paper we will show that the class of graphs G satisfying
Peb(G) = Aut(G) is considerably large. Especially, we prove (Theorem 12)
that, for any connected graph G, the pebble exchange group of the square
G2 of G contains a subgroup isomorphic to the automorphism group of G.
Since the maximum degree of G2 is no more than the square of the maximum
degree of G, if the maximum degree of G is a small constant and the order of
G is sufficiently large, then not only G but also G2 are sparse graphs, and the
puzzle Puz(G2) is also far from feasible in general. In spite of this, somewhat
surprisingly, by using Theorem 12, for example, we can show that, for any
connected graph G, if we 2-subdivide all the edges of G, and if we take its
square, the resulting graph H satisfies the equation Peb(H) = Aut(H).

2 Preliminaries

Pebble motion problems on graphs have been extensively studied. In the
following, let us introduce previously proven theorems closely related to this
paper, by using the concept of Puz(G,H).

For two graphs G and H , let G×H denote a Cartesian product of G and
H , where V (G × H) = V (G) × V (H) and E(G × H) = {(u1, v1)(u2, v2) ∈
V (G × H)2 : u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and v1v2 ∈ E(H)}.
Let Pk be the path with k vertices, and let K1,ℓ be the star with ℓ pendant
vertices.

Theorem 1 (W. W. Johnson [8], W. E. Story [13]) Puz(P4×P4, K1,15)
corresponds to the 15-puzzle, by considering that the center z of K1,15 cor-
responds to the unoccupied space of the 15-puzzle. For two configurations
f, g ∈ C(P4×P4, K1,15) with f−1(z) = g−1(z), f is equivalent to g if and only
if g−1 ◦ f is an even permutation on V (G).

We will show some more examples, from Theorem 2 to Theorem 5, which
are considered as generalizations of Theorem 1. Suppose that both G and H
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Figure 1: The graph θ(1, 2, 2)

are bipartite graphs with at least three vertices. It is not difficult to see that
Puz(G,H) is not feasible because of the parity of configurations (cf. [6]).

Let θ(1, 2, 2) be a graph such that V (θ(1, 2, 2)) = {vi : 1 ≤ i ≤ 7} and
E(θ(1, 2, 2)) = {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v1v7, v4v7}. See Figure 1.

Theorem 2 (R. M. Wilson [14]) Let G be a 2-connected non-bipartite graph
with n vertices. If G is not a cycle or θ(1, 2, 2), then Puz(G,K1,n−1) is fea-
sible.

For a positive integer k, a path P = v1v2 · · · vk of a graph G is called
a k-isthmus if (1) every edge of P is a bridge of G, (2) every vertex of
P is a cut-vertex of G, and (3) degG(vi) = 2 for 1 < i < k. For two
graphs G and H , the join G +H is defined as V (G + H) = V (G) ∪ V (H),
E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

We remark that an isthmus is intuitively “a path connecting two blocks”,
and we cannot drop any one of conditions (1), (2) and (3) in the definition.
For example, let G be a graph such that V (G) = {vi : 1 ≤ i ≤ 6}, E(G) =
{vivi+1 : 1 ≤ i ≤ 4} ∪ {v3v6} and let P = v2v3v4. Then P satisfies (1)
and (2), but P is not called an isthmus. Next, let G be a graph such that
V (G) = {vi : 1 ≤ i ≤ 5}, E(G) = {vivi+1 : 1 ≤ i ≤ 4} ∪ {v2v4} and
let P = v2v4. Then P satisfies (2) and (3), but P is not called an isthmus.
Finally, let G be a path of 3 vertices and let P = G. Then P satisfies (3)
and (1), but P is not called an isthmus.

Let Kn denote a complete graph with n vertices, and let Km,n denote a
complete bipartite graph on m and n vertices. For a graph G, let G be the
complement of G. A set of pebbles is called labeled if we can distinguish them
from one another. Otherwise we call the set of pebbles unlabeled.
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Theorem 3 (D. Kohnhauser, G. Miller, and P. Spirakis [9]) Let 2 ≤
k ≤ n. A pebble graph Kk+Kn−k is considered as a set of n−k labeled pebbles
and k unlabeled pebbles, in which two labeled pebbles cannot directly exchange
their positions with each other. Let G be a connected graph with n vertices
except a cycle. Then Puz(G,Kk +Kn−k) is feasible if and only if G has no
k-isthmus.

Theorem 4 (S. Fujita, T. Nakamigawa, and T. Sakuma [5]) Let 2 ≤
k ≤ n/2. Let G be a graph with n vertices. Then Puz(G,Kk,n−k) is feasible
if and only if (1) G is not a cycle, and (2) G is not bipartite, and (3) G has
no k-isthmus.

Theorem 5 (S. Fujita, T. Nakamigawa, and T. Sakuma [5]) Let r ≥
3 and let 2 ≤ n1 ≤ . . . ≤ nr. Let G be a graph with n = n1 + n2 + · · ·+ nr

vertices. Then Puz(G,Kn1,n2,...,nr
) is feasible if and only if (1) G is not a

cycle, and (2) G has no (n− nr)-isthmus.

Now we show that Peb(G) is a group, more precisely, a normal subgroup
of Aut(G), first we prepare the following lemma.

Lemma 6 For ϕ1, ϕ2, α, β ∈ Aut(G), if ϕ1 ∼ ϕ2, then we have β ◦ϕ1 ◦α ∼
β ◦ ϕ2 ◦ α.

Proof. Since ϕ1 ∼ ϕ2, there exists a finite sequence of transpositions
σ1, σ2, . . . , σs on V (G) corresponding to moves from f0 = ϕ1 to fs = ϕ2 such
that fi = σi ◦ fi−1 for 1 ≤ i ≤ s. By the definition of a move in Puz(G),
for 1 ≤ i ≤ s, we have a pair of vertices xi and yi satisfying (xi, yi) ∈ E(G),
(fi−1(xi), fi−1(yi)) ∈ E(G) and σi exchanges fi−1(xi) and fi−1(yi).

Put ϕ′
j = β◦ϕj◦α for 1 ≤ j ≤ 2. Let us define a sequence of configurations

gi = β ◦ fi ◦ α for 0 ≤ i ≤ s and let us define a sequence of transpositions
τi = β ◦ σi ◦ β

−1 for 1 ≤ i ≤ s. Furthermore, let us define ui = α−1(xi) and
vi = α−1(yi). Then we have gi = β◦(σi◦fi−1)◦α = (β◦σi◦β

−1)◦(β◦fi−1◦α) =
τi ◦ gi−1 for 1 ≤ i ≤ s.

What remains to be necessary to check is that gi’s are corresponding
to moves. We have (ui, vi) ∈ E(G) and (gi−1(ui), gi−1(vi)) = (β ◦ fi−1 ◦
α(ui), β ◦ fi−1 ◦ α(vi)) = (β ◦ fi−1(xi), β ◦ fi−1(yi)) ∈ E(G). Finally, τi is
a transposition exchanging β(fi−1(xi)) and β(fi−1(yi)), namely gi−1(ui) and
gi−1(vi), as required.
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Proposition 7 Peb(G) is a normal subgroup of Aut(G).

Proof. Firstly, let f, g ∈ Peb(G). Since 1G ∼ g, by Lemma 6, we have
f = 1G ◦1G ◦f ∼ 1G ◦g ◦f = g ◦f . Hence, we have 1G ∼ f ∼ g ◦f . It follows
that g ◦ f ∈ Peb(G). Secondly, By definition, 1G is contained in Peb(G).
Therefore, Peb(G) is a subgroup of Aut(G). In order to show that Peb(G) is
a normal subgroup of Aut(G), what we need to show is that for f ∈ Peb(G)
and g ∈ Aut(G), we have g ◦ f ◦ g−1 ∈ Peb(G). Since 1G ∼ f , by Lemma 6,
we have 1G = g ◦ 1G ◦ g−1 ∼ g ◦ f ◦ g−1. Hence, we have g ◦ f ◦ g−1 ∈ Peb(G),
as required.

3 Main Results

It is known that for any finite group Γ, there exists a graph G such that
Aut(G) ≃ Γ (cf. [7]). By using this fact, we have the following result.

Proposition 8 For any finite group Γ, there exists a graph G such that
Peb(G) ≃ Γ.

Proof. Let us take a graph H such that Aut(H) ≃ Γ. Since at least one
of H and H is connected, and Aut(H) ≃ Aut(H), by replacing H with H , if
necessary, we may assume H is connected.

Let us build a new graph H ′ from H as follows; V (H ′) = V (H) ∪ {xi
uv :

uv ∈ E(H), 1 ≤ i ≤ 3}, E(H ′) = {ux1
uv, vx

1
uv, x

1
uvx

2
uv, x

2
uvx

3
uv : uv ∈ E(H)}.

Intuitively, H ′ is obtained by adding a pendant path to the middle of each
edge of H .

Claim 1. Aut(H ′) ≃ Aut(H).

For f ∈ Aut(H), let us define a bijection f ′ on V (H ′) such that f ′(v) = f(v)
for v ∈ V (H) and f ′(xi

uv) = xi
f(u)f(v). Then we have f ′ ∈ Aut(H ′), and by

this correspondence, we have Aut(H) ⊂ Aut(H ′).

Conversely, we will show that Aut(H ′) ⊂ Aut(H). Let g ∈ Aut(H ′).
For uv ∈ V (H), x1

uvx
2
uvx

3
uv, denoted by Puv is a pendant path of length two

contained in H ′. Since H ′ contains no pendant path of length two other
than Puv for some uv ∈ E(H), we have g(Puv) = Pg(u)g(v). It follows that an
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automorphism g of H ′ restricted on V (H) induces an automorphism of H .
Therefore, we have Aut(H ′) ⊂ Aut(H).

Now, let us consider G = H ′ + z with n vertices, which is the join of H ′

and an additional vertex z.

Claim 2. Aut(G) ≃ Aut(H ′).

For f ∈ Aut(H ′), let f ′ be a bijection on V (G) such that f ′(z) = z and
f ′(v) = f(v) for v ∈ V (H ′). Then we have f ′ ∈ Aut(G), and by this
correspondence, we have Aut(H ′) ⊂ Aut(G). Conversely, for g ∈ Aut(G),
we have g(z) = z, because z is the unique vertex of degree |V (G)| − 1 in
G. Hence, g restricted on V (H ′) induces an automorphism of H ′. Hence, we
have Aut(G) ⊂ Aut(H ′), as required.

Since G is a non-bipartite 2-connected graph containing K1,n−1 as a
spanning subgraph, by Theorem 2, Puz(G) is feasible. Therefore, we have
Peb(G) = Aut(G). Since Aut(G) ≃ Aut(H ′) ≃ Aut(H) ≃ Γ, we have
Peb(G) ≃ Γ, as required.

Second, we note a simple observation about Peb(G), where G contains
no small cycle. For a graph G, the girth of G, denoted by girth(G), is the
order of a smallest cycle contained in G. If G contains no cycle, girth(G) is
defined as ∞. A matching of a graph G is a set of independent edges of G.
For a matching M of a graph G, let f(M) be a configuration of Puz(G) such
that for all x ∈ V (M), f(x) = y, where xy ∈ E(M), and f(x) = x for all
x 6∈ V (M). Let M(G) = {f(M) : M is a matching of G}.

Proposition 9 Let G be a connected graph with at least three vertices. If
girth(G) ≥ 5, then Peb(G) ≃ {1G}.

Proof. It is sufficient to show that if f ∈ C(G) \ {1G} satisfies 1G ∼ f ,
then f is not an automorphism of G.

Claim. Let f be a configuration of G. Then f ∼ 1G if and only if f ∈ M(G).

First, suppose that f = f(M) ∈ M(G), where M is a matching of G.
Starting from 1G, by exchanging all pairs of pebbles u and v satisfying uv ∈
E(M), we have f(M) ∼ 1G.

Second, suppose that f ∼ 1G. Let f0 = 1G, f1, f2, . . . , fs−1, fs = f be a
sequence of configurations, where fi is generated from fi−1 by a move for all
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1 ≤ i ≤ s. By induction, we may assume fs−1 = f(M) ∈ M(G). Let us
assume we have f from fs−1 by a move, in which two pebbles u and v are
exchanged. What we need to show is that f ∈ M(G).

Case 1. Both u and v are contained in V (M) and uv ∈ E(M).

In this case, we have f = f(M ′), where M ′ = M \ {uv}.

Case 2. Both u and v are contained in V (M) and uv 6∈ E(M).

Suppose that ux ∈ E(M) and vy ∈ E(M). In order to exchange u = fs−1(x)
and v = fs−1(y), we have uv ∈ E(G) and xy ∈ E(G). Hence, uxyv forms a
cycle of length 4, a contradiction.

Case 3. Exactly one of u and v is contained in V (M).

We may assume u ∈ V (M) and v 6∈ V (M). Suppose that ux ∈ E(M). In
order to exchange u = fs−1(x) and v = fs−1(v), we have uv ∈ E(G) and
vx ∈ E(G). Hence, uxv forms a cycle of length 3, a contradiction.

Case 4. Neither u nor v is contained in V (M).

In this case, we have f = f(M ′), where M ′ = M ∪ {uv}. Suppose, for

contradiction, that there exists an automorphism f of G with f ∼ 1G and
f 6= 1G. By the above claim, we have a matchingM ofG such that f = f(M).
Since f 6= 1G, we have E(M) 6= ∅. Let uv ∈ E(M). Because |V (G)| is at least
3 and G is connected, we may assume there exists a vertex x ∈ V (G)\{u, v}
such that ux ∈ E(G). If x ∈ V (M), there exists an edge xy ∈ E(M).
Since f is an automorphism of G, we have f(u)f(x) = vy ∈ E(G). Hence,
uvyx forms a cycle of length 4, a contradiction. If x 6∈ V (M), since f is an
automorphism of G, we have f(u)f(x) = vx ∈ E(G). Hence, uvx forms a
cycle of length 3, a contradiction.

The next result is about the pebble exchange group of a product of graphs.

For two graphs G1 and G2, the Cartesian product of G1 and G2, denoted
by G1 × G2, is a graph such that its vertices are ordered pairs of elements
(x1, x2), where xi ∈ V (Gi) for 1 ≤ i ≤ 2, and two vertices (x1, x2) and (y1, y2)
of G1×G2 are adjacent if and only if either x1 = y1 and x2y2 is an edge of G2

or x2 = y2 and x1y1 is an edge of G1. For two groups Γ1 and Γ2, the direct
product of Γ1 and Γ2, denoted by Γ1 × Γ2, is a group such that its elements
are ordered pairs of elements (α1, α2), where αi ∈ Γi for 1 ≤ i ≤ 2, and its
multiplication ◦ is defined as (α1, α2) ◦ (β1, β2) = (α1 ◦1 β1, α2 ◦2 β2), where
◦i is the multiplication of Γi for 1 ≤ i ≤ 2.

9



Theorem 10 For any two connected graphs G1 and G2, Peb(G1 × G2) ≃
Peb(G1)× Peb(G2).

The proof of Theorem 10 will be given in Section 3.

Let Qn be the n-dimensional hypercubic graph. Since Qn = P n
2 and

Peb(P2) ≃ Z2, we have the following corollary as an immediate consequence
of Theorem 10.

Corollary 11 For n ≥ 1, Peb(Qn) ≃ (Z2)
n.

As a graph G becomes sparse, the number of possible moves on G de-
creases. Hence, it is interesting to show the existence of graphs G such that
Peb(G) has a rich structure and |E(G)| = O(|V (G)|).

For two vertices u, v of a graph G, let dG(u, v) denote the distance between
u and v in G. Furthermore, for two subsets X, Y of the vertex set V (G), let us
define dG(X, Y ) := min{dG(u, v)|u ∈ X, v ∈ Y }. We abbreviate dG({u}, Y )
(resp. dG(X, {v})) to dG(u, Y ) (resp. dG(X, v)).

The square graph G2 of G is defined as V (G2) = V (G) and E(G2) =
{uv ∈ V (G)2 : dG(u, v) = 1 or 2}.

The main result of the paper is the following theorem.

Theorem 12 For any connected graph G, Peb(G2) ⊃ Aut(G).

In order to prove Theorem 12, we first deal with the simplest but the
most important case, where G is a path.

Lemma 13 For n ≥ 2, Peb(P 2
n) ⊃ Aut(Pn).

The proof of Lemma 13 will be given in Section 4.

Second, let us introduce a new operation, path flip, for a configuration
f ∈ C(G). Let P = v0v1 . . . vn be a path of G. If f(v0)f(v1) . . . f(vn) is
also a path of G, by a path flip, f can be replaced with g ∈ C(G) such that
g(vi) = f(vn−i) for 0 ≤ i ≤ n, and g(x) = f(x) for all x ∈ V (G) \ V (P ).

The following lemma may be of independent interest apart from pebble
exchange puzzles.

10



Lemma 14 For a connected graph G, and for any two configurations f ,
g ∈ Aut(G), f can be transformed into g by a finite sequence of path flips.

The proof of Lemma 14 will be given in Section 5.

By Lemma 13, any path flip can be achieved with a sequence of pebble
exchanges in Puz(G2). Hence, by Lemma 14, Theorem 12 follows.

4 Proof of Theorem 10

First, we will show that Peb(G1)×Peb(G2) ⊂ Peb(G1×G2). For σ ∈ Peb(G1)
and τ ∈ Peb(G2), it suffices to show that (σ, τ) ∈ Peb(G1 ×G2). In the first
part of moves, we process a sequence of moves corresponding to σ on all
copies of G1 in parallel. In the second part of moves, we process a sequence
of moves corresponding to τ on all copies of G2 in parallel. The sequence of
all moves yields (σ, τ).

Second, we will show that Peb(G1 ×G2) ⊂ Peb(G1)× Peb(G2).

Claim 1. Let f ∈ C(G1 ×G2) such that 1G1×G2
∼ f . For two pebbles x and

y, if f−1(x) and f−1(y) are in a common copy of Gi for some i = 1, 2, then
x and y are not in a common copy of G3−i.

Suppose, for contradiction, that there exists a pair of pebbles x and y and
a configuration f with 1 ∼ f such that f−1(x) and f−1(y) are in a common
copy of Gi, and x and y are in a common copy of G3−i. We may assume
that f can be reached from 1 with the minimum number s of moves until at
least one of such counterexamples (x, y) occurs. We may assume that y is
exchanged with a pebble z in the s-th move.

Case 1. f−1(y) and f−1(z) are in a common copy of G3−i.

In this case, by the minimality of s, y and z are in a common copy of G3−i.
Since x and y are in a common copy of G3−i, x and z are in a common
copy of G3−i. Then the pair (x, z) becomes our counterexample just after
the (s− 1)-th steps. This contradicts the minimality of s.

Case 2. f−1(y) and f−1(z) are in a common copy of Gi.

In this case, the pair (x, y) is already our counterexample after the (s−1)-th
steps. This contradicts the minimality of s.

Claim 2. Let f be an automorphism of G1 ×G2 such that 1G1×G2
∼ f . For
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two pebbles x and y, if f−1(x) and f−1(y) are in a common copy of Gi for
some i = 1, 2, then x and y are in a common copy of Gi.

Let us assume that f−1(x) and f−1(y) are in a common copy of Gi. Since
f is an automorphism of G1 × G2, there exists a path P from x to y such
that a path f−1(V (P )) is in a common copy of Gi. By Claim 1, all pairs of
vertices in V (P ) are in a mutually different copy of G3−i. Hence, any pair of
adjacent vertices in V (P ) are in a common copy of Gi. Therefore, x and y
are in a common copy of Gi.

By Claim 2, f induces a permutation σ̃i on the set of all copies of G3−i

for i = 1, 2, where σ̃i naturally corresponds to σi ∈ Aut(Gi). Then, we
have f = (σ1, σ2) ∈ Aut(G1) × Aut(G2). Furthermore, by Claim 1, if two
pebbles x and y are in a common copy of Gi, x and y can be exchanged only
if they occupy a common edge of a common copy of Gi. Hence, we have
σi ∈ Peb(Gi) for i = 1, 2. Therefore, we have f ∈ Peb(G1)×Peb(G2).

5 Proof of Lemma 13

It is not difficult to see that Puz(P 2
n) is feasible for n ≤ 5. Hence, in this

case, we have Peb(P 2
n) = Aut(P 2

n) ⊃ Aut(Pn). Suppose that n ≥ 6. In this
case, since Aut(P 2

n) = Aut(Pn) ≃ Z2, it suffices to prove Peb(P 2
n) ≃ Z2.

Let us label the vertices of Pn as V (Pn) = {1, 2, . . . , n} and E(Pn) = {ij :
j− i = 1}. Note that Aut(P 2

n) = {1n, αn}, where 1n(i) = i for 1 ≤ i ≤ n and
αn(i) = n− i+ 1 for 1 ≤ i ≤ n. It suffices to show that 1n ∼ αn in Puz(P 2

n).

In the following, besides Puz(P 2
n), we consider two additional puzzles

Puz(P 2
n+1\{n}, P

2
n) and Puz(P 2

n , P
2
n+1\{n}). For configurations f ∈ C(P 2

n , P
2
n),

g ∈ C(P 2
n+1 \ {n}, P

2
n) and h ∈ C(P 2

n , P
2
n+1 \ {n}), we will use notations as

f = (f(1), f(2), . . . , f(n− 1), f(n)),

g = (g(1), g(2), . . . , g(n− 1), ∗, g(n+ 1)),

h = (h(1), h(2), . . . , h(n− 1), h(n)).

By using this notation, 1n and αn is expressed as

1n = (1, 2, . . . , n− 1, n), αn = (n, n− 1, . . . , 2, 1).

Let us define 1′n and βn ∈ C(P 2
n+1 \ {n}, P

2
n) as

1′n = (1, 2, . . . , n− 1, ∗, n), βn = (n, n− 1, . . . , 2, ∗, 1),

12



and let us define 1′′n and γn ∈ C(P 2
n , P

2
n+1 \ {n}) as

1′′n = (1, 2, . . . , n− 1, n+ 1), γn = (n+ 1, n− 1, . . . , 2, 1).

What we want to show is that 1n ∼ αn, 1
′
n ∼ βn, 1

′′
n ∼ γn for all n ≥ 1.

Note that P 2
n+1 \ {n} is naturally considered as a subgraph of P 2

n . Hence,
if 1′n ∼ βn, by using the same sequence of moves from 1′n to βn, we have a
sequence of moves from 1n to αn. Therefore, 1′n ∼ βn implies that 1n ∼ αn.
Furthermore, Puz(P 2

n+1 \{n}, P
2
n) and Puz(P 2

n , P
2
n+1 \{n}) are isomorphic as

puzzles, since these puzzles can be switched to each other by interchanging
the roles of a board graph and a pebble graph, and 1′n and βn are correspond-
ing to 1′′n and γn, respectively. Hence, 1′n ∼ βn holds if and only if 1′′n ∼ γn
holds.

We proceed by induction on n. For n ≤ 2, it is not difficult to see that
the conclusion holds. Let n ≥ 3. It suffices to show that 1′n ∼ βn by using
the inductive assumptions 1k ∼ αk, 1

′
k ∼ βk, 1

′′
k ∼ γk for 2 ≤ k ≤ n− 1. We

have

1′n = (1, 2, . . . , n− 2, n− 1, ∗, n)

∼ (1, n, . . . , 4, 3, ∗, 2) by 1′n−1 ∼ βn−1

∼ (1, 3, . . . , n− 1, n, ∗, 2) by 1n−2 ∼ αn−2

∼ (n, n− 1, . . . , 3, 1, ∗, 2) by 1′′n−1 ∼ γn−1

∼ (n, n− 1, . . . , 3, 2, ∗, 1) by the exchange of 1 and 2

= βn,

as required.

6 Proof of Lemma 14

In the following, for a configuration f ∈ C(G), we say that f is realizable by
path flips, if f can be transformed from 1G by a finite sequence of path flips.
Note that, in general, if two automorphisms σ and τ of G are realizable by
path flips, their composition τ ◦ σ is also realizable by path flips. (This fact
for path flips can be proved in the same way as in the proof of Proposition 7
for pebble exchanges, which are “edge flips”, that is, flips of paths of length
1. )

Suppose, for contradiction, that there exists a pair (G, σ) of a graph G
and an automorphism σ ∈ Aut(G) such that σ is not realizable by path
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flips. Note that the order of an automorphism σ ∈ Aut(G) is the smallest
integer k such that σk = 1G. Let (G, σ) be a counterexample such that (1)
|V (G)| is minimum, and (2) the order of σ is minimum subject to (1). Let
n be the order of σ. First, we claim that n is a prime power. Indeed, if n
is not a prime power, there exist two relatively prime integers r ≥ 2 and
s ≥ 2 with n = rs. Since the order of σr is s < n and the order of σs is
r < n, by the choice of n, both σr and σs are realizable by path flips. Since
r and s are relatively prime, there exist two positive integers x and y such
that rx + sy ≡ 1 (mod n). Hence, we have σ = (σr)x(σs)y and so σ is also
realizable by path flips.

Let n = pα, where p is a prime and α is a positive integer. Let C(σ) denote
the cyclic subgroup of Aut(G) generated by σ. If σ′ is another generator of
C(σ), σ′ is realizable by path flips if and only if σ is realizable by path flips.
For a vertex x of G, let us denote the orbit of x in C(σ) by C(σ) · x. Let
us choose a pair (σ′, x), where σ′ is a generator of C(σ) and x is a vertex of
G such that (1) the distance dG(x, σ

′(x)) is minimum, and (2) |C(σ) · x| is
minimum subject to (1).

We redefine σ as a chosen element σ′, and put d = dG(x, σ(x)) and
m = |C(σ) · x|. Note that m is a power of p, since m divides n = pα. First,
we deal with the case, where d = 0.

Case 1. d = 0.

In this case, we have C(σ) ·x = {x} and m = 1. Let G′ = G−x. Then there
exists a vertex partition V (G′) = V1 ∪ V2 ∪ · · · ∪ Vs with a positive integer s,
where G[Vi] is a connected component of G′ for all 1 ≤ i ≤ s.

Note that if two vertices u and v are contained in a common Vi for some
i, then there exists a uv-path P not passing through x. Since σ is an auto-
morphism with σ(x) = x, σ(P ) is a path not passing through x. Hence, σ(u)
and σ(v) are also contained in a common Vj for some j. Therefore, σ induces
a permutation σ̃ on {1, . . . , s} such that σ(Vi) = Vσ̃(i) for all 1 ≤ i ≤ s.
Furthermore, if j is contained in C(σ̃) · i, G[Vi] and G[Vj ] are isomorphic to
each other.

Let us denote σ̃ as a product of transpositions such that σ̃ = σ̃t◦· · ·◦σ̃2◦σ̃1

with σ̃k(ℓk) = mk, σ̃k(mk) = ℓk for some indices ℓk and mk for all 1 ≤ k ≤ t.
Then we have a sequence of automorphisms σ1, σ2, . . . , σt, τ of G such that
σk(Vℓk) = Vmk

, σk(Vmk
) = Vℓk , σ

2
k(v) = v for v ∈ Vℓk ∪ Vmk

and σk(v) = v
for v 6∈ Vℓk ∪ Vmk

for 1 ≤ k ≤ t, and τ(Vi) = Vi for all 1 ≤ i ≤ s. Since
τ |G[Vi], i.e. the restriction of τ to G[Vi], is realizable by path flips for each
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i by the inductive hypothesis, τ is also realizable by path flips. What we
need to show is that each σk is realizable by path flips. Hence, it suffices to
prove the assertion under the condition where V (G′) = V1 ∪ V2, σ(V1) = V2,
σ(V2) = V1 and σ2(v) = v for all v ∈ V (G′). In this case, let us take v1 ∈ V1

such that dG(x, v1) is maximum, and let v2 = σ(v1). Then we have vi ∈ Vi

for i = 1, 2, σ(v1) = v2 and σ(v2) = v1.

Let P be a path of G from v1 to v2, and set a path P ′ = P \ {v1, v2}.
Now, let us flip P with a bijection τ on V (G), and let us flip P ′ with a
bijection τ ′ on V (G) subsequently. Then we have (τ ′ ◦ τ)(vi) = v3−i = σ(vi)
for 1 ≤ i ≤ 2, and (τ ′ ◦ τ)(v) = v for all v 6∈ {v1, v2}. Set H = G \ {v1, v2}.
Since σ(V (H)) = V (H), we have σ|H ∈ Aut(H). By the choice of v1 and
v2, H is connected. Hence, by the inductive hypothesis, σ|H is realizable by
path flips. Therefore, σ, which is σ|H ◦ τ ′ ◦ τ , is also realizable by path flips,
as required.

Case 2. d ≥ 1.

Let us take a shortest path P = y0y1 . . . yd−1σ(x) from x to σ(x), where we
set x = y0. Let Y = V (P ) \ {σ(x)}.

Claim 1. If 0 ≤ i < j ≤ d− 1, then σs(yi) 6= σt(yj) for all integers s and t.

Suppose, for contradiction, that σs(yi) = σt(yj) for some s and t. We have
yi = σk(yj), where k = t − s. Since d(yi, σ

k(yi)) = d(σk(yj), σ
k(yi)) =

d(yj, yi) < d, by the choice of d, σk is not a generator of C(σ). Since C(σ)
is a cyclic group of the order n = pα, we have k ≡ 0 (mod p). Furthermore,
we have d(yi, σ

k+1(yi)) = d(σk(yj), σ
k+1(yi)) = d(yj, σ(yi)) ≤ d(yj, σ(x)) +

d(σ(x), σ(yi)) = d − j + i < d. Therefore, we have k + 1 ≡ 0 (mod p), a
contradiction.

Claim 2. For all 0 ≤ i ≤ d− 1, if s 6≡ t (mod m), then σs(yi) 6= σt(yi).

Suppose, for contradiction, that σs(yi) = σt(yi) for some s and t with s 6≡ t
(mod m). We have yi = σk(yi) with some k 6≡ 0 (mod m). Since yi = σn(yi)
also holds, we have |C(σ) ·yi| ≤ gcd(k, n) < m, because n is a power of p and
k 6≡ 0 (mod m). With the fact d(yi, σ(yi)) ≤ d, this contradicts the choice
of x.

For 0 ≤ k ≤ m − 1, let us define Xk = ∪0≤i≤n−1 and i≡k (mod m)σ
i(V (P )),

and X ′
k = Xk − {σk(x)}. Then we have σ(Xk) = Xk+1 for 0 ≤ k ≤ m − 2,

and σ(Xm−1) = X0. Furthermore, by Claim 1 and Claim 2, X ′
k ∩X ′

ℓ = ∅ for
k 6= ℓ.

Let us define a subgraph H of G such that V (H) = ∪0≤k≤m−1Xk and
E(H) = ∪0≤i≤n−1 and i≡k (mod m)σ

i(E(P )). Since σ(V (H)) = V (H) and
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σ(E(H)) = E(H), σ|H is an automorphism of H .

Claim 3. σ|H is realizable by path flips on H .

For 0 ≤ k ≤ m − 1, let Hk = H [Xk]. If m = n, by definition of Xk and Hk,
we have V (Hk) = Xk = σk(V (P )), and E(Hk) = σk(E(P )). Hence, Hk is
simply a path σk(P ) for 0 ≤ k ≤ m− 1, and H is a cycle. Hence, Aut(H) is
isomorphic to a dihedral group, which is generated by a pair of reflections of
cycles. Since a reflection is realizable by a path flip, the claim is proved. In
the following, we assume that m < n. Let us define a configuration τ ∈ C(H)
such that τ(v) = σ(v) for v ∈ V (H)\Xm−1 and τ(v) = σ1−m(v) for v ∈ Xm−1.

We claim that τ is an automorphism ofH , because for 0 ≤ k ≤ n−1, σ|Hk

is an isomorphism from Hk to Hk+1 and σ1−m|Hm−1
is an isomorphism from

Hm−1 to H0. Furthermore, by definition, the order of τ ism. Since m < n, by
the minimality of n, τ is realizable by path flips. On the other hand, σm|H0

is an automorphism of H0. Since the order of σm|H0
= n/m < n, by the

minimality of n, σm|H0
is realizable by path flips. Since σ is a composition

of τ and σm|H0
, σ is also realizable by path flips.

We may assume V (G) \ V (H) 6= ∅. Choose a vertex z ∈ V (G) \ V (H)
such that dG(z, V (H)) is maximum. Let Q be a shortest path from z to
V (H), and let y ∈ V (Q)∩V (H) be the end vertex of Q. Then y is contained
in σi(Y ) for some i, where 0 ≤ i ≤ n − 1. Since we have dG(σ

−i(z), V (H))
= dG(z, σ

i(V (H))) = dG(z, V (H)), by replacing V (Q) with σ−i(V (Q)) if
necessary, we may assume y is contained in Y from the beginning. Let us
define a subgraph F of G such that V (F ) = V (H) ∪ ∪0≤i≤n−1σ

i(V (Q)) and
E(F ) = E(H) ∪ ∪0≤i≤n−1σ

i(E(Q)). Since σ(V (F )) = V (F ) and σ(E(F )) =
E(F ), σ|F is an automorphism of F .

Case 2.1. V (F ) 6= V (G).

In this case, by the minimality of |V (G)|, σ|F is realizable by path flips. Let
us define two more subgraphs F ′ = F−C(σ)·z and G′ = G−C(σ)·z. By the
maximality of dG(z, V (H)), both F ′ and G′ are connected, and σ(V (F ′)) =
V (F ′), σ(V (G′)) = V (G′). Hence, σ|F ′ and σ|G′ are automorphisms of F ′

and G′, respectively. Again by the minimality of |V (G)|, σ|F ′ and σ|G′ are
realizable by path flips. Since σ is a composition of σ|F , σ

−1|F ′ and σ|G′ , σ
is realizable by path flips.

Case 2.2. V (F ) = V (G).

For 0 ≤ k ≤ m − 1, let us define Wk = ∪0≤i≤n−1 and i≡k (mod m)σ
i(V (Q)).

Note that Wk’s are not necessarily disjoint to each other. Let us define a
configuration τ ∈ C(F ) such that τ(v) = σ(v) for v ∈ V (H)\ (X ′

m−1∪Wm−1)
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and τ(v) = σ1−m(v) for v ∈ X ′
m−1 ∪ Wm−1. We need to check that τ is

well-defined. Suppose that there exists a vertex v ∈ V (F ) such that v ∈
(X ′

m−1 ∪Wm−1) ∩ (X ′
k ∪Wk) for some k with 0 ≤ k ≤ m− 2. Suppose that

there exists a vertex v ∈ V (F ) such that v ∈ (X ′
m−1∪Wm−1)∩ (X ′

k∪Wk) for
some k with 0 ≤ k ≤ m− 2. Then there exists a positive integer i such that
σi(v) = v and i is not divisible by m. Let j be a greatest common divisor of
n and i. Then we have σj(v) = v and j is not divisible by m. Since both j
and m are divisors of n, a prime power, j is a divisor of m. Hence, we have
σm(v) = v, which implies σ(v) = σ1−m(v).

For 0 ≤ k ≤ m − 1, let Fk = F [Xk ∪ Wk]. We claim that τ is an
automorphism of F , because σ|Fk

is an isomorphism from Fk to Fk+1 and
σ1−m|Fm−1

is an isomorphism from Fm−1 to F0. Furthermore, by definition,
the order of τ is m.

Case 2.2.1. m < n.

In this case, by the minimality of n, τ is realizable by path flips. Furthermore,
σm|F0

is an automorphism of F0 and the order of σm|F0
is n/m, which is less

than n. Hence, by the minimality of n, σm|F0
is realizable by path flips. Since

σ is a composition of τ and σm|F0
, σ is realizable by path flips.

Case 2.2.2. m = n.

In this case, H is a cycle of order dn. Put r = dn. We relabel the vertices
of F as follows: let us label V (Q) as Q = w0w1 . . . ws, where w0 = z and
ws = y. For 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ s, let wi,j = σi(wj). Note that wi,j

may coincide with wk,j for some i 6= k. We also write Qi = wi,0wi,1 . . . wi,s

for 0 ≤ i ≤ n − 1. Let us label the vertices of H , which is a cycle of length
r, as H = z0z1 . . . zr, where zr = z0 and zid = wi,s for 0 ≤ i ≤ n− 1.

For a positive integer N and for an integer t, let us define permutations
π(N, t) on {0, 1, . . . , N − 1} such that π(N, t)(i) ≡ t − i (mod N) for 0 ≤
i ≤ N − 1. For an integer t, let us define a bijection ρt on V (F ) satisfying
ρ2t = 1, as follows:

ρt(wi,j) = wπ(n,t)(i),j for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ s, and ρt(zi) = zπ(r,dt)(i)
for 0 ≤ i ≤ r − 1.

We need to check that ρt is well-defined. If wi,j = wk,j for some i, k, j
with i 6= k, we have σi(wj) = σk(wj). For any integer t, since π(n, t)(k) −
π(n, t)(i) ≡ i−k (mod n), we have wπ(n,t)(i),j = σπ(n,t)(i)(wj) = σπ(n,t)(k)(wj) =
wπ(n,t)(k),j , as claimed.

Let H ′ = F [∪0≤i≤n−1Qi]. Since ρt|V (H′) is a permutation of Qi for 0 ≤
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i ≤ n− 1 and ρt|V (H) is a reflection of H , ρt is an automorphism of F .

Claim 4. ρt is realizable by path flips on F .

For all 0 ≤ i ≤ n − 1 with i < π(n, t)(i), let us choose a shortest path
Ri from wi,0 to ρt(wi,0) = wπ(n,t)(i),0. By consecutive path flips of Ri and
Ri − {wi,0, ρt(wi,0)}, we can exchange wi,0 and ρt(wi,0) for 0 ≤ i ≤ n− 1. In
the remaining graph F ′ = F − C(σ) · w0, ρ|F ′ is realizable by path flips by
the minimality of |V (G)|, as claimed.

Since σ is a composition of ρ1 and ρ0, by Claim 4, it is realizable by path
flips.
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