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A bound for 1-cross intersecting set pair systems

Ron Holzman
∗

Abstract

A well-known result of Bollobás says that if {(Ai, Bi)}mi=1 is a set pair system such that

|Ai| ≤ a and |Bi| ≤ b for 1 ≤ i ≤ m, and Ai ∩ Bj 6= ∅ if and only if i 6= j, then m ≤
(

a+b

a

)

.

Füredi, Gyárfás and Király recently initiated the study of such systems with the additional

property that |Ai ∩ Bj | = 1 for all i 6= j. Confirming a conjecture of theirs, we show that this

extra condition allows an improvement of the upper bound (at least) by a constant factor.

1 Introduction

A system of m pairs of finite sets {(Ai, Bi)}mi=1 is cross intersecting if the following two conditions

hold:

Ai ∩Bi = ∅ for every 1 ≤ i ≤ m, (1)

Ai ∩Bj 6= ∅ for every 1 ≤ i 6= j ≤ m. (2)

The question is how large can the size m of such a system be, if |Ai| ≤ a and |Bi| ≤ b for every

1 ≤ i ≤ m. The standard example of such a system is constructed by taking a ground set of a+ b

elements, and forming all pairs of complementary sets (Ai, Bi) with |Ai| = a, |Bi| = b; its size is

m =
(

a+b
a

)

. The classical result of Bollobás [1] is that this is the largest size possible.

Several different proofs have been given for this result. Quite a few extensions and variants of it

have been studied, and there are many applications in extremal set theory and beyond. For more

information, we refer to the surveys [2, 4, 5].

Actually, the result of Bollobás is more refined, taking into account sets Ai and Bi of different

sizes. Here is the statement.

Theorem 1.1 ([1]). Let {(Ai, Bi)}mi=1 be a cross intersecting set pair system with |Ai| ≤ ai and

|Bi| ≤ bi for every 1 ≤ i ≤ m. Then
m
∑

i=1

1
(

ai+bi
ai

) ≤ 1,
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and equality holds only if there exist a and b such that |Ai| = a and |Bi| = b for every 1 ≤ i ≤ m,

and the system is the standard example.

A set pair system {(Ai, Bi)}mi=1 is 1-cross intersecting if condition (1) holds, and condition (2)

holds in the stronger form

|Ai ∩Bj| = 1 for every 1 ≤ i 6= j ≤ m. (3)

Füredi, Gyárfás and Király [3] recently introduced this concept. They sought an improvement,

under this strengthening, of the upper bound m ≤
(

a+b
a

)

, where |Ai| ≤ a and |Bi| ≤ b for every

1 ≤ i ≤ m. Clearly, when a or b is 1 the strengthening has no effect. They obtained a sharp upper

bound whenever a or b is 2; in this case, when the other parameter is large, the strengthening

improves the bound by a factor of roughly 1
2 . For illustration and future reference, we state the

special case a = b = 2 of their result.

Proposition 1.2 ([3]). Let {(Ai, Bi)}mi=1 be a 1-cross intersecting set pair system with |Ai| ≤ 2

and |Bi| ≤ 2 for every 1 ≤ i ≤ m. Then m ≤ 5, and equality holds only if {Ai}5i=1 and {Bi}5i=1

form two complementary 5-cycles (that is, the vertices may be written as 0, 1, 2, 3, 4 mod 5, so that

Ai = {i, i+ 1} and Bi = {i− 1, i + 2} for 1 ≤ i ≤ 5).

Beyond the cases mentioned above, when a and b are both greater than 2, the maximum size of

a 1-cross intersecting system with |Ai| ≤ a and |Bi| ≤ b, is not known. Here we prove the following

upper bound which, like Theorem 1.1, accounts for different set sizes.

Theorem 1.3. Let ai, bi ≥ 2 for 1 ≤ i ≤ m, and let {(Ai, Bi)}mi=1 be a 1-cross intersecting set pair

system with |Ai| ≤ ai and |Bi| ≤ bi for every 1 ≤ i ≤ m. Then

m
∑

i=1

1
(

ai+bi
ai

) ≤ 29

30
.

Corollary 1.4. Let a, b ≥ 2 and let {(Ai, Bi)}mi=1 be a 1-cross intersecting set pair system with

|Ai| ≤ a and |Bi| ≤ b for every 1 ≤ i ≤ m. Then m ≤ 29
30

(

a+b
a

)

.

The case a = b of the corollary confirms a conjecture of Füredi, Gyárfás and Király [3]: they

postulated the existence of a positive ε such that m ≤ (1 − ε)
(

2n
n

)

for every 1-cross intersecting

system {(Ai, Bi)}mi=1 with |Ai| ≤ n and |Bi| ≤ n for every 1 ≤ i ≤ m, and every n ≥ 2. It

seems likely that our constant 29
30 can be improved to 5

6 , which would be best possible in view of

Proposition 1.2. Another plausible conjecture in [3] says that the constant can be made arbitrarily

small if n is large enough. One could even conjecture an upper bound of the form Cn on the size

m of a 1-cross intersecting system with sets of size n, where C is a constant less than 4. The best

construction known (see [3]) shows that C must be at least
√
5.

As pointed out in [3], the notion of 1-cross intersecting set pair systems is closely related to

the much studied topic of clique and biclique partitions of graphs. We end the introduction with
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a reformulation of our result in that terminology. A biclique partition of a graph G = (V,E) is

a partition P of its edge set E into edge sets of complete bipartite graphs (bicliques). For such

a partition P and a vertex v ∈ V , we denote by P[v] the family of bicliques in P containing the

vertex v. The thickness of P at v, denoted by tP(v), is |P[v]|. The graph B2m is obtained from the

complete bipartite graph Km,m by removing a perfect matching. That is, B2m = (V,E) where

V = {x1, x2, . . . , xm} ∪ {y1, y2, . . . , ym},
E = {{xi, yj} : 1 ≤ i 6= j ≤ m}.

Given a biclique partition P of the graph B2m, the set pair system {(P[xi],P[yi])}mi=1 is 1-cross

intersecting. This observation leads to the following reformulation of our main result.

Corollary 1.5. Let ai, bi ≥ 2 for 1 ≤ i ≤ m, and let P be a biclique partition of the graph B2m

with thickness tP(xi) ≤ ai and tP(yi) ≤ bi for every 1 ≤ i ≤ m. Then

m
∑

i=1

1
(

ai+bi
ai

) ≤ 29

30
.

In particular, if a, b ≥ 2 and B2m admits a biclique partition with thickness at most a at every xi

and at most b at every yi, then m ≤ 29
30

(

a+b
a

)

.

2 Proof

In preparation for the proof of Theorem 1.3, we start with some notations and lemmas.

Let S = {(Ai, Bi)}i∈I be a set pair system, where I is a finite index set. We write V (S) =
⋃

i∈I(Ai ∪Bi) for the ground set of the system S. Given a subset R ⊆ V (S), the reduction of S by

R, denoted by S−R, is the set pair system

S−R = {(Ai \R,Bi \R)}i∈I .

We may use this notation also when the set R is not contained in V (S), with the understanding

that S−R = S−(R∩V (S)). The following lemma, stated here for future reference, is an immediate

consequence of the definitions.

Lemma 2.1. Let S = {(Ai, Bi)}i∈I be a 1-cross intersecting set pair system with ground set V (S).

Let R ⊆ V (S) be such that there are no v ∈ R and i 6= j ∈ I with v ∈ Ai ∩ Bj . Then the reduced

system S−R is a 1-cross intersecting set pair system with ground set V (S) \R.

Let S = {(Ai, Bi)}i∈I be a set pair system. We use the short-hand notation Σ(S) for the sum

Σ(S) =
∑

i∈I

1
(|Ai|+|Bi|

|Ai|

)

.
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If J ⊆ I is a subset of the index set, we write S[J ] for the corresponding subsystem of S, i.e.,

S[J ] = {(Ai, Bi)}i∈J .

The next lemma is the essence of the original proof of Theorem 1.1, by induction on the size of

the ground set. We state it here in the form that we will use, and provide the proof for completeness.

For a system S = {(Ai, Bi)}i∈I and an element v ∈ V (S) we consider two subsystems:

S[IAv̄ ] where IAv̄ = {i ∈ I : v /∈ Ai},

and similarly

S[IBv̄ ] where IBv̄ = {i ∈ I : v /∈ Bi}.

The reductions of these subsystems by {v} appear in the lemma.

Lemma 2.2. Let S = {(Ai, Bi)}i∈I be a set pair system such that Ai 6= ∅, Bi 6= ∅, Ai ∩ Bi = ∅ for

every i ∈ I. Then

Σ(S) =
1

|V (S)|
∑

v∈V (S)

Σ(S[IAv̄ ]− {v}) ≤ max
v∈V (S)

Σ(S[IAv̄ ]− {v}),

and similarly

Σ(S) =
1

|V (S)|
∑

v∈V (S)

Σ(S[IBv̄ ]− {v}) ≤ max
v∈V (S)

Σ(S[IBv̄ ]− {v}).

Proof. By symmetry, it suffices to prove the first statement. The inequality is obvious: the average

cannot exceed the maximum. We only need to prove the identity

Σ(S) =
1

|V (S)|
∑

v∈V (S)

Σ(S[IAv̄ ]− {v}).

Fix an i ∈ I and consider its contribution to the sum on the right-hand side. For every v ∈ Bi, it

contributes 1

(|Ai|+|Bi|−1

|Ai|
)
, and for every v ∈ V (S) \ (Ai ∪Bi) it contributes

1

(|Ai|+|Bi|
|Ai|

)
. Thus the total

contribution is
|Bi|

(|Ai|+|Bi|−1
|Ai|

)
+

|V (S)| − |Ai| − |Bi|
(|Ai|+|Bi|

|Ai|

)
=

|V (S)|
(|Ai|+|Bi|

|Ai|

)
.

Upon dividing by |V (S)|, this equals the contribution of i to Σ(S), which proves the identity.

We will also need the following simple bound on the ratio between certain binomial coefficients.

Lemma 2.3. For a, b ≥ 2 we have
(

a+b−2
a−1

)

(

a+b
a

) ≤ 1

3
.

Moreover, the upper bound may be improved to 3
10 unless a = b = 2.
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Proof. The ratio in the lemma is equal to ab
(a+b)(a+b−1) . The upper bound of 1

3 follows from

(a+ b)2 ≥ 4ab ≥ 3ab+ a+ b,

where the second inequality uses a, b ≥ 2. For the upper bound of 3
10 , the same argument works if

we can replace 3ab by 10
3 ab in the second inequality. This requires 2

3ab ≥ a+ b which indeed holds

if a, b ≥ 3. For the remaining case where, say, a = 2 and b ≥ 3, we observe that

2b

(b+ 2)(b + 1)
≤ 3

10
⇔ 3(b+ 2)(b+ 1) ≥ 20b ⇔ (3b− 2)(b − 3) ≥ 0,

and the last inequality indeed holds for b ≥ 3.

We are now ready to prove Theorem 1.3. The idea is to use induction on the size of the ground

set, as Bollobás did in his proof of Theorem 1.1. The induction step works the same way, and the

gain should come from the induction base. There are, however, set pair systems in which some sets

have size 2 and others are larger. Such systems cannot be handled directly by reducing to smaller

systems satisfying the assumptions of the theorem, and this requires some careful case analysis.

Proof of Theorem 1.3. We may assume that the inequalities |Ai| ≤ ai and |Bi| ≤ bi are equalities.

Indeed, any set for which the inequality is strict may be augmented using new elements that belong

only to that set, without affecting the assumptions or the conclusion of the theorem.

Thus, if the theorem does not hold, then there exists a 1-cross intersecting set pair system

S = {(Ai, Bi)}i∈I with |Ai| ≥ 2 and |Bi| ≥ 2 for every i ∈ I, such that (using our short-hand

notation) Σ(S) > 29
30 . Among all such counterexamples, we consider a system S with the smallest

ground set V (S), and derive a contradiction.

Assume first that |Ai| ≥ 3 for every i ∈ I. By Lemma 2.1, each reduced system of the form

S[IBv̄ ] − {v} for v ∈ V (S) is 1-cross intersecting. By our assumption, all sets in such a reduced

system are of size at least 2, and the ground set is smaller than V (S). By the minimality of the

system S, we conclude that Σ(S[IBv̄ ] − {v}) ≤ 29
30 for every v ∈ V (S). Now the second statement

in Lemma 2.2 implies that Σ(S) ≤ 29
30 , contradicting our assumption. Similarly, if |Bi| ≥ 3 for

every i ∈ I, then we can use the reduced systems S[IAv̄ ]−{v} and get a contradiction from the first

statement in Lemma 2.2.

Henceforth we assume that there exist k, ℓ ∈ I with |Ak| = |Bℓ| = 2. We distinguish cases

depending on whether k and ℓ are distinct or not.

Case 1. There exist distinct k, ℓ ∈ I with |Ak| = |Bℓ| = 2.

Fix such k and ℓ. Since |Ak ∩Bℓ| = 1, we can write

Ak = {x, y}, Bℓ = {x, z}.
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For any other i ∈ I, the set Ai must contain exactly one of the elements x and z, and the set Bi

must contain exactly one of x and y. There are three distinct ways in which this can happen, so

we get a partition of I \ {k, ℓ} into three (possibly empty) subsets I1, I2, I3 as follows:

I1 = {i ∈ I : x ∈ Ai, y ∈ Bi, z /∈ Ai},
I2 = {i ∈ I : x ∈ Bi, y /∈ Bi, z ∈ Ai},
I3 = {i ∈ I : x /∈ Ai ∪Bi, y ∈ Bi, z ∈ Ai}.

There cannot exist both an i ∈ I2 with y ∈ Ai and a j ∈ I1 with z ∈ Bj, because that would imply

that {y, z} ⊆ Ai ∩Bj . Without loss of generality, we assume that y /∈ Ai for all i ∈ I2, and rewrite

I2 = {i ∈ I : x ∈ Bi, y /∈ Ai ∪Bi, z ∈ Ai}.

In the subsystem S[I1] neither x nor y appears in any cross intersection. Hence, by Lemma 2.1,

the reduced system S[I1] − {x, y} is 1-cross intersecting (actually, we only use that it is cross

intersecting). By Theorem 1.1 we have

Σ(S[I1]− {x, y}) =
∑

i∈I1

1
(|Ai\{x}|+|Bi\{y}|

|Ai\{x}|

)

≤ 1.

Using this and Lemma 2.3, we find that

Σ(S[I1]) =
∑

i∈I1

1
(|Ai|+|Bi|

|Ai|

)

≤ 1

3

∑

i∈I1

1
(|Ai|+|Bi|−2

|Ai|−1

)

≤ 1

3
. (4)

Similarly, by our assumption on I2, in the subsystem S[I2 ∪ I3] none of x, y and z appears in

any cross intersection. Hence, by Lemma 2.1, the reduced system S[I2 ∪ I3] − {x, y, z} is 1-cross

intersecting. By Theorem 1.1 we have

Σ(S[I2 ∪ I3]− {x, y, z}) =
∑

i∈I2∪I3

1
(|Ai|−1+|Bi|−1

|Ai|−1

)
≤ 1.

Again by Lemma 2.3, this implies

Σ(S[I2 ∪ I3]) =
∑

i∈I2∪I3

1
(|Ai|+|Bi|

|Ai|

)
≤ 1

3

∑

i∈I2∪I3

1
(|Ai|+|Bi|−2

|Ai|−1

)
≤ 1

3
. (5)

Using (4), (5) and the obvious bounds on the terms associated with k and ℓ we can write

Σ(S) =
1

(|Ak|+|Bk|
|Ak|

)
+

1
(|Aℓ|+|Bℓ|

|Aℓ|

)
+Σ(S[I1]) + Σ(S[I2 ∪ I3]) ≤

1

6
+

1

6
+

1

3
+

1

3
= 1. (6)

If either |Bk| or |Aℓ| is at least 3, then the bound on the corresponding term in (6) may be decreased

from 1
6 to 1

10 , resulting in Σ(S) ≤ 14
15 < 29

30 , a contradiction. If either S[I1] or S[I2 ∪ I3] contains no
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pair (Ai, Bi) with |Ai| = |Bi| = 2, then Lemma 2.3 allows us to replace the 1
3 in either (4) or (5)

by 3
10 , which improves the upper bound in (6) to Σ(S) ≤ 29

30 , again a contradiction.

Thus, we may assume that |Ai| = |Bi| = 2 holds for at least 4 values of i, namely k, ℓ, a member

of I1, and a member of I2 ∪ I3. If there is yet another such value of i, then our system S contains 5

pairs of sets of size 2, which by Proposition 1.2 must form two complementary 5-cycles. But then

these 5 pairs are the entire system S, because no set (of any size) can contain exactly one vertex of

every edge of a 5-cycle. This gives Σ(S) = 5
6 < 29

30 , a contradiction.

It follows that there is a unique p ∈ I1 such that |Ap| = |Bp| = 2 and a unique q ∈ I2 ∪ I3 such

that |Aq| = |Bq| = 2. This allows us to sharpen the bounds in (4) and (5) as follows. We have

Σ(S[I1]− {x, y}) = 1

2
+

∑

i∈I1\{p}

1
(|Ai|+|Bi|−2

|Ai|−1

)
≤ 1,

and therefore by Lemma 2.3

Σ(S[I1]) =
1

6
+

∑

i∈I1\{p}

1
(|Ai|+|Bi|

|Ai|

)

≤ 1

6
+

3

10

∑

i∈I1\{p}

1
(|Ai|+|Bi|−2

|Ai|−1

)

≤ 1

6
+

3

10
· 1
2
=

19

60
.

The same argument shows that Σ(S[I2 ∪ I3]) ≤ 19
60 , and plugging these two improved bounds in (6)

gives Σ(S) ≤ 29
30 , the final contradiction in Case 1.

Case 2. There exists k ∈ I with |Ak| = |Bk| = 2.

In dealing with this case, we may assume that |Ai| and |Bi| are at least 3 for every i ∈ I \ {k},
otherwise we fall back on Case 1.

Our aim in this case is to apply Lemma 2.2 using the reduced systems of the form S[IAv̄ ]− {v}.
To this end, we need to upper bound Σ(S[IAv̄ ] − {v}) for the various choices of v ∈ V (S). By

Lemma 2.1 and the minimality of S, we know that Σ(S[IAv̄ ] − {v}) ≤ 29
30 as long as all sets in this

reduced system have size at least 2. This is the case when v ∈ Ak, because then k /∈ IAv̄ and the

sets associated with i 6= k are large enough. This is also the case when v /∈ Ak ∪Bk, because then

the removal of v leaves Ak and Bk intact.

It remains to deal with the reduced system S[IAv̄ ]−{v} when v ∈ Bk. This system contains the

pair (Ak, Bk \ {v}), which we may write as

Ak = {x, y}, Bk \ {v} = {z}.

As the system is 1-cross intersecting by Lemma 2.1, for any other i ∈ IAv̄ the set Ai must contain z

and the set Bi \ {v} must contain exactly one of x and y. We get a partition of IAv̄ \ {k} into two

(possibly empty) subsets I1 and I2 as follows:

I1 = {i ∈ IAv̄ : x ∈ Bi, y /∈ Bi, z ∈ Ai},
I2 = {i ∈ IAv̄ : x /∈ Bi, y ∈ Bi, z ∈ Ai}.
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In the subsystem (S[IAv̄ ] − {v})[I1] neither x nor z appears in any cross intersection. Hence by

Lemma 2.1, the reduced system (S[IAv̄ ] − {v})[I1] − {x, z} is 1-cross intersecting. By Theorem 1.1

we have

Σ((S[IAv̄ ]− {v})[I1]− {x, z}) =
∑

i∈I1

1
(|Ai\{z}|+|Bi\{v,x}|

|Ai\{z}|

)
≤ 1.

Noting that |Ai| ≥ 3 and |Bi \ {v}| ≥ 2 for every i ∈ I1 and using Lemma 2.3, this gives

Σ((S[IAv̄ ]− {v})[I1]) =
∑

i∈I1

1
(|Ai|+|Bi\{v}|

|Ai|

)

≤ 3

10

∑

i∈I1

1
(|Ai|+|Bi\{v}|−2

|Ai|−1

)

≤ 3

10
.

An analogous argument gives the bound Σ((S[IAv̄ ]− {v})[I2]) ≤ 3
10 . Thus

Σ(S[IAv̄ ]−{v}) = 1
(|Ak|+|Bk\{v}|

|Ak|

)

+Σ((S[IAv̄ ]−{v})[I1])+Σ((S[IAv̄ ]−{v})[I2]) ≤
1

3
+

3

10
+

3

10
=

14

15
<

29

30
.

By now we know that Σ(S[IAv̄ ]− {v}) ≤ 29
30 for every v ∈ V (S). Lemma 2.2 implies that Σ(S) ≤ 29

30 ,

a contradiction which completes the proof.
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