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No additional tournaments are

quasirandom-forcing∗

Robert Hancock Adam Kabela Daniel Král’
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Jan Volec

Abstract

A tournament H is quasirandom-forcing if the following holds for every
sequence (Gn)n∈N of tournaments of growing orders: if the density of H
in Gn converges to the expected density of H in a random tournament,
then (Gn)n∈N is quasirandom. Every transitive tournament with at least 4
vertices is quasirandom-forcing, and Coregliano et al. [Electron. J. Com-
bin. 26 (2019), P1.44] showed that there is also a non-transitive 5-vertex
tournament with the property. We show that no additional tournament
has this property. This extends the result of Bucić et al. [Combinatorica 41
(2021), 175–208] that the non-transitive tournaments with seven or more
vertices do not have this property.

1 Introduction

A combinatorial structure is said to be quasirandom if it has properties that a
random structure would have asymptotically almost surely. The notion of quasi-
random graphs goes back to the works of Rödl [26], Thomason [31,32] and Chung,
Graham andWilson [8] from the 1980s. There is a long series of results concerning
quasirandomness of many other kinds of combinatorial structures, for example
groups [17], hypergraphs [4,5,15,16,20,21,25,27], permutations [3,10,22], subsets
of integers [7], etc. In the present short paper, we consider quasirandomness of
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agreement No 648509). The second, third and sixth authors were supported by the MUNI
Award in Science and Humanities of the Grant Agency of Masaryk University. The fourth
author was supported by CAPES. This publication reflects only its authors’ view; the European
Research Council Executive Agency is not responsible for any use that may be made of the
information it contains.

1

http://arxiv.org/abs/1912.04243v3


Figure 1: The non-transitive tournament F5 on 5 vertices that is quasirandom-
forcing.

tournaments as studied in [2, 6, 12]; several equivalent definitions of this notion
can be found in [6].

One of the classical results on quasirandom graphs [8, 26, 31] asserts that an
n-vertex graph with edge density p is quasirandom if it has 3

(

n

4

)

p4 + o(n4) cycles
of length four, i.e., if the number of 4-cycles is close to its expected value in a
random graph with edge density p. Skokan and Thoma [29] showed that any
complete bipartite graph Ka,b with a, b ≥ 2 has the analogous property, i.e., a
graph is quasirandom if the number of copies of Ka,b is close to its expected value
in a random graph with the same edge density. One of the major open problems in
extremal combinatorics is the Forcing Conjecture by Conlon, Fox and Sudakov [9]
asserting that all bipartite graphs with a cycle have this property.

We are interested in the same phenomenon for tournaments: a tournament H
is quasirandom-forcing if the density of H in (Gn)n∈N converging to the expected
density of H in a random tournament is sufficient to guarantee the quasirandom-
ness of the sequence. In particular, if the density of H converges to its expected
density, then the density of every tournament converges to its expected density
in a random tournament. Every transitive tournament Tk with k ≥ 4 vertices is
known to be quasirandom-forcing, see [12] and [23, Exercise 10.44], and Bucić,
Long, Shapira and Sudakov [2] observed that every quasirandom-forcing tourna-
ment with seven or more vertices is transitive. On the other hand, Coregliano,
Parente and Sato [11] showed that there is a non-transitive 5-vertex tournament
F5 that is quasirandom-forcing; the tournament F5, which is called T 8

5 in [11], is
depicted in Figure 1. Our main result asserts that there is no quasirandom-forcing
tournament in addition to Tk, for k ≥ 4, and F5.

The paper is structured as follows. In Section 2, we recall from [1] classical
results on the maximum numbers of cycles of length three and four in a tourna-
ment, which rule out the existence of a strongly connected quasirandom-forcing
tournament with at most 4 vertices. In Section 3, we first show that every non-
transitive quasirandom-forcing tournament must be strongly connected, hence we
may focus on tournaments with 5 and 6 vertices only. We next show that ev-
ery quasirandom-forcing 6-vertex tournament must be rigid and twin-free, which
together with the results of Coregliano et al. [11] leaves a single 5-vertex tourna-
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ment and exactly 14 tournaments with 6 vertices that are strongly connected and
may be quasirandom-forcing. We analyze all these 15 tournaments in Section 4.

2 Preliminaries

In this section, we introduce notation and basic results used in the paper. We
write [k] for the set {1, . . . , k}. A tournament is a graph G where each pair
of vertices is joined by an edge oriented in one or the other direction; we write
|G| for the number of vertices of G. The adjacency matrix of a tournament is
the matrix A with rows and columns indexed by the vertices of G such that
its diagonal entries are zero, and Auv = 1 and Avu = 0 for every edge uv. A
tournament is rigid if it has no non-trivial automorphism. Two vertices u and
v in a tournament are referred to as twins if every out-neighbor of u possibly
except for v is an out-neighbor of v and every out-neighbor of v possibly except
for u is an out-neighbor of u. A tournament with no twins is said to be twin-free.

If G and H are tournaments, the density of H in G, which is denoted by
d(H,G), is the probability that |H| randomly chosen vertices of G induce H ; if
|H| > |G|, we set d(H,G) = 0. A sequence (Gn)n∈N of tournaments is quasiran-
dom if

lim
n→∞

d(H,Gn) =
k!

|Aut(H)|
· 2−(

k

2
)

for every tournament H , where Aut(H) is the group of automorphisms ofH (note
that the right side of the expression is the expected density of H in a random
tournament with n ≥ |H| vertices). Finally, we say that a tournament H is
quasirandom-forcing if every sequence (Gn)n∈N of tournaments satisfying

lim
n→∞

d(H,Gn) =
k!

|Aut(H)|
· 2−(

k

2
)

is quasirandom (only sequences satisfying |Gn| → ∞ as n → ∞ are consid-
ered). As we mentioned in Section 1, every k-vertex transitive tournament Tk,
for k ≥ 4, is quasirandom-forcing, and there is also a 5-vertex strongly connected
tournament that is quasirandom-forcing (this is the tournament F5 depicted in
Figure 1).

We treat quasirandomness of tournaments in the language of theory of com-
binatorial limits, which associates (convergent) sequences of combinatorial struc-
tures with analytic limit objects. We refer the reader to the monograph by
Lovász [24] for the treatment of the most studied case of graph limits, which
readily translates to the setting of tournament limits (see [13, 33, 34]).

We say that a sequence (Gn)n∈N of tournaments with |Gn| tending to infinity
is convergent if d(H,Gn) converges for every tournament H . A tournamenton W
is a measurable function [0, 1]2 → [0, 1] such that W (x, y) +W (y, x) = 1 for all
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(x, y) ∈ [0, 1]2. The density of a k-vertex tournament H with vertices v1, . . . , vk
in a tournamenton W , which is denoted by d(H,W ), is

d(H,W ) =
k!

|Aut(H)|

∫

[0,1]k

∏

−−→vivj∈E(H)

W (xi, xj) dx1 · · · dxk, (1)

where E(H) is the set of (oriented) edges of H . For every convergent sequence
(Gn)n∈N of tournaments, there exists a tournamenton W such that the limit
density of each tournament H in the sequence is equal to the density of H in W ;
we say that such W is a limit of the sequence (Gn)n∈N and that the sequence
(Gn)n∈N converges to W . Conversely, for every tournamenton W , there exists a
sequence of tournaments that converges to W .

The definition of a quasirandom-forcing tournament translates to the limit
setting as follows.

Proposition 1. A tournament H is quasirandom-forcing if every tournamenton

W satisfying

d(H,W ) =
k!

|Aut(H)|
· 2−(

k

2
)

is equal to 1/2 almost everywhere.

Proposition 1 yields the following, which was also noted at the end of Section 2
in [2]. We state the proposition in the language of combinatorial limits.

Proposition 2. Let H be a tournament that is not transitive. If there exists a

tournamenton W such that W is not equal to 1/2 almost everywhere and

d(H,W ) ≥
k!

|Aut(H)|
· 2−(

k

2
),

then H is not quasirandom-forcing.

Proof. Let W be the tournamenton given by the statement. Let T be the follow-
ing tournamenton, which is a limit of a sequence of transitive tournaments:

T (x, y) =











1, if x > y,

1/2, if x = y, and

0, otherwise.

Further, we define a Uα for α ∈ [0, 1] as

Uα(x, y) =

{

W (x, y), if (x, y) ∈ [0, α]2, and

T (x, y), otherwise.
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Observe that, for any α ∈ [0, 1], Uα is not equal to 1/2 almost everywhere. Since
the tournament H is not transitive, we have d(H,U0) = d(H, T ) = 0. On the
other hand, the assumption of the proposition yields that

d(H,U1) = d(H,W ) ≥
k!

|Aut(H)|
· 2−(

k

2
).

Since d(H,Uα) is a continuous function of α ∈ [0, 1], there exists α ∈ (0, 1] such
that

d(H,Uα) =
k!

|Aut(H)|
· 2−(

k

2
).

A classical result on tournaments of Beineke and Harary [1] on Turán density
of a cycle C3 of length three translates to the language of tournament limits as
follows: d(C3,W ) ≤ 1/4 and the equality holds if and only if

∫

[0,1]

W (x, y) dy =
1

2

for almost every x ∈ [0, 1]. Hence, the cycle C3 is not quasirandom-forcing by
Proposition 1. Let C4 be the 4-vertex tournament obtained from the cycle of
length four by adding two edges (note that all tournaments obtained in this way
are isomorphic). The result of [1] on the Turán density of C4, in the language
of tournament limits, asserts d(C4,W ) ≤ 1/2 and the equality can be attained.
Hence, the tournament C4 is not quasirandom-forcing by Proposition 2.

We next define a notion of a (weighted) step tournamenton, which is analo-
gous to the notion of a step graphon. Informally speaking, a step tournamenton
represents a large tournament such that its vertices can be split into a finite
number of parts such that the tournament is quasirandom within each part and
between the parts. The formal definition goes as follows. A matrix A is a tour-

nament matrix if it is a square matrix, say of order k, with non-negative entries
such that Aij +Aji = 1 for all i, j ∈ [k]. A vector w is stochastic if all its entries
are non-negative and they sum to one. Let A be a k× k tournament matrix and
w a k-dimensional stochastic vector. Further, let V1, . . . , Vk be a partition of [0, 1]
into disjoint measurable sets such that the measure of Vi is wi, i ∈ [k]. We define
a tournamenton W [A,w] as

W [A,w](x, y) = Ai,j

for every (x, y) ∈ (Vi, Vj). A tournamentonW such that there exists a tournament
matrix A and a (positive) stochastic vector w such that W = W [A,w] is called
a weighted step tournamenton. If wi = 1/k for all i ∈ [k], we simply write W [A]
instead of W [A,w]. Finally, if H is a tournament, then the blow-up of H is
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the tournamenton W [A] where A is the adjacency matrix of H with 1/2 on its
diagonal.

Observe that the following formula holds for the density of H in W [A,w]:

d(H,W [A,w]) =
1

|Aut(H)|

∑

f :V (H)→[k]

∏

i∈V (H)

wf(i)

∏

−−→vivj∈E(H)

Af(i),f(j), (2)

where k is the order of the matrix A. The identity (2) leads us to define
d∗(H,A,w) as follows.

d∗(H,A,w) =
∑

f :V (H)→[k]

∏

i∈V (H)

wf(i)

∏

−−→vivj∈E(H)

Af(i),f(j). (3)

Again, if each entry of w is equal to 1/k, we will simply write d∗(H,A) instead
of d∗(H,A,w).

By combining Proposition 2, the definition of d∗(H,A,w), and the identities
(1) and (2), we obtain the following.

Proposition 3. Let H be a k-vertex non-transitive tournament. If there exists

an ℓ× ℓ tournament matrix A and an ℓ-dimensional positive stochastic vector w
such that not all entries of A are equal to 1/2 and

d∗(H,A,w) ≥ 2−(
k

2
),

then H is not quasirandom-forcing.

3 General arguments

The purpose of this section is to establish the following two statements and use
them to show that most 6-vertex tournaments are not quasirandom-forcing.

Proposition 4. Let H be a non-transitive tournament. If H is not strongly

connected, then H is not quasirandom-forcing.

Proposition 5. Let H be a non-transitive 6-vertex tournament. If H contains

twins or has a non-trivial automorphism, then H is not quasirandom-forcing.

Proof of Proposition 4. Let k be the number of vertices of H . Note that k ≥ 4.

For simplicity, we will write ρ for 2−(
k

2
). Since the tournament H is not strongly

connected, its vertices can be split into non-empty sets X1 and X2 such that
all edges are oriented from X1 to X2; let k1 and k2 be the sizes of X1 and X2,
respectively. For each α ∈ [0, 1], consider the following tournament matrix and
stochastic vector

A =

(

1/2 1
0 1/2

)

and w = (α, 1− α),
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and set Wα = W [A,w]. Our aim is to find an appropriate α ∈ (0, 1) so that we
can apply Proposition 3 to Wα. Observe that

d∗(H,A,w) ≥ αk · ρ+ αk1(1− α)k2 · 2k1k2 · ρ+ (1− α)k · ρ. (4)

Note that the inequality is strict if H has more than two strongly connected
components. We show that d∗(H,A,w) > ρ for some α ∈ (0, 1) in each of the
following cases.

If k1 = 1, we use the second and third term of (4) to lower bound d∗(H,A,w)
as follows:

d∗(H,A,w) > α(1− α)k2 · ρ · 2k2 + (1− α)k · ρ

= ρ+ α · (2k2 − k)ρ+O(α2).

Since k ≥ 4, it holds that 2k2 − k > 0, and we conclude that d∗(H,A,w) > ρ for
some positive α that is sufficiently small. The case k1 = k − 1 is symmetric to
the case k1 = 1. Hence, it remains to analyze the case when 2 ≤ k1 ≤ k − 2.

If 2 ≤ k1 ≤ k − 2, we set α = 1/2. It follows from (4) that

d∗(H,A,w) ≥ 2−k · ρ+ 2−k1 · 2−k2 · 2k1k2 · ρ+ 2−k · ρ ≥
(

1 + 21−k
)

· ρ,

where the last inequality holds since k1k2 ≥ k1+k2. This concludes the proof.

We prove Proposition 5 by an argument similar to that used in [2] to ob-
serve that every quasirandom-forcing tournament with seven or more vertices is
transitive.

Proof of Proposition 5. Let A be the adjacency matrix of H with 1/2 on its
diagonal. If H has a non-trivial automorphism, then d∗(H,A) ≥ 2 · 6−6 > 2−15

as there are at least two choices of f in the sum in (3) for which the expression
in the definition is non-zero. It follows that H is not quasirandom-forcing by
Proposition 3.

We now consider the case that H has twins. Let v1, . . . , v6 be the vertices ofH
and assume by symmetry that v1 and v2 are the twins. As in the previous case, it
is enough to show that d∗(H,A) ≥ 2 · 6−6. This time, observe that the innermost
product in (3) is equal to one for the map f with f(vi) = i for all i ∈ [6], and it
is equal to 1/2 for the two maps f satisfying f(v1) ∈ {1, 2}, f(v1) = f(v2) and
f(vi) = i, where i ∈ {3, 4, 5, 6}.

Proposition 4 implies that every quasirandom-forcing non-transitive tourna-
ment H is strongly connected. The classical results on the Turán density of C3

and C4 (see the discussion of these results in Section 2) yield that there is no such
tournament H with three or four vertices, and the observation of Bucić et al. [2]
yield that there are no such tournaments H with seven or more vertices. Hence,
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we are left to analyze tournaments with five and six vertices. In the case of 5-
vertex tournaments, the results of Coregliano et al. [11] imply that all 5-vertex
strongly connected tournaments with the possible exception of two tournaments
are not quasirandom-forcing. The two exceptional tournaments are F5, which is
depicted in Figure 1 and is quasirandom-forcing, and H5, which is depicted in
Figure 3 and is shown to be not quasirandom-forcing in the next section.

There are 55 non-transitive tournaments on 6 vertices, out of which 20 are not
strongly connected, 29 contain twins, and 15 have a non-trivial automorphism
(some tournaments have more than one of these properties); see Table 1. A
SageMath [30] script that verifies the entries of Table 1 is available as an ancillary
file on arXiv associated with the arXiv version of this manuscript [19].

By the discussion in the previous paragraph, Propositions 4 and 5 yield that
41 non-transitive 6-vertex tournaments are not quasirandom-forcing. We will
analyze the remaining 14 tournaments, which are depicted in Figure 2, in the
next section.

4 Specific constructions

In this section we provide two different types of arguments to rule out the re-
maining 15 tournaments from being quasirandom-forcing. Tournaments that we
consider will be described by the upper-triangle part of their adjacency matrix,
i.e., if A is the adjaceny matrix of a k-vertex tournament, then the tournament
is described by

[A1,2 · · ·A1,k, A2,3 · · ·A2,k, . . . , Ak−2,k−1Ak−2,k, Ak−1,k].

The remaining 5-vertex tournament, which is depicted in Figure 3, is described
by [0010, 001, 00, 0], We denote this tournament H5 (this tournament is called
T 10
5 in [11]). The 14 remaining 6-vertex tournaments, which can also be found in

Figure 2, are the following:

H1
6 : [00010, 0000, 001, 00, 0], H2

6 : [00110, 0001, 000, 01, 0],

H3
6 : [00101, 0010, 000, 00, 0], H4

6 : [00100, 0010, 001, 00, 0],

H5
6 : [00100, 0010, 000, 01, 0], H6

6 : [00100, 0010, 000, 00, 1],

H7
6 : [00100, 0011, 001, 00, 0], H8

6 : [00100, 0011, 000, 01, 0],

H9
6 : [00111, 0010, 000, 00, 0], H10

6 : [00111, 0010, 001, 00, 0],

H11
6 : [00010, 0101, 000, 00, 0], H12

6 : [01010, 0001, 000, 00, 0],

H13
6 : [01010, 0000, 001, 00, 0], H14

6 : [01010, 0000, 000, 01, 0].
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A B C D E Tournament A B C D E Tournament
• • • 00000, 0000, 000, 01, 0 • 00110, 0001, 000, 01, 0 H2

6

• • 00010, 0000, 000, 00, 0 • 00100, 0010, 000, 00, 0
• 00011, 0000, 000, 00, 0 • 00101, 0010, 000, 00, 0 H3

6

• 00010, 0001, 000, 00, 0 • 00100, 0011, 000, 00, 0
• 00010, 0000, 001, 00, 0 H1

6 • 00100, 0010, 001, 00, 0 H4
6

• 00010, 0000, 000, 01, 0 • 00100, 0010, 000, 01, 0 H5
6

• 00010, 0000, 000, 00, 1 • 00100, 0010, 000, 00, 1 H6
6

• • 00000, 0010, 000, 00, 0 • 00101, 0010, 001, 00, 0
• 00001, 0010, 000, 00, 0 • 00100, 0011, 001, 00, 0 H7

6

• • 00000, 0011, 000, 00, 0 • 00100, 0011, 000, 01, 0 H8
6

• 00000, 0010, 001, 00, 0 • • 00110, 0010, 000, 00, 0
• 00000, 0010, 000, 01, 0 • 00111, 0010, 000, 00, 0 H9

6

• • 00000, 0010, 000, 00, 1 • 00111, 0011, 000, 00, 0
• • 00000, 0011, 001, 00, 0 • 00111, 0010, 001, 00, 0 H10

6

• • • 00000, 0000, 010, 00, 0 • • • 00000, 0100, 000, 00, 0
• 00001, 0000, 010, 00, 0 • • 00010, 0100, 000, 00, 0

• • 00000, 0001, 010, 00, 0 • • 00011, 0100, 000, 00, 0
• • 00000, 0000, 011, 00, 0 • 00010, 0101, 000, 00, 0 H11

6

• • 00100, 0000, 000, 00, 0 • 00010, 0100, 000, 00, 1
• • 00110, 0000, 000, 00, 0 • • • 01000, 0000, 000, 00, 0

• 00111, 0000, 000, 00, 0 • • 01000, 0000, 000, 01, 0
• 00110, 0001, 000, 00, 0 • 01010, 0000, 000, 00, 0
• 00110, 0000, 001, 00, 0 • 01011, 0000, 000, 00, 0
• 00110, 0000, 000, 01, 0 • 01010, 0001, 000, 00, 0 H12

6

• 00110, 0000, 000, 00, 1 • 01010, 0000, 001, 00, 0 H13
6

• 00111, 0000, 001, 00, 0 • 01010, 0000, 000, 01, 0 H14
6

• • 00110, 0001, 001, 00, 0 • 01010, 0000, 000, 00, 1
• • 00111, 0000, 000, 01, 0

Table 1: The table indicates for each 6-vertex non-transitive tournament the way
in which it was shown to be not quasirandom-forcing as follows. A: by Proposi-
tion 4 because it is not strongly connected, B: by Proposition 5 because it has a
non-trivial automorphism, C: by Proposition 5 because it has twins, D: Subsec-
tion 4.1, and E: Subsection 4.2. The tournaments are described by the upper-
triangle part of their adjacency matrix, see the beginning of Section 4, and by
the notation used for the tournament if a specific notation has been introduced.

9



H1

6
H2

6
H3

6
H4

6

H5

6
H6

6
H7

6
H8

6

H9

6
H10

6
H11

6
H12

6

H13

6
H14

6

Figure 2: The tournaments H1
6 , . . . , H

14
6 .
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Figure 3: The tournaments H5 and S7.

4.1 Blow-ups

We start this subsection with the following statement, which can also be found
in [2]. Let n(H,S) be the number of copies of a tournament H in a tournament
S, i.e., n(H,S) = d(H,S) ·

(

|H|
|S|

)

.

Proposition 6. Let H be a non-transitive k-vertex tournament. If there exists

an s-vertex tournament S, s > k, such that n(H,S) ≥ sk · 2−(
k

2
), then H is not

quasirandom-forcing.

Proof. Let A be the adjacency matrix of H with 1/2 on its diagonal. Note that

d∗(H,A) ≥ n(H,S) · s−k. Since n(H,S) ≥ sk · 2−(
k

2
), Proposition 3 yields that H

is not quasirandom-forcing.

We consider tournaments S7, S11 and S15 with 7, 11 and 15 vertices, respec-
tively; we remark that the tournaments S11 and S15 have been identified by a
heuristic computer search maximizing the number of copies of tournaments H i

6.

S7 :[001011, 00101, 0010, 001, 00, 0],

S11 :[1100110001, 101001011, 11010101, 0001101, 100011, 00110, 1000, 100, 10, 0],

S15 :[01010100100110, 0011110000001, 010001001101, 10011000010, 1011101010,

110110010, 11101001, 1110001, 010110, 11110, 0101, 001, 10, 0].

The tournament S7 is depicted in Figure 3. It is interesting to note that n(H5, S7) =
21, i.e., every 5-tuple of vertices of S7 induces H5, and the tournaments S7 and
S11 are Paley tournaments [14, 18, 28]. In particular, the adjacency matrix of
S7 is the incidence matrix of the points and lines of the Fano plane. Since
n(H5, S7) = 21, Proposition 6 implies that H5 is not quasirandom-forcing. It
also holds that n(H i

6, S11) = 55 for i ∈ {2, 3, 4, 8, 10, 11, 13} and n(H i
6, S15) = 357

for i ∈ {5, 12}. Proposition 6 implies that none of the tournaments H i
6, i ∈

{2, 3, 4, 5, 8, 10, 11, 12, 13}, are quasirandom-forcing.
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4.2 Step tournamentons with variable weights

It remains to analyze the tournaments H i
6 for i ∈ {1, 6, 7, 9, 14}. We consider

the following three tournament matrices, each of which is a function of x ∈
[−1/2, 1/2], and show that there exists x 6= 0 such that Proposition 3 can be
applied.

Ax =

(

1/2 1/2− x
1/2 + x 1/2

)

,

Bx =





1/2 1/2− x 1/2 + x
1/2 + x 1/2 1/2− x
1/2− x 1/2 + x 1/2



 ,

Cx =









1/2 1/2− x 1/2 + x 1/2− x
1/2 + x 1/2 1/2− x 1/2− x
1/2− x 1/2 + x 1/2 1/2− x
1/2 + x 1/2 + x 1/2 + x 1/2









.

We next compute the densities of H14
6 , H9

6 and H6
6 .

d∗(H14
6 , Ax) =

1

32768
+

x2

8192
−

5x4

16384
−

9x6

4096
−

7x8

4096
,

d∗(H9
6 , Bx) =

1

32768
+

x4

3072
−

x6

216
−

5x8

5184
+

13x10

486
−

x12

324
,

d∗(H6
6 , Cx) =

1

32768
+

3x3

32768
−

81x4

131072
−

3x5

8192
+

27x6

65536
−

63x8

131072
+

15x12

1024
.

The maximum of each of the three polynomials above is larger than 2−15 ≈
0.000030518. In particular, the first one is larger than 0.000037337 for x =
0.30721, the second is larger than 0.000030757 for x = 0.21740, and the third is
larger than 0.000030544 for x = 0.10418. Hence, Proposition 3 yields that none of
the tournaments H14

6 , H9
6 and H6

6 are quasirandom-forcing. Since the tournament
H7

6 can be obtained from H9
6 by reversing the orientation of all its edges, it

follows that d∗(H9
6 , Bx) = d∗(H7

6 , B−x). Similarly, the tournament H1
6 can be

obtained from H6
6 by reversing the orientation of all its edges and d∗(H6

6 , Cx) =
d∗(H1

6 , C−x). Hence, d∗(H7
6 , B−x) > 2−15 for x = 0.21740 and d∗(H1

6 , C−x) > 215

for x = 0.10418, and neither H7
6 nor H1

6 is quasirandom-forcing by Proposition 3.
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[25] B. Nagle, V. Rödl and M. Schaht: The counting lemma for regular k-uniform

hypergraphs, Random Structures Algorithms 28 (2006), 113–179.
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Brno, Czech Republic. Previous affiliation: Mathematics Institute, DIMAP and

Department of Computer Science, University of Warwick, Coventry CV4 7AL,

UK.

E-mail: dkral@fi.muni.cz
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