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Abstract

A fundamental and challenging problem in spectral graph theory is to characterize
which graphs are uniquely determined by their spectra. In Wang [J. Combin. The-
ory, Ser. B, 122 (2017): 438-451], the author proved that an n-vertex graph G is
uniquely determined by its generalized spectrum (DGS) whenever 2−⌊n

2
⌋ detW is odd

and square-free. Here, W is the walk matrix of G, namely, W = [e,Ae, . . . , An−1e]
with e all-ones vector and A the adjacency matrix of G. In this paper, we focus on a
larger family of graphs with dn square-free, where dn refers to the last invariant factor
of W . We introduce a new kind of polynomial for a graph G associated with a prime p.
Such a polynomial is invariant under generalized cospectrality. Using the newly defined
polynomial, we obtain a sufficient condition for a graph in the larger family to be DGS.
The main result of this paper improves upon the aforementioned result of Wang while
the proof for the main result gives a new way to attack the problem of generalized
spectral characterization of graphs.

Keywords: generalized spectrum; generalized spectral characterization; Smith normal
form; square-free part
AMS Classification: 05C50

1 Introduction

Let G be a simple graph with vertex set {1, 2, . . . , n}. The adjacency matrix of G is the
n× n symmetric matrix A = (ai,j), where ai,j = 1 if i and j are adjacent; ai,j = 0 otherwise.
We often identify a graph G with its adjacency matrix A. For example, the spectrum of G,
denoted by σ(G), refers to the spectrum of A, i.e., the roots (including multiplicities) of the
characteristic polynomial χ(A; x) = det(xI − A) of A. Two graphs with the same spectrum
are called cospectral. Isomorphic graphs are clearly cospectral (as their adjacency matrices
are similar via a permutation matrix), but the converse is not true in general. A graph G is
determined by its spectrum (DS for short) if any graph cospectral with G is isomorphic to G.

∗Corresponding author: wang_weiw@163.com
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A fundamental and challenging problem in spectral graph theory is to determine whether or
not a given graph is DS. For basic results on spectral characterizations (determination) of
graphs, we refer the readers to the survey papers [2, 4].

The generalized spectrum of a graph G is the ordered pair (σ(G), σ(G)), where G is
the complement of G. Naturally, two graphs are generalized cospectral if they have the same
generalized spectrum; a graph G is said to be determined by its generalized spectrum (DGS
for short) if any graph generalized cospectral with G is isomorphic to G. For a graph G, the
walk matrix of G is

W = W (G) := [e, Ae, . . . , An−1e], (1)

where e is the all-ones vector. A graph G is controllable if W (G) is nonsingular. We
shall restrict ourselves to controllable graphs; the family of controllable graphs of order n is
denoted by Gn.

The following simple arithmetic criterion for a controllable graph being DGS was proved
in [18, 19].

Theorem 1 ([18, 19]). Let G ∈ Gn. If 2−⌊n

2
⌋ detW is odd and square-free, then G is DGS.

Recently, Theorem 1 has been extended or partially extended in various ways. For
example, Qiu et al. [11] proved a similar result for the signless Laplacian spectrum. Li and
Sun [8] considered the problem for Aα-spectrum and unified Theorem 1 and the result of
Qiu et al. [11]. We refer to [9, 12, 20, 21] for more results on the generalizations of Theorem
1.

The main aim of this paper is to improve upon Theorem 1, that is, to give a weaker
condition to guarantee a graph to be DGS. In general, if detW contains a multiple odd prime
factor then G may not be DGS. To obtain a more effective sufficient condition, we use the
notions of Smith normal forms and invariant factors of integral matrices. We briefly recall
these notions with an additional assumption that the involved integral matrices are square
and invertible.

Two n×n integral matrices M1 and M2 are integrally equivalent if M2 can be obtained
from M1 by a sequence of the following operations: row permutation, row negation, addition
of an integer multiple of one row to another and the corresponding column operations. Any
integral invertible matrix M is integrally equivalent to a diagonal matrix diag [d1, d2 . . . , dn],
known as the Smith normal form of M , in which d1, d2 . . . , dn are positive integers with
di | di+1 for i = 1, 2, ..., n− 1. The diagonal elements d1, d2 . . . , dn are the invariant factors
of M . We note that for an integral square matrix M , the determinant can be easily recovered,
up to a sign, from the Smith normal form. Indeed, detM = ±d1d2 · · ·dn. But it is generally
impossible to determine the Smith normal form of M from its determinant.

The following proposition obtained in [19] is an exception, which gives an equivalent
description of the condition in Theorem 1.

Proposition 1 ([19]). If detW = ±2⌊
n

2
⌋b for some odd and square-free integer b, then the

Smith normal form of W is

diag [1, 1, . . . , 1
︸ ︷︷ ︸

⌈n

2
⌉

, 2, 2, . . . , 2, 2b
︸ ︷︷ ︸

⌊n

2
⌋

].
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Now we introduce a polynomial for a graph G associated with a prime p, which plays
a key role in this paper. We use Fp to denote the finite field of order p, and use J to denote
the all-ones matrix (of order n).

Definition 1. Let p be an odd prime and G be a graph with adjacency matrix A. We define

Φp(G; x) = gcd(χ(A; x), χ(A+ J ; x)) ∈ Fp[x], (2)

where the greatest common divisor (gcd) is taken over Fp.

Remark 1. Write f(t, x) = χ(A + tJ ; x), t ∈ Z. Note that f(t, x) is linear in t. It is not
difficult to see that Φp(G; x) is invariant under generalized cospectrality. That is, if G and
H are generalized cospectral, then Φp(G; x) = Φp(H ; x).

Let p be an odd prime and f ∈ Fp[x] be a monic polynomial over the field Fp. Now let
f =

∏

1≤i≤r f
ei
i be the irreducible factorization of f , with distinct monic irreducible polyno-

mials f1, f2, . . . , fr and positive integers e1, e2, . . . , er. The square-free part of f , denoted by
sfp(f), is

∏

1≤i≤r fi; see [3, p. 394].

For an integral matrix M and a prime p, we use rankpM and nullitypM to denote the
rank and the nullity of M over Fp, respectively. We shall prove that for any graph G and
prime p,

deg sfp(Φp(G; x)) ≤ nullitypW (G). (3)

The main result of this paper is the following theorem.

Theorem 2. Let G ∈ Gn and dn be the last invariant factor of W = W (G). Suppose that
dn is square-free. If for each odd prime factor p of dn,

deg sfp(Φp(G; x)) = nullitypW, (4)

then G is DGS.

We shall show that (4) always holds for the case that nullitypW = 1; see Corollary
2 in Section 3. Using Proposition 1, we easily see that any graph satisfying the condition
of Theorem 1 necessarily satisfies the condition of Theorem 2. The converse is not true
of course; as seen from later examples. This means that Theorem 2 does improve upon
Theorem 1. Furthermore, the proof of Theorem 2 gives an alternative proof of Theorem 1.

The main strategy in proving Theorem 2 uses some ideas from [10]. In [10], Qiu et
al. strengthen Theorem 1 in a different way. The argument developed in [10] gives a new
proof of Theorem 1. Nevertheless, their argument essentially depends on the assumption
that nullitypW = 1. To overcome this restriction, we generalize a familiar property for the
characteristic polynomial of a symmetric matrix over R to the case of Fp or its extension.
This is the main aim of Section 2. The proof of Theorem 2 is given in Section 3. Some
examples and discussions are given in the last section.

2 Orthogonality over an extension field of Fp

Throughout this section, we assume that p is a fixed odd prime. Let Fp be the algebraic
closure of the finite field Fp. Let F

n

p denote the linear space consisting of all n-dimensional
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column vectors over Fp. Two vectors u, v ∈ F
n

p are called orthogonal if uTv = 0. The notation
for this is u ⊥ v. Naturally, two subspaces U and V are called orthogonal and denoted by
U ⊥ V , if ξ ⊥ η for any ξ ∈ U and η ∈ V .

Definition 2 ([1]). For a subspace V of F
n

p , the orthogonal space of V is

V ⊥ = {u ∈ F
n

p : vTu = 0 for every v ∈ V }. (5)

Of course, V ⊥ is a subspace of F
n

p and V ⊥ has dimension n−dim V . A major difficulty

here is that V ⊥∩V may contain some nonzero vector and hence F
n

p = V ⊕V ⊥ does not hold
in general. This explains why we do not call V ⊥ the orthogonal complement of V , a name
usually used in Euclidian space Rn. A subspace V ⊂ Fn is isotropic if V ∩ V ⊥ contains a
nonzero vector. Otherwise it is anisotropic [1]. Note that (F

n

p )
⊥ contains only zero vector

and hence F
n

p is anisotropic by definition.

Lemma 1 ([14, p.270]). Let U and V be two subspace of F
n

p with U ⊂ V . Then

dim(U⊥ ∩ V ) ≥ dim V − dimU. (6)

Moreover, the equality in (6) holds if V is anisotropic.

Proof. Note that dimU⊥ = n− dimU . We have

dim(U⊥ ∩ V ) = (n− dimU) + dimV − dim(U⊥ + V ). (7)

Thus, (6) holds as dim(U⊥ + V ) ≤ n. Now suppose that V is anisotropic. By definition,
we have V ⊥ ∩ V = {0} and hence dim(V ⊥ + V ) = dimV ⊥ + dimV = n. Noting that
V ⊥ + V ⊂ UT + V ⊂ F

n

p as U ⊂ V , we must have dim(UT + V ) = n. By (7), the equality in
(6) holds.

Let A be an n × n matrix over Fp. We usually identify A as a linear transformation
(also denoted by A) on F

n

p defined by A : x 7→ Ax. A subspace U ⊂ F
n

p is A-invariant if
AU ⊂ U , that is, if Ax ∈ U for any x ∈ U . For an A-invariant subspace U , we use A|U to
denote the linear transformation A restricted to U .

Lemma 2. If A is a symmetric matrix over Fp and U is an A-invariant subspace of F
n

p .
Then U⊥ is A-invariant and

χ(A; x) = χ(A|U ; x)χ(A|U⊥ ; x). (8)

Proof. The first assertion is simple as one can check that the usual argument for the same
assertion in the field R is also valid for Fp. Nevertheless, we need some extra work to establish
(8) as the equality F

n

p = U ⊕ U⊥ may fail.

Let χ(A; x) = (x − λ1)
v1 · · · (x − λk)

vk , where λ1, . . . , λk are distinct roots of χ(A; x).
Let Vi = N (A− λiI)

vi be the nullspace of (A− λiI)
vi. Then by the primary decomposition

theorem (see e.g. [5]), we have

(i) each Vi is A-invariant;
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(ii) dimVi = vi and χ(A|Vi
; x) = (x− λi)

vi ;

(iii) F
n

p = V1 ⊕ · · · ⊕ Vk;

(iv) there are polynomials h1, . . . , hk such that each hi(A) is the identity on Vi and is zero
on all the other Vi’s.

Noting that U is A-invariant, we have

U = (U ∩ V1)⊕ · · · ⊕ (U ∩ Vk), (9)

see [5, p. 264]. Similarly, as U⊥ is also A-invariant, we have

U⊥ = (U⊥ ∩ V1)⊕ · · · ⊕ (U⊥ ∩ Vk). (10)

Claim 1: Vi ⊥ Vj for all distinct i and j.

Let ξ and η be any vectors in Vi and Vj respectively. As hi(A) is the identity on Vi and
is zero on Vj , we have hi(A)ξ = ξ and hi(A)η = 0. Noting that AT = A, we have

ξTη = (hi(A)ξ)
Tη = ξT(hi(A))

Tη = ξT(hi(A)η) = 0. (11)

This proves Claim 1.

Claim 2: Each Vi is anisotropic.

Let V ′
i = ⊕j 6=iVj. By (iii), we see that dimV ′

i = n − dimVi. On the other hand,
by Claim 1, we know that Vi ⊥ Vj for j 6= i and hence Vi ⊥ V ′

i , i.e., V ′
i ⊂ V ⊥

i . Noting
that dimV ⊥

i = n− dimVi, the two spaces V ′
i and V ⊥

i must coincide. Therefore, Vi ∩ V ⊥
i =

Vi ∩ V ′
i = {0} and Claim 2 follows.

Claim 3: U⊥ ∩ Vi = (U ∩ Vi)
⊥ ∩ Vi for each i.

Let Ui = U ∩ Vi for i ∈ {1, . . . , k}. As Ui ⊂ U , we have U⊥
i ⊃ U⊥ and hence

U⊥
i ∩ Vi ⊃ U⊥ ∩ Vi. It remains to show that U⊥

i ∩ Vi ⊂ U⊥ ∩ Vi. Pick any ξ ∈ U⊥
i ∩ Vi. As

ξ ∈ Vi, Claim 1 implies that ξ ⊥ Vj and hence ξ ⊥ Uj for any j 6= i. This, together with the
fact that ξ ∈ U⊥

i , implies that ξ ⊥ Uj for all j ∈ {1, . . . , k}. Noting that U = U1 ⊕ · · · ⊕ Uk

by (9), we have ξ ⊥ U , i.e., ξ ∈ U⊥. Thus, ξ ∈ U⊥ ∩ Vi and hence U⊥
i ∩ Vi ⊂ U⊥ ∩ Vi by the

arbitrariness of ξ. This proves Claim 3.

By Claim 3, we can rewrite (10) as

U⊥ = (U⊥
i ∩ V1)⊕ · · · ⊕ (U⊥

k ∩ Vk). (12)

Let ui = dimUi, and wi = dim(U⊥
i ∩ Vi) for i ∈ {1, . . . , k}. Note that Ui ⊂ Vi, dimVi = vi,

and Vi is anisotropic by Claim 2. It follows from Lemma 1 that dim(U⊥
i ∩ Vi) = dimVi −

dimUi, i.e.,
wi = vi − ui. (13)

Note that Ui is A-invariant and Ui ⊂ Vi. We see that χ(A|Ui
; x) is a factor of χ(A|Vi

; x) and
hence χ(A|Ui

; x) = (x − λi)
ui. Consequently, we have χ(A|U ; x) = (x − λ1)

u1 · · · (x − λk)
uk .

Similarly, by (12), we have χ(A|U⊥; x) = (x− λ1)
w1 · · · (x− λk)

wk . Thus, (8) holds by (13).
This completes the proof.
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3 Proof of Theorem 2

An orthogonal matrix Q is called regular if Qe = e (or equivalently, QTe = e). An old result
of Johnson and Newman [6] states that two graphs G and H are generalized cospectral if
and only if there exists a regular orthogonal matrix Q such that QTA(G)Q = A(H). For
controllable graphs, the corresponding matrix Q is unique and rational.

Lemma 3 ([6, 17]). Let G ∈ Gn and H be a graph generalized cospectral with G. Then there
exists a unique regular rational orthogonal matrix Q such that QTA(G)Q = A(H). Moreover,
the unique Q satisfies QT = W (H)W−1(G) and hence is rational.

For a controllable graph G, define Q(G) to be the set of all regular rational orthogonal
matrices Q such that QTA(G)Q is an adjacency matrix. For a rational matrix Q, the level of
Q, denoted by ℓ(Q), or simply ℓ, is the smallest positive integer k such that kQ is an integral
matrix. Note that a regular rational orthogonal matrix with level one is a permutation
matrix. The following two important results are direct consequences of Lemma 3.

Lemma 4 ([17]). Let G ∈ Gn and dn be the last invariant factor of W . Then ℓ(Q) | dn for
any Q ∈ Q(G).

Lemma 5 ([17]). Let G ∈ Gn. Then G is DGS if and only if ℓ(Q) = 1 for each Q ∈ Q(G).

Lemma 6 ([17]). For any graph G of order n, we have 2⌊
n

2
⌋ | detW .

For nonzero integers d, m and positive integer k, we use dk || m to indicate that dk

precisely divides m, i.e., dk | m but dk+1 ∤ m. The following result was obtained in [19] using
an involved argument; we refer to [10] for a simpler proof.

Lemma 7 ([10, 19]). Let G ∈ Gn. If 2⌊
n

2
⌋ || detW then any Q ∈ Q(G) has odd level.

Lemma 8 ([16]). For any graph G of order n, at most ⌊n
2
⌋ invariant factors of W are

congruent to 2 modulo 4.

Corollary 1. Let G ∈ Gn and dn be the last invariant factor of W . If dn ≡ 2 (mod 4) then
any Q ∈ Q(G) has odd level.

Proof. Since dn ≡ 2 (mod 4) and d1 | d2 | · · · | dn, each invariant factor is either odd or
congruent to 2 modulo 4. It follows from Lemma 8 that 2⌊

n

2
⌋+1 ∤ detW . By Lemma 6, we

see that 2⌊
n

2
⌋ || detW . The assertion follows by Lemma 7.

The remaining part of this section is devoted to showing that, for any Q ∈ Q(G) with
G satisfying the condition of Theorem 2, the level ℓ(Q) contains none odd prime factor. We
begin with a fundamental property on the column vectors of W .

Lemma 9 ([7, 11]). Let r = rankpW . Then the first r columns of W are linearly independent
over Fp and hence constitute a basis of the column space of W .

Definition 3. Let p be an odd prime. The p-main polynomial of a graph G, denoted by
mp(G; x), is the monic polynomial f ∈ Fp[x] of smallest degree such that f(A)e = 0.

6



We recall that the ordinary main polynomial m(G; x) (over Q) can be defined in the
same manner; see [13, 15]. It is known that the ordinary main polynomial is invariant under
generalized cospectrality. Unfortunately, the p-main polynomial does not have such a nice
property in general. In other words, two generalized cospectral graphs G and H may have
different p-main polynomials for some odd prime p; see Remark 2 in Section 4. However,
a key intermediate result of this paper shows that such an inconsistency can never happen
under the restriction that one graph, say G, satisfies the assumption of Theorem 2. The
overall idea is simple. We shall show that under the condition of Theorem 2, there is a direct
connection between the p-main polynomial mp(G; x) and the polynomial Φp(G; x) which is
invariant under generalized cospectrality (see Eq. (18) in Lemma 14).

To simplify the notations in the following lemmas, we fix a graph G and use A and W
to denote the adjacency matrix and walk matrix of G, respectively.

Definition 4. At = A+ tJ and Wt = [e, Ate, . . . , A
n−1
t e] for t ∈ Fp.

Lemma 10. N (WT

t ) is constant on t ∈ Fp.

Proof. Note that Jξ = (eeT)ξ = (eTξ)e ∈ Span {e} for any ξ ∈ F
n

p . Thus, for any t ∈ Fp

and positive integer k, there exist c0, . . . , ck−1 ∈ Fp such that

(A+ tJ)ke = Ake +
k−1∑

i=0

ciA
ie. (14)

It follows that there exists an n× n upper triangular matrix U with 1 on the diagonal such
that

[e, (A+ tJ)e, . . . , (A+ tJ)n−1e] = [e, Ae, . . . , An−1e]U, (15)

i.e., Wt = WU . Thus, WT

t = UTWT and hence N (WT

t ) = N (WT) as UT is invertible.

Lemma 11. N (WT) is an (A+ tJ)-invariant subspace for any t ∈ Fp.

Proof. Let χ(A; x) = c0+ c1x+ · · ·+ cn−1x
n−1+xn and C be the companion matrix, that is,

C =










0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1










. (16)

It follows from the Cayley-Hamilton Theorem that Ane = −c0e−c1Ae−· · ·−cn−1A
n−1e and

hence AW = WC, or equivalently, WTA = CTWT as A is symmetric. Let ξ be any vector in
N (WT). Then we have WT(Aξ) = CTWTξ = 0 and hence Aξ ∈ N (WT). Moreover, as eT is
the first row of WT, we see that eTξ = 0 and hence Jξ = 0. Thus, (A+tJ)ξ = Aξ ∈ N (WT).
This indicates that N (WT) is (A+ tJ)-invariant, as desired.

Lemma 12. mp(G; x) = χ(A|N⊥(WT); x).

7



Proof. Let r = rankpW and f = χ(A|N⊥(WT); x). Then deg f = dimN⊥(WT) = r. By

Lemma 9, we see that Ake ∈ Span {e, Ae, . . . , Ak−1e} if and only if k ≥ r. This implies
that degmp(G; x) = r. Thus, it suffices to show f(A)e = 0. Indeed, by Cayley-Hamilton
Theorem, we have f(A)|N⊥(WT) is zero. As e ⊥ ξ for any ξ ∈ N (WT), we see that e ∈

N⊥(WT). Therefore, f(A)e = 0 and we are done.

Lemma 13. χ(A|N (WT); x) divides Φp(G; x), and sfp(Φp(G; x)) divides χ(A|N (WT); x).

Proof. By Lemma 11, the space N (WT) is (A+ tJ)-invariant for any t ∈ Fp. Let ft ∈ Fp[x]
denote χ((A + tJ)|N (WT); x). Since J |N (WT) is zero, we find that ft does not depend on t.
Clearly ft | χ(A + tJ ; x). Since f0 = f1, we have f0 | gcd(χ(A; x), χ(A + J ; x)), which is
exactly the first assertion.

To prove the second assertion, it suffices to show that every root of Φp(G; x) is a root
of f0 (or f1). Let λ ∈ Fp be any root of Φp(G; x), that is, λ is a common eigenvalue of A and
A+ J . Then there exist two nonzero vectors ξ and η such that Aξ = λξ and (A+ J)η = λη.
We claim that either eTξ = 0 or eTη = 0. Actually, we have

ξT(λI − A)η = ξTJη = ξTeeTη = (eTξ)(eTη). (17)

Taking transpose and noting that A is symmetric, we have ξT(λI −A)η = ηT(λI −A)ξ = 0.
Thus (eTξ)(eTη) = 0 and the claim follows. Suppose that eTξ = 0. Then eTAkξ = eTλkξ = 0
for any positive k and hence WTξ = 0, i.e., ξ ∈ N (WT). Since ξ is an eigenvector of A|N (WT),

the corresponding eigenvalue λ must be a root of f0. Now suppose that eTη = 0. Similarly
we have η ∈ N (WT

1 ). But N (WT

1 ) = N (WT) by Lemma 10. Thus, η ∈ N (WT) and we see
that λ must be a root of f1. Recall that f0 = f1. We find that λ is always a root of f0. This
completes the proof.

Lemma 14. deg sfp(Φp(G; x)) ≤ nullitypW ≤ deg Φp(G; x). Moreover, if the first equality
holds then

mp(G; x) =
χ(A; x)

sfp(Φp(G; x))
. (18)

Proof. Note that deg χ(A|N (WT); x) = dimN (WT) = nullitypW . The first assertion clearly
follows from Lemma 13. Note that degmp(G; x) = rankpW = n−nullitypW . It follows from
Lemmas 12, 2 and 13 that

n− nullitypW = degmp(G; x)

= deg χ(A|N⊥(WT); x)

= deg
χ(A; x)

χ(A|N (WT); x)

≤ deg
χ(A; x)

sfp(Φp(G; x))
(19)

= n− deg sfp(Φp(G; x)).

Suppose that deg sfp(Φp(G; x)) = nullitypW . Then the inequality in (19) must become an
equality. Clearly, this happens precisely when χ(A|N (WT); x) = sfp(Φp(G; x)). Thus, (18)
holds and the proof is complete.
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Corollary 2. If nullitypW = 1 then deg sfp(Φp(G; x)) = 1.

Proof. As nullitypW = 1, Lemma 14 implies that deg sfp(Φp(G; x)) ≤ 1 and deg Φp(G; x) ≥

1. Now clearly, Φp(G; x) has the form (x−λ)k for some λ ∈ Fp (indeed λ ∈ Fp) and positive
integer k. Thus, sfp(Φp(G; x)) = x− λ and the corollary follows.

Corollary 3. Let G ∈ Gn and dn be the last invariant factor of W (G). Suppose that dn
is square-free and p is an odd prime factor of dn. If deg sfp(Φp(G; x)) = nullitypW (G),
then nullitypW (G) = nullitypW (H) and mp(G; x) = mp(H ; x) for any graph H generalized
cospectral with G.

Proof. Write k = nullitypW (G). Then exactly the last k invariant factors dn−k+1, . . . , dn of
W (G) are multiple of p. Since p || dn and dn−k+1 | dn−k+2 | · · · | dn, all these invariant
factors must have p as a simple factor. Thus pk || detW (G) and hence pk || detW (H) as
detW (G) = ± detW (H). Consequently, we have nullitypW (H) ≤ k. On the other hand,
noting that Φp(G; x) = Φp(H ; x), Lemma 14 together with the condition of this proposition
implies

nullitypW (H) ≥ deg sfp(Φp(H ; x)) = deg sfp(Φp(G; x)) = nullitypW (G) = k.

Therefore, we have nullitypW (H) = k. Now, using the second part of Lemma 14 for both G
and H , we find that mp(G; x) = mp(H ; x).

The following corollary is not needed for the proof of Theorem 2 but will be used to
give a better understanding of the counterexample given in the next section.

Corollary 4. Let G ∈ Gn and dn be the last invariant factor of W (G). Suppose that dn is
square-free and p is an odd prime factor of dn. If nullitypW (G) = 2 then, for any graph H
generalized cospectral with G, one of the following two statements holds.
(i) nullitypW (H) = 2 and mp(G; x) = mp(H ; x);
(ii) nullitypW (H) = 1 and mp(G; x) 6= mp(H ; x).

Proof. By Lemma 14, we have deg sfp(Φp(G; x)) ≤ 2 ≤ deg Φp(G; x). Thus, we have
deg sfp(Φp(G; x)) = 2 or 1. If deg sfp(Φp(G; x)) = 2, then (i) holds by Corollary 3. Now
assume that deg sfp(Φp(G; x)) = 1. Then, using a similar argument as in the proof of Corol-
lary 3, we have p2 || detW (H) and hence nullitypW (H) = 1 or 2. If nullitypW (H) = 1
then the two polynomials mp(G; x) and mp(H ; x) have different degrees and of course
mp(G; x) 6= mp(H ; x). It remains to consider the case that nullitypW (H) = 2.

Since deg sfp(Φp(G; x)) = 1 and deg Φp(G; x) ≥ 2, we have Φp(G; x) = (x−λ)k for some
λ ∈ Fp and integer k ≥ 2. By Lemma 13, we see that χ(A|N (WT(G)); x) is a factor of Φp(G; x).

As degχ(A|N (WT(G)); x) = nullitypW (G) = 2, we must have χ(A|N (WT(G)); x) = (x − λ)2.

Thus, by Lemmas 12 and 2, we have mp(G; x) = χ(A(G);x)
(x−λ)2

. Since nullitypW (H) = 2, the same

argument also works for H . Noting that χ(A(H); x) = χ(A(G); x) and Φp(H ; x) = Φp(G; x),
we see that mp(G; x) = mp(H ; x). This completes the proof.

Proposition 2. Let Q ∈ Q(G) with level ℓ. If p || dn and deg sfp(Φp(G; x)) = nullitypW
then p ∤ ℓ.

9



Proof. Let A = A(G) and A′ = QTAQ. Let f(x) ∈ Z[x] be a monic polynomial such that
f(x) ≡ mp(G; x) (mod p). By Corollary 3, we have f(A)e ≡ f(A′)e ≡ 0 (mod p). Write
k = nullitypW . Note that deg f(x) = n− k. Define

W =

[

e, Ae, . . . , An−k−1e,
1

p
f(A)e,

1

p
Af(A)e, . . . ,

1

p
Ak−1f(A)e

]

(20)

and

W ′ =

[

e, A′e, . . . , A′n−k−1e,
1

p
f(A′)e,

1

p
A′f(A′)e, . . . ,

1

p
A′k−1f(A′)e

]

. (21)

Then both W and W ′ are integral matrices and we still have QTW = W ′. This indicates
that ℓ(QT) | detW , or equivalently, ℓ | detW . On the other hand, as pk || detW and
detW = p−k detW , we see that p ∤ detW . Thus, p ∤ ℓ, as desired.

Now, we are in a position to present the proof of Theorem 2.

Proof of Theorem 2. The case that n = 1 is trivial and hence we assume n ≥ 2. Let Q be
any matrix in Q(G) and ℓ be its level. Noting that n ≥ 2, Lemma 6 implies that detW
and hence dn is even. Since dn is square-free, we see that dn ≡ 2 (mod 4). It follows from
Corollary 1 that ℓ is odd. In order to show ℓ = 1, we need to show that ℓ has no odd prime
factor. Suppose to the contrary that there is an odd prime p such that p | ℓ. By Lemma 4,
we know that ℓ | dn and hence p | dn. Moreover, as dn is square-free, we must have p || dn.
Now, by Proposition 2, we have p ∤ ℓ. This is a contradiction. Therefore, ℓ = 1 and G is
DGS by Lemma 5. This completes the proof.

4 Discussions

We first give an example to illustrate that Theorem 2 does improve upon Theorem 1. We
use Mathematica for the computation.

Example 1. Let n = 16 and G be the graph with adjacency matrix

A =




















0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1
0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1
1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1
0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1
0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0




















.

The Smith normal form of W (G) is

diag [1, 1, 1, 1, 1, 1, 1, 1
︸ ︷︷ ︸

8

, 2, 2, 2, 2, 2, 2, 2× 3, 2b
︸ ︷︷ ︸

8

],
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where b = 3 × 23 × 29 × 1225550789 × 6442787651, which is square-free. From the Smith
normal form, we see that Theorem 1 is not applicable here. We turn to Theorem 2. Consider
p = 3. Then Φp(G; x) = x4 + 2x3 + 2x2 + x + 1, which has the standard factorization

Φp(G; x) = (x2 + x+ 2)
2

over Fp. Thus, sfp Φp(G; x) = x2 + x + 2. As nullitypW = 2, we
see that (4) holds in this case. Moreover, by Corollary 2, all other odd prime factors of b (or
2b) must satisfy (4). Thus G is DGS by Theorem 2.

Our next example indicates that if (4) is not satisfied, then G may not be DGS.

Example 2. Let n = 9 and G be the graph with adjacency matrix

A =











0 1 0 1 0 0 1 1 1
1 0 1 0 1 0 0 1 1
0 1 0 1 1 1 0 1 1
1 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 1 0
0 0 1 0 1 0 1 0 0
1 0 0 0 1 1 0 1 1
1 1 1 0 1 0 1 0 1
1 1 1 0 0 0 1 1 0











.

The Smith normal form of W is

diag [1, 1, 1, 1, 1, 2, 2, 2× 3× 5, 2× 3× 5].

Now we see nullity3W = nullity5W = 2. Direct computation (using Mathematica) indicates
that sfp(Φ3(G; x)) = x+2 (over F3) and sfp(Φ5(G; x)) = x2+x+1 (over F5). Thus, (4) holds
for p = 5 but not for p = 3. This means that for this graph, Proposition 2 is applicable only
for p = 5. Therefore, we can not eliminate the possible that there exists some Q ∈ Q(G)
with level 3. Indeed, such a Q does exist for this particular example. Let

Q =
1

3











1 −1 0 2 1 0 −1 1 0
−1 1 0 1 2 0 1 −1 0
1 −1 0 −1 1 0 2 1 0
0 0 0 0 0 0 0 0 3
1 2 0 −1 1 0 −1 1 0
−1 1 0 1 −1 0 1 2 0
0 0 3 0 0 0 0 0 0
2 1 0 1 −1 0 1 −1 0
0 0 0 0 0 3 0 0 0











.

Then QTAQ is an adjacency matrix of a graph. This indicates that G is not DGS by Lemma
5.

Remark 2. Let H be the graph with adjacency matrix QTAQ, where A and Q are matrices
as described in Example 2. We claim that mp(G; x) 6= mp(H ; x) for p = 3. Otherwise, noting
that degm3(G; x) = 2 and using the same procedure as in the proof of Proposition 2, we
would get that 3 ∤ ℓ(Q), which is a contradiction. Actually, m3(G; x) = x7+2x6+2x5+x4+
2x3 + 2x2 + x and m3(H ; x) = x8 + x7 + 2x5 + x4 + 2x2 + 2x.

Remark 3. Let G and H be a pair of generalized cospectral graphs whose walk matrices
have the same Smith normal form as follows:

diag [1, . . . , 1
︸ ︷︷ ︸

⌈n

2
⌉

, 2, . . . , 2, 2b1, 2b2
︸ ︷︷ ︸

⌊n

2
⌋

],
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where b2 (and hence b1) is odd and square-free. We claim that G and H must be isomorphic.
Let Q be the regular rational orthogonal matrix such that QTA(G)Q = A(H). We need to
eliminate the possibility that p | ℓ(G) for any odd prime factor p of b1. Note that for such
a prime p, Corollary 4 clearly implies that mp(G) = mp(H). Consequently, using the same
argument as in the proof of Proposition 2, we can show that ℓ(Q) | p−2 detW (G). This
means p ∤ ℓ(Q), as desired.

We end the discussion of Example 2 by suggesting the following natural and interesting
problem.

Problem 1. Let G and H be a pair of generalized cospectral graphs whose walk matrices
have the same Smith normal form as follows:

diag [1, . . . , 1
︸ ︷︷ ︸

⌈n

2
⌉

, 2, . . . , 2, 2b1, 2b2, . . . , 2bk
︸ ︷︷ ︸

⌊n

2
⌋

],

where bk (and hence each bi) is odd and square-free. Suppose that k ≥ 3. Can we still
guarantee that G and H are isomorphic?

To see the extent to which Theorem 2 improves upon Theorem 1, we have performed
a series of numerical experiments. The graphs are randomly generated using the random
graph model G(n; p) model with p = 1/2. For each n ∈ {10, 15, . . . , 50} we generated 1,000
graphs randomly, and counted the number of graphs satisfying the condition of Theorem 1
and Theorem 2, respectively. To see how often that (4) is met under the assumption that
dn is square-free, we also record the number of graphs satisfying this assumption. Table 1
records one of such experiments. For example, for n = 10, among 1,000 graphs generated in
one experiment, 261 graphs have a square-free invariant factor dn. For these 261 graphs, 226
graphs satisfy the condition of Theorem 1 while 253 graphs satisfy the condition of Theorem
2. The remaining 8 graphs do not satisfy (4) and hence we do not know whether they are
DGS or not.

Table 1: Comparison between Theorem 1 and Theorem 2

n # graphs #DGS #DGS #Unknown

(graph order) (with dn square-free*) (by Theorem 1) (by Theorem 2) (by Theorem 2)

10 261 226 253 8
15 283 217 265 18
20 268 228 262 6
25 254 221 245 9
30 257 213 243 14
35 252 204 245 7
40 280 238 270 10
45 250 204 237 13
50 275 224 259 16

* The numbers dn are usually huge integers and hence complete factorizations are unavailable in
a reasonable time. We use the fast command FactorInteger[dn,Automatic] in Mathematica
to factor dn. Note that this command extracts only factors that are easy to find.

At the end of this paper, we would like to suggest a possible improvement on Theorem
2. We begin with a definition.

12



Definition 5. Let f ∈ Fp[x] be a monic polynomial with irreducible factorization f =
∏

1≤i≤r f
ei
i . We define the square-root of f , denoted by sqrt(f), to be

∏

1≤i≤r f
⌈
ei

2
⌉

i .

We remind the reader that (sqrt(f))2 6= f unless all ei’s are even. Note that sqrt(f) is
always a multiple of sfp(f), and they are equal precisely when all ei are either one or two.
Thus, for any graph G and prime p, we always have

deg sfp(Φp(G; x)) ≤ deg sqrt(Φp(G; x)). (22)

While Lemma 13 tells us sfp(Φp(G; x)) divides χ(A|N (WT); x), it seems that the correspond-
ing result also holds if we replace sfp(Φp(G; x)) by sqrt(Φp(G; x)). If we can show this
improvement, then we can strengthen Inequality (3) as

deg sqrt(Φp(G; x)) ≤ nullitypW (G), (23)

and moreover we can improve upon Theorem 2 simply by replacing sfp(Φp(G; x)) with
sqrt(Φp(G; x)). We write such a possible improvement on Theorem 2 as the following con-
jecture.

Conjecture 1. Let G ∈ Gn and dn be the last invariant factor of W = W (G). Suppose that
dn is square-free. If for each odd prime factor p of dn,

deg sqrt(Φp(G; x)) = nullitypW, (24)

then G is DGS.
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