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Abstract

The present work proposes a fast-convergent fault detection and isolation (FDI)
scheme for linear systems affected by model uncertainties, such as unknown in-
puts or unbounded nonlinearities. The finite-time convergence is attained by
transforming the I/O signals through Volterra operators with suitably designed
kernel functions. A novel feature of the proposed approach is the exploitation
of a system decomposition that allows removing the effect of intractable uncer-
tainties while recasting the system dynamics in a form applicable for Volterra
operators to achieve non-asymptotic estimation. Remarkably, the proposed ap-
proach can reconstruct the state variables of the system in an arbitrarily short
time and the fault can be diagnosed efficiently by imposing detection and isola-
tion thresholds on transformed signals. The detectability and isolability of the
fault are also characterized. The proposed FDI scheme is applied in simulation
to a web process system to diagnose the presence of actuator faults. Simulation
results confirm the effectiveness of the proposed scheme in two scenarios with
nonlinear uncertainties.

Keywords: Non-asymptotic estimation, Volterra operator, Fault detection and
isolation, Nonlinear uncertainty

1. Introduction

Fault detection and isolation (FDI) is a fundamental topic in modern engi-
neering and has gained significant research attention. Classical approaches can
be found in the books [1, 2, 3]. Model-based methodologies represent the pre-
ferred choice to design and implement FDI solutions. Based on the knowledge5

of the model, observers and estimators can be designed to reconstruct hidden
state variables of the system and create auxiliary signals that permit to single
out the faulty system from the healthy one. For linear systems, the Luenberger
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observer and the Kalman Filter are the most used tools to estimate the internal
system’s state and have been successfully implemented for fault detection and10

isolation (see [4, 5, 6]).
In recent years, considerable investigations have been devoted to enhancing

the reliability of the FDI schemes, so to minimize the effects caused by the
fault. More specifically, the effectiveness of many fault-tolerant control schemes
[2] rely on the correctness and promptness of the fault detection and isolation15

decisions (as discussed in [7]).
Furthermore, in many practical cases, the system may not be exactly known

a-priori. Moreover, the system may present non-linearities which may not be
properly dealt with by classical methodologies for linear systems. To address the
possible presence of non-linearities and uncertainties, a number of techniques20

have been proposed in the literature. Examples can be seen in [8, 9, 10] based
on the adaptive approximation of the uncertain non-linearity in distributed sys-
tems, using, for example, radial basis function (RBF) methods. In this context,
adaptive methods (see [11, 12]) and learning algorithms (as in [8]) can be applied
to identify the corresponding parametrization. Alternatively, the unknown in-25

put observer (UIO) is another powerful tool to eliminate the effect of the model
uncertainty and to achieve the system monitoring goal which has been exten-
sively used for FDI. For instance, in [13], a UIO is designed to detect the fault
for multi-agent system networks, rendering the FDI scheme insensitive to model
uncertainty and non-linearities in the interconnections. The UIO has been im-30

plemented for FDI in many practical settings [14, 15].
All the estimation methods mentioned above for FDI are characterized by

asymptotic convergence, which requires some time for the effects of the unknown
initial conditions to decay. However, during the transient process, before con-
vergence, the sensitivity and reliability of the FDI methods could be reduced,35

thus possibly yielding delays in the detection of faults, misdetection or false-
alarms. Therefore, fast or fixed-time estimation is desirable in FDI schemes. In
the literature of fast-converging estimation, there are several methods and tools
available. Sliding mode (SM) is among the most known methods to achieve
finite-time convergence [16, 17, 18]. However, relying on discontinuous high-40

gain injection, the SM methods may suffer from the chattering problem, that
can be avoided by the use of higher-order SM [19, 20] and super twisting meth-
ods [21]. Another class of finite-time estimation methodologies makes use of
the integral tools, such as the well-known algebraic [22, 23] and modulating
function methods [24, 25, 26]. However, univariate functions are used to mod-45

ulate the integral in these two methods, which suffer from error accumulation
and instability issues with expanding windows, as discussed in [27]. To address
these issues, as shown in the aforementioned works, extra efforts, such as sliding
integral windows and periodically resetting are advised to avoid error accumu-
lation in the noisy scenario. On the contrary, a kind of kernel-based deadbeat50

estimation methodology with bivariate modulating functions inherently with in-
ternally stable integral calculation is proposed in [28]; here stability is inherently
guaranteed so that no resetting, data memory nor moving window techniques
are needed. Making use of the Volterra integral operator induced by suitably
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designed kernel functions, the kernel-based methodology removes the effect of55

the unknown initial conditions; in this way, no transient is required thus the
convergence can be achieved in an arbitrarily short time. Paradigmatic frame-
works have been proposed for parameter estimation [28], state estimation [29]
and state-parameter joint estimation [30].

In this paper, a finite-time observer is designed to estimate the state of60

a class of uncertain systems in the presence of faults, with the capability of
detecting and isolating the fault, again in finite-time. Based on the preliminary
results in [31], where linear systems with bounded uncertainties are dealt with,
a modified model is formulated to address the possible presence of unknown
model uncertainties, such as unknown inputs or unbounded non-linearities. A65

more comprehensive analysis including the detectability and isolability of the
FDI scheme is considered herein. Indeed, by suitably decomposing the dynamics
of the system, a fixed-time observer can be applied to eliminate the effects of
the unknown initial conditions and the model uncertainties. As a result, finite-
time convergence of the state estimation can be attained to monitor the health70

status of the system online. The further application of Volterra operators to
the estimated state variables allows the construction of auxiliary signals that
are then used as fault indicators to detect and isolate the faults. Tuning rules
for the kernel parameters of the Volterra operators are discussed. The model of
a web processing line is used as a simulation example to show the effectiveness75

of the proposed FDI scheme.

2. Problem statement and system transformation

Consider an uncertain multi-input-multi-output system modelled as:

S :

{
ẋ(t) = Ax(t) +Bu(t) + EgU (t, x, u, y) + Fff(t, u, y)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq are the state, the input and the
output variables of the system respectively. gU (t, x, u, y) ∈ Rd represents an un-
known non-linear vectorial function, that could represent modelling uncertainty
or an unknown input. A,B,C, Ff are constant matrices with appropriate di-
mensions. E ∈ Rp×d defines the effects of the unknown non-linearity to the
system (1). The continuous function f(t, u, y) ∈ Rp models the effects of a gen-
eral fault on the state dynamic equation. Similar with [32, 33], in this paper,
we assume the possible faults are functions of time and I/O signals, including
the measurable state variables . The fault function is modelled as

f(t, u, y) = B(t− T0)φ(t, u, y),

where B(t − T0) defines the fault time profile, which is equal to 0 before the
unknown fault time T0 and 1 after. The function φ(t, u, y) ∈ Rp represents the
functional structure of the fault.80

Our goal consists in designing a deadbeat observer from the measurement
of the I/O signals, insensitive to the unknown non-linear function gU (t, x, u, y).
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Moreover, once the fault occurred at time T0, it can be detected in a short
period of time and the type of the fault can be isolated.

The following assumptions are made in this paper:85

Assumption 1. rank(CE) = rank(E).

This assumption is instrumental to guarantee the detectability of the fault from
the system’s output.

Assumption 2. For every complex number λ with non-negative real part

rank



A− λI E

C 0


 = n+ rank(E).

Referring to [34], Assumption 1 is equivalent to the existence of state and
output transformations

x(t) = T
[
ζ>1 (t) ζ>2 (t)

]>
, y(t) = S

[
η>1 (t) η>2 (t)

]>

decomposing system (1) into two transformed linear systems having the follow-
ing structure

Sζ1 :




ζ̇1(t)=A11ζ1(t)+A12ζ2(t)+B1u(t)+E1gU (t, x, u, y)

η1(t)=C11ζ1(t)

Sζ2 :




ζ̇2(t) = A21ζ1(t) +A22ζ2(t) +B2u(t)

η2(t) = C22ζ2(t)

(2)

with

T−1AT =


 A11 A12

A21 A22


 S−1CT =


 C11 0

0 C22




T−1B =
[
B>1 B>2

]
T−1E =

[
E>1 0

]
,

where B1 and C11 have the same number of rows with B1 full row rank and

C11 invertible. Consequently, any complex number λ that fails to satisfy As-90

sumption 2, is an unobservable eigenvalue of the pair (A22, C22). That is to
say, as indicated in [34], Assumption 2 is equivalent to the detectability of the
pair (A22, C22). Meanwhile, ζ1(t) ∈ Rp? , p? , rank(CE) and ζ2(t) ∈ R(n−p?).
Detailed calculation of the transformations, i.e. (T, S) and properties can be
found in [34].95

Notably, effects of the uncertainty gU (t, x, u, y) only appears on the dynamic
of the first subsystem Sζ1 .
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3. Preliminaries: Volterra operator and non-asymptotic kernel

To achieve finite-time fault detection and isolation of (2), Volterra operators
and non-asymptotic kernel functions are the key tools of the proposed scheme.100

Basic concepts and algebra of the Volterra operators are briefly recalled for
readers’ convenience. Detailed mathematical features and characterization can
be found in [29, 28, 35], and the reference therein.

Given a function x(·) ∈ L2
loc(R≥0)1, its image through the Volterra operator

VK induced by a Hilbert-Schmidt HS Kernel Function K(·, ·) : R× R→ R is
usually denoted by [VKx](·), and is defined by the inner product:

[VKx] (t) ,
∫ t

0

K(t, τ)x(τ)dτ, t ∈ R≥0 .

Lemma 3.1. [28] For a given i ≥ 0, consider a signal defined as a function

of time x(t) and x(·) ∈ L2(R≥0) that admits the i-th derivative in R≥0 and

a kernel function K(·, ·) ∈ HS, having the i-th derivative with respect to the

second argument, denoted as K(i)(t, τ). After successive integral by parts, it

holds that
[
VKx

(i)
]
(t) =

i−1∑

j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+

i−1∑

j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0)

+(−1)i
[
VK(i) x

]
(t),

(3)

that is, the function
[
VKx

(i)
]

(·) is non-anticipative with respect to the lower-
order derivatives x(·), x(1)(·), . . . , x(i−1)(·).105

On the other hand, it is easy to tell from (3) that the effects of the derivatives
can be manipulated by the kernel functions and their derivatives. As such, the
following two types of kernel functions are significant in the proposed non-
asymptotic estimation and FDI scheme.

Definition 3.1. If a kernel Kh(·, ·) ∈ HS which is at least (i − 1)-th order

differentiable with respect to the second argument, verifies the condition

K
(j)
h (t, 0) = 0, ∀j ∈ {0, 1, . . . , i− 1}, (4)

then, it is called an i-th Order Bivariate Feedthrough Non-asymptotic Kernel110

(BF-NK)[29].

1L2
loc(R≥0) denotes the Hilbert space of locally integrable function with domain R≥0 and

range R.
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A typical class of N -th order BF-NKs that we are using takes on the following
form:

Kh(t, τ) = e−ωh(t−τ)
(
1− e−ω̄t

)N
, (5)

tuned by parameters ωh ∈ R>0 and ω̄ ∈ R>0.
As a result, induced by a BF-NK Kh, the Volterra image (3) reduces to

[
VKhx

(i)
]
(t) =

i−1∑

j=0

(−1)i+j−1x(j)(t)Kh
(i−j−1)(t, t) + (−1)i

[
VKh(i) x

]
(t), (6)

for all i ∈ {0, . . . , N − 1}

Definition 3.2. If a kernel F (·, ·) ∈ HS which is at least (i − 1)-th order dif-

ferentiable with respect to the second argument, verifies the conditions

F (j)(t, 0) = 0, F (j)(t, t) = 0, ∀j ∈ {0, 1, . . . , i− 1}, (7)

it is called an i-th Order Bivariate Causal Non-asymptotic Kernel (BC-NK)[28].

The typical shape of a 1-st order BC-NKs we are using is

F (t, τ) , e−ω(t−τ)(1− e−ωτ )[1− e−ω(t−τ)], (8)

with the only tuning parameter ω.115

Recall (3), with BC-NK, the corresponding Volterra image (3) reduces to
[
VFx

(1)
]

(t) = −
[
VF (1) x

]
(t). (9)

4. Deadbeat observer design and fault diagnosis scheme

In this section, we design a deadbeat estimator based on the decomposed
system (2). The estimator, exploiting the Volterra operator and the adoption
of non-asymptotic kernel functions as in [29], is able to provide the state re-120

construction of the non-linear system (1) non-asymptotically in arbitrary finite
time.

4.1. State reconstruction

For system (1), with Assumptions 1 and 2, we denote

T = [T1 T2], Q = S−1 ,
[
Q>1 Q>2

]>
, (10)

where T1 ∈ Rn×p? and Q1 ∈ Rp?×q. Thanks to the fact that C11 is invertible,
the estimates of ζ1(t) can be retrieved directly from the measurement

ζ̂1(t) = C−1
11 Q1y(t). (11)
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Similarly, η2(t) can be obtained by transforming the output η̂2(t) = Q2y(t).
Recalling the fact that Sζ2 is detectable, a non-asymptotic state observer can
be designed for system (2). For simplicity, in this paper, we assume that Sζ2 is
a single-output system. Indeed, any observable system with multiple outputs
can be reduced to a collection of single-output systems, using, for instance, the
output counterpart of input reduction techniques in [36]. The following linear
transformation P is introduced,

P = MO, (12)

where O is the observability matrix of Sζ2 and M is given as:

M =




1 0 0 · · · 0

−an?−1 1 0
. . .

...
...

...
. . .

. . . 0

−a2 −a3 . . . 1 0

−a1 −a2 · · · −an?−1 1




, (13)

where n? = n − p? and {ai, i ∈ {0, 1, . . . , n? − 1}} denotes the coefficients of
the characteristic polynomial of the subsystems determined by the eigenvalues125

of matrix A22.
As a result, with z(t) = Pζ2(t), Sζ2 can be rewritten in the observer canonical

form: 



ż(t) = Acz(t) +Ac,21ζ1(t) +Bcu(t)

η2(t) = Ccz(t),
(14)

where Cc = C22P
−1 = [1 0 . . . 0],

Ac = PA22P
−1=




an?−1 1 0 · · · 0

an?−2 0 1
. . .

...
...

...
. . .

. . . 0

a1 0 . . . 0 1

a0 0 · · · 0 0




.

Moreover, Ac,21 = PA21 , [α>n?−1, α
>
n?−2, . . . , α

>
0 ]> and

Bc = PB2 ,




b0,n?−1 b0,n?−2 . . . b0,0

b1,n?−1 b1,n?−2 . . . b1,0

bm−1,n?−1 bm−1,n?−2 . . . bm−1,0




>

.
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Let us consider the Volterra integral operator induced by BF-NK with N ≥
n?, so that the kernel is of at least n?-th order of non-asymptoticity.

Regarding to (14), Sζ2 admits a corresponding Input/Output(I/O) realiza-
tion

η
(n?)
2 (t) =

n?−1∑

i=0

aiη
(i)
2 (t) +

m−1∑

k=0

n?−1∑

i=0

bk,iu
(i)
k (t) +

n?−1∑

i=0

αiζ
(i)
1,i(t), (15)

where we denote ζ1(t) = [ζ1,n?−1, ζ1,n?−2, . . . , ζ1,0]>.
Applying the Volterra operator induced by BF-NK to the system (15), re-

calling (6) one can obtain

(−1)n?
[
V
K

(n?)
h

η2

]
(t) +

n?−1∑

j=0

(−1)n?+j−1η
(j)
2 (t)K

(n?−j−1)
h (t, t)

=

n?−1∑

i=0

ai

( i−1∑

j=0

(−1)i+j−1η
(j)
2 (t)K

(i−j−1)
h (t, t) + (−1)i

[
V
K

(i)
h

η2

]
(t)

)

+

m−1∑

k=0

n?−1∑

i=0

bk,i

( i−1∑

j=0

(−1)i+j−1u
(j)
k (t)K

(i−j−1)
h (t, t) + (−1)i

[
V
K

(i)
h

uk
]
(t)

)

+

n?−1∑

i=0

αi

( i−1∑

j=0

(−1)i+j−1ζ
(j)
1,i (t) + (−1)i

[
V

(j)
Kh
ζ1,i
]
(t)

)

(16)
Note that for (14), the r-th state variable takes on the form

zr(t) = y(r)(t)−
r−1∑

j=0

an−r+jy
(j)(t)−

m−1∑

k=0

r−1∑

j=0

bk,n−r+ju
(j)
k (t)−

r−1∑

j=0

αn−r+jζ
(j)
1,j (t),

for all r ∈ {0, . . . , n? − 1}. Consequently, with index rearrangement, (16) can
be written as the following identity,

µh(t) = γh(t)z(t), (17)

where

µh(t) , (−1)n?−1
[
VKh(n?) η2

]
(t) +

n?−1∑

i=0

ai(−1)i
[
V
K

(i)
h

η2

]
(t)

+

m−1∑

k=0

n?−1∑

i=0

(−1)ibk,i
[
V
K

(i)
h

uk
]
(t) +

n?−1∑

i=0

(−1)iαi
[
V
K

(i)
h

ζ1,i
]
(t)

γh(t) ,
[
(−1)n?−1K

(n?−1)
h (t, t), . . . ,Kh(t, t)

]
.

(18)

Making use of n? BF-NKs Kh(t, τ) tuned by different ωh, h ∈ {0, . . . , n?−1},
the scalar equation(17) can be augmented into the matrix form

ν(t) = Γ(t)z(t) (19)
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where ν(t) = [µ0(t), µ1(t), . . . , µn?−1(t)]
>

, Γ(t) =
[
γ0(t)>, γ1(t)>, . . . , γn?−1(t)>

]>
.130

To streamline the notation, signals transformed by the application of the
Volterra operators are denoted by [V

K
(i)
h

κ](t) , ξκ,i,h(t), where κ represents

signals η2, uk and ζ1 respectively. Due to the specific structure of the kernel
functions, the image functions can be computed as the output of a LTV system:

ξ
(1)
κ,i,h(t) = −ωhξκ,i,h +K

(i)
h (t, t)κ(t), (20)

with ξκ,i,h(0) = 0, ∀h ∈ {0, . . . , n?−1}, i ∈ {0, . . . , n?} for η2, i ∈ {0, . . . , n?−1}
for uk and ζ1.

Thanks to the specific shape of kernel defined in (5), the invertibility of Γ(t)
is guaranteed for any t > 0 (strictly). Therefore, the state estimation of system
(14) can be immediately obtained as

ẑ(t) = Γ(t)−1ν(t), ∀t > 0. (21)

Consequently, the state variables in Sζ2 can be retrieved as ζ̂2(t) = P−1ẑ(t)
and, thanks to (11), the estimated state vector of the original system can be
computed by

x̂(t) = T1ζ̂1(t) + T2ζ̂2(t). (22)

Consequently, the state variables can be estimated with non-asymptotic con-
vergence, i.e. ∃Tc ∈ R≥0

‖x̂(t)− x(t)‖ = 0,∀t ≥ Tc.

4.2. Fault detection and isolation135

Thanks to the fact that the state estimation enjoys a non-asymptotic con-
vergence, the detection and isolation of the fault can be performed in a fast and
accurate way.

Recall the process in (2), if a fault occurs after T0, the system dynamics
takes on the form

Sζ1 :




ζ̇1(t)=A11ζ1(t)+A12ζ2(t)+B1u(t)+E1gU (t, x, u, y) + Ff,1φ(t, u, y)

η1(t)=C11ζ1(t)

Sζ2 :




ζ̇2(t) = A21ζ1(t) +A22ζ2(t) +B2u(t) + Ff,2φ(t, u, y)

η2(t) = C22ζ2(t)

(23)
where [Ff,1

>Ff,2
>]> , T−1Ff . If Ff,2 is full column rank, the fault signal

verifies the following identity

Ff,2φ(t, u, y) = ζ̇2(t)−A22ζ2(t)−A21ζ1(t)−B2u(t), (24)

9



where ζ1(t) and ζ2(t) can be exactly estimated while the derivative ζ̇2(t) becomes
the main obstacle for detecting and identifying the fault signal promptly and
accurately. Inspired by [37], the limited knowledge of the first derivative in (24)
can be overcome by the Volterra operator with a 1-st order BC-NK, which gives

Ff,2[VF f ](t) = −[VF (1)ζ2](t)−A22[VF ζ2](t)−A21[VF ζ1](t)−B2[VFu](t),

(25)
thanks to the feature of the Volterra operators (9).

Remarkably, the kernel function (8) can be rearranged as

F (t, τ) = F0,1(t, τ) + F0,2(t, τ)

F (1)(t, τ) = F1,1(t, τ) + F1,2(t, τ),
(26)

where

F0,1(τ) = (eωτ − 1)e−ωt, F0,2(τ) = (eωτ − e2ωτ )e−2ωt

F1,1(τ) = ωeωτe−ωt, F1,2(τ) = (ωeωτ − 2ωe2ωτ )e−2ωt.

As a result, the image functions χκ,i(t) = [VF (i)κ](t) can be calculated by an
internally stable LTV system





ς
(1)
κ,i (t) = Gςκ,i(t) + Ei(t)κ(t)

χκ,i(t) = Hςκ,i(t),
(27)

where i = {0, 1} and κ represents for ζ1 and ζ̂2

G = diag(−ω,−2ω)

Ei(t) = [Fi,1(t, t), Fi,2(t, t)]>

H = [1 1].

In this way, it is possible to estimate in a non-asymptotic way the trans-
formed fault function. Even if the true fault function is not available, we will
show that the FDI task can be achieved by exploiting such a transformed fault
function. Indeed, a fault detection residual can be derived based on the trans-
formed signals

rFD(t) , ‖Ff,2[VF f ](t)‖
= ‖ − [VF (1)ζ2](t)−A22[VF ζ2](t)−A21[VF ζ1](t)−B2[VFu](t)‖,

(28)
to indicate the health status of the system, where ‖ · ‖ denotes the Euclidean140

norm.
Fault detection decision A fault occurring to the system is detected by

the proposed fault detection scheme at time t = TD, assuming no noise is

10



affecting the system, if the fault detection residual rFD is different from zero,
i.e. rFD(TD) 6= 0.145

After the detection of the fault, a fault isolation mechanism is activated by
resetting the estimator (25), which means resetting all the transformations in
(27). Correspondingly, we define a new notation to represent the operator after
the resetting at t = TD:

[V̆Fκ](t) ,
∫ t−TD

0

F (t− TD, τ)κ(τ + TD)dτ,∀t ≥ TD, (29)

where κ can denote the signals ζ1, ζ2, u and φ respectively.
For fault isolation, a set of faults F is assumed to contain all possible NF

types of fault functions φi(t, u, y), i ∈ {0, . . . , NF − 1}, that can occur to the
system.

Considering the system in the faulty mode (23), for each possible fault
φi(t, x, y) one can obtain a fault isolation residual

rFI,i(t) =

∥∥∥∥Ff,2
(

[V̆Fφ](t)− [V̆Fφi](t)

)∥∥∥∥
= ‖−[V̆F (1)ζ2](t)−A22[V̆F ζ2](t)−A21[V̆F ζ1](t)−B2[V̆Fu](t)−Ff,2[V̆Fφi](t)‖,

(30)
Fault isolation By using the fault isolation residual (30), the p-th fault is150

excluded if rFI,p(t) 6= 0. If there exists a TI > TD such that all the faults are
excluded but the q-th one, i.e. rFI,q(t) = 0,∀t > TI , then q-th fault is isolated
at time TI .

5. Fault detection and isolation of systems with full order uncertainty

Based on the previous FDI scheme, in this section, we are going to analyse
the system with full order model uncertainty, i.e.

{
ẋ(t) = Ax(t) +Bu(t) + g(t, x, u, y) + Fff(t, u, y),

yd(t) = Cxd(t)
(31)

where g(t, x, u, y) is a combination of uncertainties with known and unknown
boundedness. We assume g(t, x, u, y) can be divided into two parts, such that

g(t, x, u, y) = gL(t, x, u, y) + EgU (t, x, u, y), (32)

where gL(t, x, u, y) is the part that can be bounded by a computable known155

bound i.e. |gL(t, x, u, y)| ≤ ḡL(t) ∈ Rn and gU (t, x, u, y) is the unknown uncer-
tainties for which we do not know its boundedness. Notably, Assumption 1, 2
are still necessary for the following discussion.

11



Following the same transformation process in Section 4, the nominal system
(31) is rearranged as

Sζ1 :




ζ̇1(t)=A11ζ1(t)+A12ζ2(t)+B1u(t)+E1gU (t, x, u, y) + g1(t, x, u, y),

η1(t)=C11ζ1(t),

Sζ2 :




ζ̇2(t) = A21ζ1(t) +A22ζ2(t) +B2u(t) + g2(t, x, u, y),

η2(t) = C22ζ2(t),

(33)
where [g1(t, x, u, y)>g2(t, x, u, y)>]> , T−1gL(t, x, u, y). As such, the
g1(t, x, u, y) and g2(t, x, u, y) inherit the boundedness of gL(t, x, u, y) such that


 |g1(t, x, u, y)|
|g2(t, x, u, y)|


 ≤


 ḡ1(t)

ḡ2(t)


 , |T−1|ḡL(t),

where | · | denotes the component-wise absolute value.
Applying the same state observer scheme from (11) to (22), the estimates of160

the state variables are prone to be contaminated by gL(t, x, u, y). However,
thanks to the proven Input-to-State Stable (I.S.S) property of the Volterra
transformation with the BF-NK, a computable bound can be derived for the
transformed signals, as in [35]. In this context, an FDI scheme can be still
designed to diagnose the fault by introducing proper thresholds.165

Recalling (11), it is worth noting that the uncertain function g1(t, x, u, y)
does not have influence on the estimates of state variables of Sζ1 , thus we can

write: ζ̂1(t) = ζ1(t) = C−1
11 Q1y(t).

Considering the effect of g2(t, x, u, y) , [g2,0(t, x, u, y), . . . , g2,n?−1(t, x, u, y)]>

on the subsystem Sζ2 in (31), making use of the observer (19), the estimated
state variables take on the form

ζ̂2(t) = P−1Γ(t)−1[µ̂0(t), µ̂1(t), . . . , µ̂n?−1](t),

where

µ̂h(t) = (−1)n?−1
[
VKh(n?) η2

]
(t) +

n?−1∑

i=0

ai(−1)i
[
V
K

(i)
h

η2

]
(t)

+

m−1∑

k=0

n?−1∑

i=0

(−1)ibk,i
[
V
K

(i)
h

uk
]
(t) +

n?−1∑

i=0

(−1)iαi
[
V
K

(i)
h

ζ1,i
]
(t),
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for all h ∈ {0, . . . , n? − 1}. In this case, the actual uncertain system verifies

µh(t) = (−1)n?−1
[
VKh(n?) η2

]
(t) +

n?−1∑

i=0

ai(−1)i
[
V
K

(i)
h

η2

]
(t)

+

m−1∑

k=0

n?−1∑

i=0

(−1)ibk,i
[
V
K

(i)
h

uk
]
(t) +

n?−1∑

i=0

(−1)iαi
[
V
K

(i)
h

ζ1,i
]
(t)

+

n?−1∑

i=0

(−1)i[VK(i)g2,n?−1−i](t).

Therefore, the state estimation error takes on the form

εζ2(t) ,
∣∣∣ζ̂2(t)− ζ2(t)

∣∣∣ =
∣∣∣P−1Γ(t)−1

[
εµ0(t), εµ1(t), . . . , εµn?−1(t)

]>∣∣∣ (34)

where

εµh(t) , µ̂h(t)− µh(t) = −
n?−1∑

i=0

(−1)i[V
K

(i)
h

g2,n?−1−i](t).

Moreover, we notice that the BF-NK can be expressed as

K
(i)
h (t, τ) = e−ωht

n?∑

q=0

(
n?
q

)
(ωh − qω̄)ie(ωh−qω̄)τ . (35)

Therefore, signals transformed by a BF-NK Volterra operator admits the
upper bound:

[V
K

(i)
h

g2,n?−1−i](t) = e−ωht
n?∑

q=0

(
n?
q

)
(ωh − qω̄)i

∫ t

0

e(ωh−qω̄)τg2,n?−1−i(τ)dτ

≤
n?∑

q=0

(
n?
q

)
(ωh − qω̄)i(e−qω̄t − e−ωht)ḡ2,n?−1−i

, ξ̄g,i,h,

(36)
where ḡ2,j denotes the j-th element of the bound signal ḡ2(t). Remarkably,170

ωh and ω̄ can be properly tuned to tighten the bound ξ̄g,i,h,∀i ∈ {0, . . . , n? −
1},∀h ∈ {0, . . . , n? − 1}.

Remark 5.1. The computation of the estimation error bound (34) at the begin-

ning of the simulation could arouse numerical issues as Γ(t) is nearly singular

at the initial time instants. As such ‖Γ(t)−1‖ may have very large values at the175

beginning. Therefore, we deploy a threshold θa to activate the fault detection

mechanism after a short period at t = Ta, when det(Γ(t)) ≥ θa. Ta is adjustable

by tuning ω̄ in terms of the converging speed of the kernels.
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Therefore, the afore-defined error (34) admits the bound

εζ2(t)≤
∣∣P−1Γ(t)−1

∣∣
[
ε̄µ0
, ε̄µ1

, . . . , ε̄µnξ−1

]
> ≤ ε̄ζ2 ∈ Rn? , (37)

∀t ≥ Ta, where

ε̄µh =

n?−1∑

i=0

ξ̄g,i,h.

Consequently, the estimation error of the state is bounded by

|εx| , |x̂(t)− x(t)| ≤ |T2|ε̄ζ2 , ε̄x(t). (38)

On the otherhand, by recalling (25), we can then define the uncertainty on
the fault detection residual

εrFD (t) = |[VF (1)εζ2 ](t) +A22[VF εζ2 ](t) + [VF g2](t)| . (39)

Notice that

[VFκ](t) ≤ κ̄

∫ t

0

|F (t, τ)|dτ

= κ̄

[
e−2ωt

(
eωt − 1

ω
− e2ωt − 1

2ω

)
+ e−ωt

(
eωt − 1

ω
− t
)]

, χ̄κ,0(t).

(40)

where κ and κ̄ represents the signals εζ1 , εζ2 , u and their corresponding upper
bounds. Furthermore, it holds that

[VF (1)κ](t) ≤ κ̄

∫ t

0

|F (1)(t, τ)|dτ

= κ̄

(
−
∫ ln(1+et)

2

0

F (1)(t, τ)dτ +

∫ t

ln(1+et)
2

F (1)(t, τ)dτ

)

= κ̄
(e−t − 1)2

2
, χ̄κ,1(t).

(41)

The above BIBO property of Volterra operators with BC-NK kernels leads
to the following bounding inequalities:

|[VF εζ2 ](t)| ≤ χ̄ζ,0(t), |[VF g2](t)| ≤ χ̄g2,0(t), |[VF (1)εζ2 ](t)| ≤ χ̄ζ,1(t). (42)

180

Then, the effects of the uncertainty on the fault detection residual satisfies

‖εrFD (t)‖ ≤ ‖χ̄ζ,1(t) + |A22|χ̄ζ,0(t) + χ̄g2,0(t)‖,σFD(t), (43)

which can be used as a threshold for fault detection.

14



Proposition 5.1. A fault occurring in the system is detected by the proposed

fault detection scheme at time t = TD, once the fault detection residual rFD(t)

exceeds the fault detection threshold σFD, i.e. rFD(TD) > σFD(TD).

Fault detectability If there exists a time instant TD > T0, such that the
fault f(t, u, y) fulfils the following inequality

‖Ff,2[VF f ](TD)‖ > ‖χ̄ζ,1(TD) + |A22|χ̄ζ,0(TD) + χ̄g2,0(TD)‖, (44)

then it can be detected at TD.185

For the purpose of fault isolation, referring to (40) and (41), it is easy to
show that the images computed based on the operator V̆F are bounded by

|[V̆F εζ2 ](t)| ≤ ¯̆χζ,0(t), |[VF g2](t)| ≤ ¯̆χg2,0(t), |[V̆F (1)εζ2 ](t)| ≤ ¯̆χζ,1(t), (45)

with

[V̆Fκ](t) ≤ κ̄
∫ t−TD

0

|F (t− TD, τ)|dτ

= κ̄

[
e−2ω(t−TD)

(
eω(t−TD)−1

ω
− e

2ω(t−TD)−1

2ω

)
+e−ω(t−TD)

(
eω(t−TD)−1

ω
−t+TD

)]

, ¯̆χκ,0(t),

and

[V̆F (1)κ](t) ≤ κ̄
∫ t−TD

0

|F (1)(t− TD, τ)|dτ

= κ̄

(
−
∫ ln(1+et−TD )

2

0

F (1)(t− TD, τ)dτ +

∫ t−TD

ln(1+et−TD )
2

F (1)(t− TD, τ)dτ

)

= κ̄
(e−(t−TD) − 1)2

2
, ¯̆χκ,1(t).

As such, upon the occurrence of the i-th fault, the i-th fault isolation residual
defined in (30) verifies the following inequality

‖εrFI,i(t)‖ ≤ ‖ ¯̆χζ,1(t) + |A22| ¯̆χζ,0(t) + ¯̆χg2,0(t)‖ ,σFI(t), ∀t > TD. (46)

giving rise to the following fault isolation logic.

Proposition 5.2. By using the fault isolation residual rFI,i(t) in (30) and the

fault isolation threshold σFI,i(t) in (46), the p-th fault is excluded at TE,p, if

rFI,p(t) exceeds the corresponding threshold, i.e. ∃TE,p ≥ TD such that

rFI,p(TE,p) > σFI(TE,p). If all the faults are excluded except q-th fault, i.e.190

(
∃TD < t2,i < TI , rFI,i(t2,i) > σFI(t2,i),∀i ∈ {0, . . . , NF − 1}\q

)
∧
(
rFI,q ≤

σFI,q(t),∀t > TD
)
, then the q-th fault is isolated.

15



Fault isolability Given a fault φq ∈ F , if for each i ∈ {0, . . . , NF − 1}\q,
there exists some t2,i > TD such that the mismatch between the q-th fault and
i-th fault verifies the following condition

∥∥∥Ff,2|[V̆Fφq](t2,i)− [V̆Fφi](t2,i)|
∥∥∥ >

∥∥ ¯̆χζ,1(t2,i) + |A22| ¯̆χζ,0(t2,i) + ¯̆χg2,0(t2,i)
∥∥ ,

(47)
then the q-th fault will be isolated at time TI = max

i∈{0,...,NF−1}\q
t2,i.

Remark 5.2. Recalling the Volterra transformation systems (20) and (27), the

Volterra operators form a fading memory mechanism where the kernel param-195

eters ωh, ω act as the forgetting factors in the transformations. Therefore, in-

creasing the parameters is prone to make the fault detection scheme more sen-

sitive to the occurrence of the fault. However, Equations (36), (40) and (41)

together imply that larger values of the parameters will sacrifice the tightness

of the thresholds especially in the initial phase, when Γ(t) are small. As such200

the detectability of the faults at the beginning could be degraded. Therefore,

a compromise is necessary to deal with the trade-off between the sensitivity of

the FDI response and the detectability of fast-occurring faults. The interested

readers can get a deeper insight into detailed numerical analysis concerning pa-

rameter tuning, kernel features and computational complexity of the kernel-based205

estimators in [35].

To summarize, the overall FDI scheme can be concluded as in Fig. 1.

6. Numerical Example

In this section, we consider the dynamic model of an accumulator in a web
processing line introduced in [38]. The schematic of the carriage, the web spans
and the rollers within an accumulator are illustrated in Fig. 2. The number of
the rollers on the carriage is assumed to be N/2 and N + 1 rollers in total are
present in the accumulator. As a result, the j-th roller dynamic can be modelled
as

ṫj(t) =
AaEeR

xc
(ωj(t)− ωj−1(t)) +

R

xc
[tj−1(t)ωj−1(t)− tj(t)ωj(t)]

Jω̇j(t) = −Bjωj(t) +R(tj+1(t)− tj(t)),
(48)

where j ∈ {1, . . . , N}, Aa denotes the area of the cross section of the strip. Bj
denotes the coefficient of viscous friction and Ee is the Young’s modulus of the210
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y(t) = S

[
η1(t)
η2(t)

]
η1(t)

η2(t)

ζ1(t) = C−1
11 η1(t)

VK0

VK1

VKn⋆−1

...

z(t) = Γ(t)−1ν(t)

ζ1(t)ζ2(t)

State Estimation

VF

K0(t, t) K1(t, t) · · · Kn⋆−1(t, t)

VF (1)

y(t)

u(t)

rFD(t) = ‖ − [VF (1)ζ2](t)−A22[VF ζ2](t)−A21[VF ζ1](t)−B1[VFu](t)‖

ḡ2(t, x, u, y)
VK0

VK1
· · · VKn⋆−1

VF , VF (1)
σFD = ‖χ̄ζ,1(t) +A22χ̄ζ,0(t) + χ̄g2,0(t)‖

Fault Detection

Fault Detection Decision

{F}

t = TD

V̆F

V̆F (1)

u(t)

ζ2(t)

ḡ2(t, x, u, y)
VK0

VK1
· · · VKn⋆−1

V̆F , V̆F (1)

σFI,i = ‖ ¯̆χζ,1(t) + |A22| ¯̆χζ,0(t) + ¯̆χg2,0(t)‖

Fault Isolation

rFD(t) > σFD(t)?

rFI,i(t) > σFI,i(t)?

{F}\φq excluded ith fault excludedpth fault isolated

t = TI

rFI,i(t) = ‖ − [V̆F (1)ζ2](t)−A22[V̆F ζ2](t)

−A21[V̆F ζ1](t)−B2[V̆Fu](t) + Ff,2[V̆Fφi](t)‖

LTV system (20)

u(t)

LTV system (27)
LTV system (27)

Reset system (27)

Reset system (27)

Figure 1: Flowchart of the fault detection and isolation scheme.

material. J is the moment of inertia of the roller and R represents the radius of
the roller. tj(t), ωj(t) denotes the tension and the angular velocity of the j-th
roller, respectively.

By defining the averaging tension tc = 1
N

∑N
j=1 tj(t) and considering the

driven roller angular dynamics at both sides of the accumulator, the dynamics
of this process can be formally expressed as

{
ẋ(t) = Ax(t) +Bu(t) + EgU (t, x, u)

y(t) = Cx(t)
(49)
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Figure 2: Sketch of an accumulator in the web processing line.

with

x(t) = [tc(t), ve(t), vp(t)]
>, A=




0
AaEe

xcN
−AaEe

xcN

−R2

J
−Bfe

J
0

−R2

J
0 −Bfp

J



,

B=




0 0 0

RKe

J
0

R2

J

0
RKp

J
−R2

J


, C=

[
0 1 0

0 0 1

]
,

E=
[

0
R2

J
0

]>
, u(t) = [ue(t), up(t), tr],

As in [38], it is reasonable to assume that the tensions tj(t),∀j ∈ {1, . . . , N}
are negligible compared to the product AaEe. ve(t) = RωN (t) and vp(t) =215

Rω0(t) are the strip velocities and the process and exit end respectively. As-
sume tp(t) is maintained close to a desired web tension tr and te(t) is defined
as te = tr + gU (t, x, u) where gU (t, x, u) is a unknown non-linear function de-
pending on the complicated relationship among each rollers, which is hard to
be characterized explicitly.220

To regulate the stripe velocities ve(t), vp(t) with respect to the desired values
vr,e and vr,p, a PID controller is applied providing control signals ue(t) and up(t).

ue(t) =
J

PKe

(
Bfe
J
vr,e − kpeeve(t)− kie

∫ t

0

eve(τ)dτ

)
,

up(t) =
J

PKp

(
Bfp
J
vr,p − kppevp(t)− kip

∫ t

0

evp(τ)dτ

)
,

where
eve(t) , ve(t)− vr,e, evp , vp(t)− vr,p.
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In the simulation, we adopt the same values as in [38], Aa = 3.27×10−4m2, Ee =
6.90× 1010, N = 34, vf = 35.037× 105N · s/m,R = 0.1524m,J = 2.1542kg ·m2,
Bfe = 0.018 and Bfp = 0.022. x(0) = [x0(0), . . . , x3(0)]> = [5170 2 2]>. The
controller are tuned by kpe = kpp = 40 and kie = kip = 5. The desired tension
tr = 5180N and the desired speed are set to vr = 3.3m/s.225

We assume there is a drifting fault occur on the actuator on the process side
of the accumulator such that up,f (t) = up(t) + f(t) with f(t) = B(t − 3)10t.
Two typical kinds of actuator faults are assumed to be included in the fault set

F =
{
φ1(t) = [0 10t 0]>, φ2 = [0 10 0]>

}
,

where φ1(t) is the drifting fault and φ2(t) denotes the bias fault.
The simulation is implemented in the Matlab/Simulink with 4-th order

Runge-Kutta solver and the sampling interval of Ts = 10−3s. The proposed
scheme is parametrized by ω̄ = 2.5, ω1 = 10, ω2 = 20, ω = 1, θa = 0.24.

Based on the formulated web process system, the simulation is conducted230

considering two scenarios.

6.1. Fixed carriage

In this scenario, we assume that the position of the carriage is fixed, i.e.
xc = 5m.

Making use of the proposed finite-time observer in Section 4, the state esti-235

mation results are illustrated in Fig. 3. Moreover, the state estimation results
are compared with the results of an SM method proposed in [39], tuned by
η1 = 10, η2 = 2, η3 = 1, ε = 0.01 and αm = 0.1.

It is readily seen that before the occurrence of the drifting fault φ1(t) at
t = 3s, the kernel-based state estimates converge instantaneously to the true240

state variables regardless of the unknown non-linearity gU (t, x, u). However,
the SMC observer is vulnerable to the uncertainty and the estimates fluctuated
continuously. The state estimation error of the SMC method undergoes a con-
verging process and exists persistently. Therefore, it would be difficult for such
estimates to contribute to prompt FDI. On the other hand, the computational245

complexity of both methods are compared in Table. 1 by the number of com-
putation flops (NCF) per sampling step and the algorithm elapsed time (AET).
The table shows that the SMC method has advantages in terms of computa-
tional simplicity.

Table 1: Comparison of computational complexity of both methods

Methods kernel-based methods SMC method

NCF 237 53

AET 8.53s 3.56s

250
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Figure 3: State estimation of the web process system with fixed carriage.

The proposed FDI scheme can be attained by the FDI residuals as shown in
Fig. 4. Thanks to the deadbeat convergence feature, the fault detection residual
differs from 0 immediately after the occurrence of fault at t = 3s. Subsequent
activation of the fault isolation scheme gives the rapid growth of rFI,2(t), thus
excluding φ2(t) and isolating φ1(t), i.e. the drifting fault of the actuator on the255

processing side.

6.2. Suspended carriage

Due to practical needs, the position of the carriage may need to be changed.
Therefore, suspended carriages are usually adopted catering to different pro-
cessing requirements. As a result, the suspension is likely to introduce an un-
certainty on xc that influences the dynamics of tc(t) that influencing the output
y(t) in an indirect way. However, due to the physical space limitation, the
uncertainty on xc is bounded. This scenario is described by the problem for-
mulation of the FDI scheme proposed in Section 5. We assume the carriage
undergoes a periodic swing, i.e. xc(t) = xn,c + ∆xc(t), such that xn,c = 5m and
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Figure 4: Fault detection and isolation residuals of the web process system with fixed carriage.

∆xc(t) = sin(0.2t)m. Therefore, system (50) can be reformulated as

{
ẋ(t) = Ax(t) +Bu(t) + gL(t, y) + EgU (t, x, u)

y(t) = Cx(t),
(50)

where gL(t, y) = [gtc(t) 0 0]>, gtc(t) = −AaEe∆xc(t)
xc(t)xn,cN

[1 − 1]y(t). A determin-

istic bound can be calculated for the unknown non-linearity as

|gtc(t)| ≤
∣∣∣∣

AaEe
(xn,c − 1)xn,cN

[1 − 1]y(t)

∣∣∣∣ = 3.181× 104|[1 − 1]y(t)| , ḡtc(t).

Correspondingly, thresholds can be computed based on ḡtc(t). This allows to
achieve fault detection and isolation decisions as shown in Fig. 5.

As the fault occurs at t = 3s, the fault detection residual increases immedi-260

ately and crosses the fault detection threshold at t = 3.344s; the fault isolation
is achieved by excluding φ2(t, y, u) at t = 4.166s.

It is worth noting that Ff,2 is not full column rank, so (24) is not sensitive
to the fault on the exit end. However, referring to [38], it is reasonable to
assume either te(t) or tp(t) to be close to tr. As a result, by denoting tp =265

tr+gU (t, x, u) and correspondingly changing E =

[
0, 0,

−R2

J

]>
in (50), a similar

fault diagnosor can established for such problem formulation to detect the fault
on ue(t). Fig. 6 confirms that the fault detection threshold for the fault on
the processing end is not sensitive to the fault on the exit side. Therefore, by
constructing two parallel FDI schemes for ue(t) and up(t), the health status on270

both actuators can be monitored independently.
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Figure 5: Fault detection and isolation of the web process system with suspended carriage.
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Figure 6: Fault detection residual and threshold on the processing side when the fault occurs
to the actuator on the exit side.

7. Concluding Remarks

In this paper, a fast-convergent FDI scheme is designed for a class of systems
affected by unknown uncertainties or unbounded nonlinearities. Making use of
a system decomposition, such uncertain systems can be transformed into linear275

systems with and without the intractable uncertainty, respectively. As a result,
the non-asymptotic Volterra operator is applicable, so that finite-time conver-
gence can be achieved for state estimation. Moreover, based on the deadbeat
state estimates, once the fault occurs, it can be detected and isolated in an effi-
cient way. An application example has been considered to address the problem280

of the actuator faults detection and isolation in a web process system. The
effectiveness of the proposed FDI schemes has been confirmed in two scenarios.

Acknowledgment

We would like to acknowledge Prof. Thomas Parisini for many fruitful re-
search discussions and for help and suggestions on fault diagnosis architectures.285

22



References

[1] R. J. Patton, P. M. Frank, R. N. Clarke (Eds.), Fault Diagnosis in Dynamic
Systems: Theory and Application, Prentice-Hall, Inc., 1989.

[2] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, J. Schröder, Diagnosis
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