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Abstract

In various classification problems characterized by a large number of features, feature selection (FS) is essential to guarantee
generalization capabilities. The FS problem is often ill-posed due to significant correlations among features, which may lead to
several different feature subsets with comparable scores in terms of classification performance. However, not all these subsets are
equivalent from a domain-oriented point of view due to known relationships among features and their different acquisition costs
in production to deploy the trained classifier. In this paper, we consider the potential benefits of including the domain expert’s
preferences in the FS task, thus integrating both objective elements (e.g., classification accuracy) and subjective (often not quantifi-
able) considerations in the selection process. This goes in the direction of increasing the interpretability and the trustworthiness of
the machine learning model, which is an often desired property in many application domains such as in medicine. The proposed
method consists of an iterative procedure. At each iteration, the expert is asked to express a “human” preference on pairs of classi-
fiers, each one trained from a different subset of features. The expressed preferences are used algorithmically to update a suitable
surrogate function that mimics the latent subjective expert’s objective function, and then to propose a new classifier for testing
and comparison. The proposed method has been tested on academic and experimental FS problems, and notably, on a COVID’19
patients record. The preliminary experimental results are promising, in that a parsimonious and accurate solution is obtained after
a relatively short number of iterations.
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1. Introduction

Feature selection (FS) is of paramount importance in classi-
fication problems characterized by a large number of features,
in particular in the presence of small-size training datasets. FS
amounts to a combinatorial problem that aims at extracting the
relevant features from a given set of candidate ones. FS meth-
ods can be broadly classified into filter and wrapper methods
[29, 27, 30]. In filter methods, FS is performed independently
of the classifier design, based only on the intrinsic properties of
the features. In wrapper methods, the criterion for selecting fea-
tures is based on the performance of the classifier i.e., the clas-
sifier is “wrapped” on a search algorithm that seeks the subset
of features which results in the highest classification accuracy.
Wrapper methods are typically more accurate, but also compu-
tationally intensive. Besides in machine learning applications,
the problem of selecting the most relevant terms/samples for a
given set has been addressed in different research areas. For ex-
ample, in the systems and control area, the techniques answer-
ing to this selection problem are known under the collective
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term model structure selection, while in the signal processing
community they are known as sparse approximation and com-
pressed sensing, see e.g, [22].

FS from a large set of features is often an ill-posed prob-
lem, due to significant correlation among features. As a re-
sult, it is a common experience that several equivalent classi-
fiers can be obtained based on different sets of selected fea-
tures, with equivalence measured in terms of classification ac-
curacy or other discrete performance-oriented indicators. It fol-
lows that the FS algorithm cannot pick one feature set over
the others based on objective and quantitative elements. How-
ever, models with equivalent performance do not necessarily
convey the same level of information to the domain expert re-
garding selected features, interactions among them, and model
interpretability. For example, some features might be associ-
ated with the effects of the modeled phenomenon rather than
its causes. Furthermore, some features may be costly to obtain
in practice (for example, those associated with invasive clinical
analysis, as opposed to other features obtained by standard non-
invasive exams). Other features may be associated with noisy
and unreliable measurements. Ultimately, the domain expert
may prefer classifiers based on specific combinations of fea-
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tures more often associated with the modeled phenomenon, or
for classifiers whose performance is more accurate on specific,
critical samples. From these considerations, it is apparent that
the FS problem ultimately amounts to a multi-objective opti-
mization problem that accounts for both performance-oriented
and subjective criteria, the latter being related to model inter-
pretability and explainability and thus often not easy to math-
ematically formalize, [23]. At the same time, introducing hu-
man feedbacks implies new sources of complexity related to
variability of the expert’s current focus, [11].

In this work, we investigate the potential benefits of including
the domain expert’s preferences in the FS task, thus integrating
both objective elements (e.g., classification accuracy) and sub-
jective considerations in the selection process. This “human-
in-the-loop” can be beneficial in solving the above mentioned
ambiguities, [20]. In short, the proposed algorithm suitably
generates candidate solutions to submit to the expert, who is
occasionally required to express a preference within pairs of
solutions. This coarse information is then employed to “alter”
the objectives of the FS algorithm, to drive it towards solutions
that guarantee a required level of accuracy but at the same time
are agreeable to the expert according to his or her subjective
preferences. While human-AI interaction in machine learning
has been deeply exploited for data producing, labeling, and pre-
processing, relative few works deals with human-AI interaction
in machine learning modeling tasks, such as FS (see [23] for
details). In [14] the authors suggest to use domain human ex-
pert knowledge to select among equally important features in
the proposed wrapper FS method, but no method is proposed
based on this idea. In [13], a Reinforcement Learning method
for FS is described where human experts only provide some
initial information regarding the most relevant features, while
during the learning process no human intervention is exploited.

The preference-based FS method described in this paper
builds upon a tailored extension of the GLISp algorithm pro-
posed by some of the authors for real-valued black-box global
optimization through active preference learning [3]. The pri-
mary motivation behind using GLISp and other preference-
based optimization algorithms (see, e.g., [10, 17, 1, 4]) is that
many real-world problems require optimizing a qualitative ob-
jective function. The function may be difficult to quantify, as a
human decision-maker can only qualitatively assess the “good-
ness” of a solution. In this case, it is well known that humans
are better at expressing a preference between two options (“A is
better than B”) rather than defining a fictitious metric to assess
multiple solutions quantitatively [12].

In preference-based optimization, the expert’s preferences
are used to build a surrogate cost function describing his/her
evaluation of different solutions. In turn, this surrogate func-
tion is used to build an acquisition function, which is optimized
to select the next candidate solution to propose to the user for
comparison with the current best. The acquisition function bal-
ances exploitation (optimization only based on the surrogate
cost function describing the observed preferences) and explo-
ration (searching unexplored areas of the solution domain). In
the present research endeavor, the GLISp approach is reformu-
lated for a combinatorial optimization framework and tailored

to the FS task. The discrete nature of the optimization problem
is explicitly accounted for in the construction of both the sur-
rogate and acquisition functions. Notice also that, again due to
the discrete nature of the problem, the optimization of the ac-
quisition function may occasionally yield a previously explored
solution, which can never occur in the continuous setting. To
avoid presenting to the expert already seen solutions, a heuristic
method is applied to locally perturb the solution. To optimize
the acquisition function we here employ the Randomized FS
and Classification (RFSC) algorithm described in [9].

The RFSC is a wrapper algorithm, that employs a multi-
model criterion for assessing the importance of each feature,
for increased robustness. More specifically, at each iteration of
the RFSC algorithm a set of models is extracted from a proba-
bility distribution defined over all the possible feature subsets.
These models are estimated and evaluated, and the aggregate
information regarding their performances is used to update the
probability distribution, by reinforcing the probability to extract
features that appear in successful models more often than not.
Ultimately, the distribution converges to a limit distribution cor-
responding to a single model. The RFSC has several desirable
features: a) it only requires the evaluation of the cost function;
b) it generally provides an excellent tradeoff between model
complexity and classification accuracy; c) it is not prone to error
accumulation problems (as sequential methods); d) it operates
the selection based on robust evidence gathered on a population
of models; e) thanks to the randomization it can occasionally
escape from local minima. All these features, and especially
its robustness (due to the multi-model criterion for FS), make
the RFSC well-suited for the GLISp framework. Besides, the
sample-and-evaluate strategy exploited by the RFSC has been
successfully applied for feature selection in several discrete and
continuous problems, as discussed in [16, 6, 7, 8].

While the effectiveness of the GLISp and the RFSC has been
already analyzed in [3] and [9] with reference to several numer-
ical data sets taken from public available repositories, in this pa-
per we are mainly interested in investigating their combination
to solve FS problems within a human-in-the-loop framework
[20].

The proposed method has been tested on both academic
and experimental FS problems, and notably, a COVID’19 pa-
tients record, demonstrating its ability to drive the selection
process towards solutions that optimize an unknown criterion,
manifested to the algorithm only utilizing the expert prefer-
ences. Regarding the COVID’19 dataset, classifiers for mor-
tality prediction in patients with COVID-19 pneumonia have
been trained. A human-in-the-loop experiment is also docu-
mented where the trained classifiers are proposed to a human
medical expert, who iteratively expresses pairwise preferences
between two classifiers according to his (unknown) subjective
understanding and model interpretability.

The main contributions of this work are:

• a novel FS approach that accounts for human-AI interac-
tion, by resorting to the expert advise for better tuning of
the optimization process;

• a tailored extension of the GLISp algorithm for discrete
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optimization;

• presentation and discussion of a medical human-in-the-
loop experiment related to prognosis for COVID’19.

We stress again that this work is not meant to make a compari-
son with existing classical FS approaches, but rather to discuss
the potential benefit of considering human-AI interaction for
ill-posed FS problems, where classical methods are at a loss.

The rest of the paper is organized as follows. Section 2
presents the active preference-based FS problem. Section 3
reviews the GLISp framework upon which the proposed algo-
rithm detailed in Section 4 is built. A brief description of the
RFSC algorithm used to maximize the acquisition function is
provided in Section 5. Section 6 reports the results in applying
the proposed procedure to an illustrative example and to a case
study dealing with predicting mortality in COVID-19 pneumo-
nia. Some concluding remarks end the paper.

2. Problem statement

We here consider a multi-class classification problem, where
a training set is given with T input-output pairs D =

{(x(k), c(k))}Tk=1, with x(k) ∈ RN f denoting the k-th input (or
feature vector) and c(k) = {1, 2, . . . ,Nc} the corresponding out-
put label (or observed class).

In many classification problems, the size N f of the feature
vector x (i.e., the number of features) can be very large, which
makes the estimation of the full model awkward, since over-
parametrization and overfitting issues are likely to ensue, unless
a prior selection of the features is carried out. The robustness
and reliability of the model, i.e. the capability of generalizing
the prediction performances to unseen observations, are greatly
improved if the number of features is kept low, including in the
model only a small subset of meaningful features. This has also
an important practical consequence, given that the actual ob-
tainment of the feature values is often not devoid of cost, as in
the case, e.g.,, of features associated to clinical tests that a pa-
tient has to undergo. Finally, the interpretability of the model
is also increased by focusing on few features. For all these rea-
sons, a FS procedure must be put in place, as discussed in the
following.

A classifier gs,ϑ : RN f → {1, 2, . . . ,Nc}, maps features to
classes, s ∈ S = {0, 1}N f coding its structure, such that si = 1
if the i-th feature xi enters the model and si = 0 otherwise, and
ϑ ∈ Θ being a set of parameters. The classifier can be trained
on the datasetD by minimizing a loss function L : S×Θ→ R
(e.g., minus the log-likelihood of the data). The minimal loss L
achieved by a classifier with structure s can be thus computed
as

J(s) = min
ϑ∈Θ
L(s,ϑ) (1)

and ϑ?s = arg minϑ∈ΘL(s,ϑ) denotes the corresponding
parametrization. Accordingly, we denote by gs,ϑ?s the classifier
with structure s and corresponding optimal parameters ϑ?s .

We here investigate the possibility to include in the FS pro-
cedure the subjective criteria employed by a domain expert by

taking into account his/her preferences, occasionally expressed
over pairs of suggested classifiers. The intuition behind this
idea is that the expert’s preferences may convey useful and sub-
jective information to allow the FS algorithm to balance model
accuracy and other not formalized – but nonetheless important
– requirements. This ultimately brings the algorithm to select
those features (or combinations of features) that ensure high
classification accuracy and at the same time are meaningful
from a domain-oriented point of view.

Formally, we state the FS problem as follows:

min
s∈S

p(s; gs,ϑ?s ), (2a)

s.t. f (s; gs,ϑ?s ) ≤ 0 (2b)

where p(s; gs,ϑ?s ) : S → R is an unknown cost function which
depends on the classifier gs,ϑ?s and describes the subjective opin-
ion of an external expert about the feature subset s and the cor-
responding classifier performance. Instead, we assume that the
constraint function f (s; gs,ϑ?s ) in (2b), with f : S → Rnc , cap-
tures possible quantifiable and objective properties that the clas-
sifier must satisfy, e.g., minimum classification accuracy, speci-
ficity, sensitivity, or model size. However, we assume that f can
be only evaluated after gs,ϑ has been trained. In the following,
for ease of notation, we omit the dependence of the functions p
and f on the classifier gs,ϑ.

Since function p is not directly available to the FS procedure,
to solve problem (2) the expert should in principle rate all the
possible structures in S. This is generally not affordable due to
the large number 2N f of combinations, where the dimension N f

of S can be also large. Instead, we propose an iterative proce-
dure to solve (2) where at each iteration the expert is asked to
give some preferences between pairs of candidate model struc-
tures1, as discussed in the following.

Given two candidate model structures s(1), s(2) ∈ S, the pref-
erence function π : S × S → {−1, 0, 1} expressed by the expert
is defined as

π(s(1), s(2)) =


−1 if s(1) is “better” than s(2)

0 if s(1) is “as good as” s(2)

+1 if s(1) is “worse” than s(2)

, (3)

where for all s( j), s(k), s(l) ∈ S it holds that:

1. π(s( j), s( j)) = 0,
2. π(s( j), s(k)) = −π(s(k), s( j)),
3. π(s( j), s(k)) = π(s(k), s(l)) = −1 ⇒ π(s( j), s(l)) = −1 (transi-

tive property).

Note that π is a black-box function that can be evaluated on
pairs (s(1), s(2)) by querying the expert. In particular, we assume
that the value π(s(1), s(2)) is returned by the user according to his
or her underlying function p as follows:

1. p(s( j)) < p(s(k))→ π(s( j), s(k)) = −1,

1In the following, when we refer to a model structure s, we also implic-
itly refer to the corresponding classifier gs,ϑ?s , with parameters ϑ?s obtained by
solving (1).
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2. p(s( j)) = p(s(k))→ π(s( j), s(k)) = 0,
3. p(s( j)) > p(s(k))→ π(s( j), s(k)) = 1,

for all s( j), s(k) ∈ S satisfying constraint (2b). Without loss of
generality, we assume that combinations s ∈ S such that con-
straint f (s) > 0 holds are implicitly always not preferred to
feasible solutions. In other words:

π(s( j), s(k)) = −1, ∀s( j), s(k) : f (s( j)) ≤ 0, f (s(k)) > 0. (4)

This allows us model the constraint f (s) ≤ 0 directly as a
known property of the cost function p, that is

f (s( j)) ≤ 0, f (s(k)) > 0→ p(s( j)) < p(s(k)),∀s( j), s(k) ∈ S (5)

To conclude, Problem (2) ultimately amounts to finding a
model structure s? that is better (or at least not worse) than all
other acceptable model structures, i.e. such that

π(s?, s) ≤ 0, ∀s ∈ S. (6)

3. The GLISp framework

The preference-based FS method described in this paper fol-
lows the GLISp scheme [3], in that it iteratively suggests a se-
quence of model structures s(1), . . . , s(N) to the user to test and
compare. The user preferences gathered in the process are then
exploited to collect information regarding the unknown cost
function p(s).

More precisely, at each iteration of the GLISp scheme, a
surrogate preference function p̂(s; gϑ(s)) : S → R is trained
to approximate the latent function p(s; gϑ(s)). The set of ob-
served pairwise preferences expressed by the user is taken into
account by trying to preserve the relations: p̂(s(1)) < p̂(s(2)) if
π( p̂(s(1), p̂(s(2))) = −1, p̂(s(1)) > p̂(s(2)) if π( p̂(s(1), p̂(s(2))) = 1,
and p̂(s(1)) = p̂(s(2)) if π(p̂(s(1), p̂(s(2))) = 0. The surrogate p̂
is then used to build an acquisition function that is minimized
to select the next point s ∈ S for evaluation, thus proposing a
new comparison to the user between gϑ(s) and the current best
classifier. The acquisition function realizes a trade-off between
exploitation (optimization only based on the surrogate function
describing the observed preferences) and exploration (search-
ing unexplored areas of the solution domain S). This itera-
tive algorithm terminates when the maximum number of user
queries is reached or when a satisfactory solution is obtained.
Overall, the goal of GLISp is to approach the optimal solution
s? within a small number of experiments, in order to minimize
the number of expert interventions.

In the following subsections we discuss in detail how the sur-
rogate and acquisition functions can be constructed in the con-
text of FS.

3.1. Building the surrogate preference function
In this section we summarize the approach proposed in [3] to

construct the surrogate preference function p̂. Assume that we
have trained N ≥ 2 classifiers from the dataset D for N differ-
ent model structures s( j) ∈ S, j = 1, . . . ,N. Assume also that
the expert user has expressed M (with 1 ≤ M ≤

(
N
2

)
) pairwise

preferences between model structures (evaluated based on the
comparison of the respective classifiers), in the form:

bh = π(s(i(h)), s( j(h))), (7)

with h = 1, . . . ,M, i(h), j(h) ∈ {1, . . . ,N}, i(h) , j(h). Accord-
ing to the definition of preference, it holds that bh ∈ {−1, 0, 1}.
The user preferences are collected in a preference vector B =

[b1 . . . bM]T ∈ {−1, 0, 1}M , along with the compared structures
indexed by i(h), j(h), with h = 1, . . . ,M.

Let us parameterize the surrogate function p̂ to be estimated
as the following linear combination of Radial Basis Functions
(RBFs) [18, 24]:

p̂(s) =

N∑
k=1

βkφ(εd(s, s(k))), (8)

where d : S×S → R is a distance measure between two model
structures s(i) and s( j), such as the Euclidean distance

d(s(i), s( j)) = ‖s(i) − s( j)‖22, (9)

ε > 0 is a scalar parameter, φ : R → R is an RBF, and β =

[β1 . . . βN]T are the unknown coefficients to be trained from the
available preference vector B. Some examples of RBFs are the
inverse quadratic φ(εd) = 1

1+(εd)2 , the Gaussian φ(εd) = e−(εd)2
,

and the thin plate spline φ(εd) = (εd)2 log(εd) functions (see
more examples in [18, 2]).

Based on the observed preference vector B, the surrogate
preference function p̂ is constructed by imposing the con-
straints

p̂(s(i)) ≤ p̂(s( j)) − σ + εh if π(s(i), s( j)) = −1 (10a)

p̂(s(i)) ≥ p̂(s( j)) + σ − εh if π(s(i), s( j)) = 1 (10b)

| p̂(s(i)) − p̂(s( j))| ≤ σ + εh if π(s(i), s( j)) = 0 (10c)

for all h = 1, . . . ,M, where σ > 0 is a given tolerance and
ε = [ε1, . . . , εM] are positive slack variables. More specifically,
the coefficients β in (8) are computed by solving the convex
quadratic programming (QP) problem

minβ,ε
M∑

h=1

chεh +
λ

2

N∑
k=1

β2
k

s.t.
N∑

k=1

(φ(εd(s(i(h)), s(k)) − φ(εd(s( j(h)), s(k)))βk ≤ −σ + εh,∀h : bh = −1

N∑
k=1

(φ(εd(s(i(h)), s(k)) − φ(εd(s( j(h)), s(k)))βk ≥ σ − εh, ∀h : bh = 1∣∣∣∣∣∣∣
N∑

k=1

(φ(εd(s(i(h)), s(k)) − φ(εd(s( j(h)), s(k)))βk

∣∣∣∣∣∣∣ ≤ σ + εh, ∀h : bh = 0

h = 1, . . . ,M
(11)

where ch are positive weights, e.g. ch = 1, ∀h = 1, . . . ,M,
and λ > 0 is a regularization hyperparameter. Note that the
slack variables εh in (10) and (11) are used to relax the con-
straints imposed by the preference vector B. Infeasibility of the
constraints may be due to inconsistent assessments done by the
user or to the poor flexibility of the basis functions used to pa-
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rameterize p̂.

Remark 1. As stated in [11], a potential risk in using human
feedback is the confirmation bias. Indeed, in expressing prefer-
ences, experts may track the likelihood of a hypothesis, which
could lead to bias if the experts only acknowledge evidence that
is consistent with their existing beliefs. This calls for a proper
balancing of the exploitation of the current available observa-
tions vs. the exploration when generating the new structures.
The risk for confirmation bias will be considered in future work.

Finally, we remark that the computation of the surrogate
function p̂ requires to set the hyperparameter ε defining the
shape of the RBFs φ in (8). The simplest way to choose ε is
by K-fold cross-validation [28], by testing the capabilities of p̂
in reconstructing the preferences in parts of the dataset not used
to estimate p̂.

3.2. Building the acquisition function

Once the surrogate function p̂ is estimated, one could in prin-
ciple minimize it to find the model structure (and correspond-
ing classifier) that represents the best selection for the user, ac-
cording to definition (6). More specifically, the following steps
could be iteratively followed:

i) Propose a new model structure by minimizing p̂, i.e.,

s(N+1) = arg min
s∈S

p̂(s); (12)

ii) Ask the user to express the preference π(s(N+1), s(N)
? ), with

s?(N) being the best model structure found so far, corre-
sponding to the smallest index i? such that

π(s(i?), s(i)) ≤ 0, ∀i = 1, . . . ,N; (13)

iii) Update the estimate of p̂ through (11).

Unfortunately, by exploiting only the current available obser-
vations in the model structure selection process, one may easily
miss the global optimum s? in (6), as the proposed candidate so-
lutions only rely on the available observations, leaving regions
of the search space S unexplored. A term promoting the explo-
ration of the space S should thus be considered, along with the
surrogate p̂, in proposing the next model structure s(N+1). As
proposed in [2, 3], the exploration term is constructed based on
the inverse distance weighting (IDW) function z : S → [0, 1]
defined as

z(s) =

 0 if s ∈ {s(1), . . . , s(N)}

2
π

tan−1
(

1∑N
i=1 wi(s)

)
otherwise (14)

where wi(s) = 1
d(s,s(i))2 . In other words, z(s) = 0 for all already

tested structures, and z(s) > 0 otherwise. The inverse tangent
function in (14) prevents z(s) from getting excessively large far
away from all sampled points.

In the GLISp algorithm [3], an acquisition function is em-
ployed to balance exploitation vs. exploration when generating

the new sample s(N+1). Given an exploration hyperparameter
δ ≥ 0, the acquisition function a : S → R is constructed as

a(s) =
p̂(s)
∆p̂
− δz(s), (15)

where
∆p̂ = max

i
{ p̂(s(i))} −min

i
{ p̂(s(i))}

is the range of the surrogate function values on the samples
s(1), . . . , s(N) and acts as a normalization constant in (15) to
simplify the choice of the exploration parameter δ. Note that
∆p̂ ≥ σ (where σ is the tolerance introduced in (10)) if there is
at least one comparison such that bh = π(s(i(h)), s( j(h))) , 0.

Given a set {s(1), . . . , s(N)} of samples and a vector B of pref-
erences defined by (7), the next model structure s(N+1) (and
corresponding classifier) to propose to the user is computed as
the solution of the following optimization problem with binary
variables:

s(N+1) = arg min
s∈S

a(s). (16)

In the acquisition function (15), the exploration term pro-
motes sampling the space S in areas that have not been ex-
plored yet. Parameter δ balances the exploitation and explo-
ration terms in a(s). Setting δ = 0 makes the GLISp algorithm
rely only on the surrogate function p̂ as in (12), whereas setting
δ � 1 makes it explore the entire input space regardless of the
results of the comparisons.

We finally remark that, in executing the GLISp algorithm, a
new candidate classifier s(N+1) may not satisfy f (s(N+1)) ≤ 0
as in (2b) after computing gϑ(s). In this case, because of (4),
there is no need to ask a preference to the user between the
sample s(N+1) proposed in (16) and the best model structure s(N)

?

achieved up to iteration N. It is also possible that in the first
iterations of the algorithm a comparison should be performed
over two classifiers that both violate the constraint (2b). In this
case, a remedy is to set π automatically so that the model struc-
ture with the highest classifier accuracy (or another quantitative
performance metric) is preferred.

4. A preference-based feature selection algorithm

Algorithm 1 summarizes the steps required to compute the
optimal structure s? and the associated classifier gϑ(s?), based
on user preferences modeled using RBF interpolants (8) and the
acquisition function (15). Throughout the algorithm, the clas-
sifier gϑ(s) associated with a given s is computed by exploiting
the linear programming based classification method proposed
in [5]. Other classifiers, such as Gaussian Process classifiers or
Support Vector Machines can be alternatively used.

In the initialization phase (cf. Algorithm 1, Step 1), Ninit

structures are generated randomly, possibly imposing a priori
requirements on the resulting classifier such as e.g., a desired
minimum level of accuracy, sensitivity, or specificity.

The main cycle of Algorithm 1 consists of two main phases:
generation and observation. During the generation phase (cf.
Algorithm 1, Steps 5 – 18), which applies only for iterations
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N ≥ Ninit, an approximate solution to Problem (16) is generated
as explained in Section 5.

Once the candidate solution s(N+1) has been retrieved, it un-
dergoes a test (cf. Algorithm 1, Step 11) to establish whether
it has been already explored (to avoid unnecessary queries to
the expert). This may happen due to the randomized nature of
the RFSC and the discrete nature of S. If s(N+1) ∈ {s1, . . . , sN},
we perturb the solution as follows. All the model structures at
a Hamming distance of 1 from s(N+1) are sorted according to
their surrogate function values, and the best unexplored solu-
tion is returned. If all the new generated structures have been
already explored, we exit from Algorithm 1. The generation
phase concludes by verifying whether or not the generated can-
didate solution s(N+1) satisfies the constraint f (s) ≤ 0 in (2b)
(cf. Algorithm 1, Step 14). In the affirmative case, the algo-
rithm proceeds with the preference observation phase (cf. Al-
gorithm 1, Step 22). In this phase, the expert is asked to pro-
vide a pairwise preference between the sample s(N+1) proposed
in (16) and the best model structure s(N)

? achieved up to itera-
tion N. If the proposed candidate solution is preferred, the best
model structure is updated accordingly (cf. Algorithm 1, Step
23).

5. The generation phase

In the generation phase the algorithm selects a new structure
s(N+1) to be proposed to the expert for comparison with the best
one obtained so far s(N)

? . The new structure is obtained by min-
imizing the acquisition function a(s). To solve this combinato-
rial problem over the space of structures S, we apply the RFSC
algorithm [9]. The RFSC employs a probabilistic reformula-
tion of the optimization problem, by introducing the random
variable φ which takes values in S according to a probability
distribution Pφ. The performance of φ is also a random vari-
able, and its expectation is given by

E[J(φ)] =
∑
s∈S

J(s)Pφ(s), (17)

where J(s) = e−Ka(s), so that performance is graded from 0 to
1. Index (17) is maximized when the probability mass concen-
trates on a feature subset with minimum value of a. Accord-
ingly, the optimization problem can be solved by searching for
the limit distribution

P∗φ = arg min
Pφ

E[J(φ)]. (18)

To address this problem in practice, Pφ is parameterized by
associating a Bernoulli random variable ρ j to each feature x j,
that models the belief that x j belongs to the target feature sub-
set:

ρ j ∼ Be(µ j), (19)

j = 1, . . . ,N f , where µ j ∈ [0, 1] is the success probability. A
feature subset can then be extracted from this distribution, by
extracting a value from the Bernoullian distribution associated
to each feature x j, j = 1, . . . ,N f , and including the latter in the

Algorithm 1 Preference-based FS algorithm
Input: Number Ninit ≥ 2 of initial structures, maximum
number Nmax ≥ Ninit of preference observations, hyper-
parameters δ ≥ 0, σ > 0, ε > 0, self-calibration index set
Isc ⊆ {1, . . . ,Nmax − 1}.
Output: Optimal structure s?.

1: Generate Ninit random structures {s(1), . . . , s(Ninit)};
2: N ← 1, i? ← 1, CONTINUE← True; OBSERVE← True;
3: while N < Nmax and CONTINUE do
4: if N ≥ Ninit then
5: if N ∈ Isc then
6: Recalibrate ε by K-fold cross-validation;
7: end if
8: Solve optimization problem (11) and get β;
9: Solve optimization problem (16) and get s(N+1) (Al-

gorithm 2);
10: if s(N+1) ∈ {s(1), . . . , s(N)} then
11:

(
s(N+1), CONTINUE

)
← flip

(
s(N+1), {s(k)}Nk=1

)
;

12: end if
13: Compute classifier associated to s(N+1);
14: if f (s(N+1)) ≤ 0 then
15: OBSERVE← True;
16: else
17: OBSERVE← False;
18: end if
19: end if
20: i(N)← i?, j(N)← N + 1;
21: if OBSERVE then
22: Observe preference bN = π

(
s(i(N)), s( j(N))

)
;

23: if bN = 1 then
24: i? ← j(N);
25: end if
26: end if
27: N ← N + 1;
28: end while

feature subset if the outcome is 1. This event has probability
µ j, which is accordingly denoted Feature Inclusion Probability
(FIP) of the jth feature. For simplicity, all random variables ρ j,
j = 1, . . . ,Nr are assumed independent. The probability of a
feature subset s ∈ S can be expressed as

Pφ(s) =
∏
j:s j=1

µ j

∏
j:s j=0

(1 − µ j). (20)

The RFSC operates by adapting the FIPs until convergence to
a target limit distribution (i.e., such that all FIPs are valued 0
or 1, which corresponds to assigning probability 1 to a specific
feature subset). The adaptation ofPφ is carried out by repeating
the following tasks at each iteration: a) extract a set of feature
subsets, b) evaluate the corresponding values of the acquisition
function, c) estimate the importance of each feature, d) update
the FIP of each feature. The importance of a feature x j is calcu-
lated by means of an aggregate indicator I j that compares the
average performance of the feature subsets including the said
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feature with that of the remaining ones:

I j = E[J(φ)|φ j = 1] − E[J(φ)|φ j = 0], (21)

where j = 1, . . . ,N f . Indicator I j averages over all structures
in S and can therefore be considered a global measure of the
regressor importance. In task (c) of the main loop of the al-
gorithm, I j is estimated based on the sampled feature subsets.
Then, in task (d), the FIPs are updated as follows

µ j(t + 1) = µ j(t) + χÎ j (22)

for j = 1, · · · ,N f , where Î j is the sampled estimate of I j and
χ is a gain factor (or step size). The value of χ balances al-
gorithm speed and robustness, and reflects the reliability that
the user can assume on the sampled estimate of the importance
indicator.

The structure generation procedure is summarized in Algo-
rithm 2. We address the reader to [9] for all technical details
of the algorithm and for a comprehensive numerical analysis
on several numerical data sets from the UCI machine learning
repository, [25]. Notice that the original version of the method
includes a feature pre-processing step that is here omitted.

Algorithm 2 Randomized algorithm for structure generation.
Input: Number Np of structures to extract at each iteration,
number N f of features, initial Bernoullian success probabilities
µ, probability saturation values µmin and µmax, scaling factor K,
RBF coefficients β, scalar parameter ε.
Output: Proposed structure s.

1: repeat
2: for p = 1 to Np do
3: Extract non-empty structure s(p) from

Bernoullian(µ);
4: Evaluate the surrogate function p̂(s(p)) as in (8);
5: Define acquisition function a(s(p)) as in (15);
6: J (p) ← e−K·a(s(p));
7: end for
8: for j = 1 to n do
9: J⊕ ← 0; n⊕ ← 0; J	 ← 0; n	 ← 0;

10: for p = 1 to Np do
11: if s(p)

j = 1 then
12: J⊕ ← J⊕ +J (p); n⊕ ← n⊕ + 1;
13: else
14: J	 ← J	 +J (p); n	 ← n	 + 1;
15: end if
16: end for
17: χ← 1

10(Jbest−Jmean)+0.1 ;

18: µ j ← µ j + χ
(

J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

19: µ j ← max
(
min

(
µ j, µmax

)
, µmin

)
;

20: end for
21: until Stopping criterion
22: s← round(µ);

Table 1: Example 1: parameter setting for Algorithm 1 and 2.

Param Value
Ninit 5
Nmax 100
Isc {10, 20, . . . , 90}
δ 1
σ 0.001
ε 1

Np 100
µ j 0.5
µmin 0.001
µmax 0.999

K 1

6. Examples

6.1. Illustrative example

We first show the performance of the proposed scheme in
optimizing an (unknown) numerical cost function through user
preferences. The expert employs the following latent cost func-
tion to rate model structures:

p(s) = ‖s − s◦‖21 + P(s), (23)

where

s◦i =

0, i ∈ {3, . . . , 10},
1, i ∈ {1, 2, 11, 12, . . . , 20},

and P(s) = 100‖s{3,...,10}‖1. In other words, the expert’s subjec-
tive criterion penalizes structures different from s◦. However,
the FS algorithm gets this information only indirectly and par-
tially, by way of pairwise comparisons between structures.

Algorithm 1 has been applied to this FS problem, assuming
that the expert preferences are given according to the latent cost
p. The parameter settings for Algorithms 1 and 2 are reported
in Table 1.

Figure 1 shows the value of the latent function p and of the
surrogate p̂ as a function of the number of queried preferences
(number of iterations). Apparently, the constructed surrogate
function p̂ is capable of driving the algorithm toward the global
minimum (represented by the dashed red line) which is reached
after 40 queried preferences (excluding the Ninit ones), despite
the fact that p and p̂ have very different shapes. Indeed, p̂ has
been constructed only to honor the preference constraints (10)
given by the user, which account for the relative relationships
(in terms of the preference function) of a small number of model
structure pairs.

Figure 2 provides a full pictorial representation of the pair-
wise preferences among the structures proposed at each itera-
tion. The left picture shows the preferences calculated accord-
ing to the latent function p, while the right picture considers
the surrogate function p̂. It is evident that the constructed sur-
rogate correctly reconstructs the preferences between the iden-
tified optimal structure s? (row 45) and all the other explored
structures, thus fulfilling its purpose. Finally, note from Figure
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Figure 1: Value of the latent function p and of the surrogate p̂ vs number of
queried preferences (number of iterations). The green marker denotes the opti-
mizer found by the proposed algorithm. The red dashed line indicates the true
optimal cost p?.
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Figure 2: Preferences (green: 0, blue: 1, white: −1) based on the latent function
p (left) and its constructed surrogate p̂ (right). Optimal structure s? at row 45.

1 that, as expected, the algorithm proceeds in exploring the so-
lution space S until the maximum number Nmax of preference
observations is reached. In this example, the flip routine has
never been executed.

6.2. Case study - Predicting mortality in COVID-19 pneumonia

To apply the proposed FS algorithm in a real-world context,
we consider the problem of training a classifier to predict
30-day mortality in patients with COVID-19 pneumonia. We
remark that this case study is reported only for illustrative
purposes and it only aims at showing the effectiveness and
potential of the proposed FS approach in a clinical application
using real data and experts (clinicians). Extensive validation
is not performed for this case study, and thus the models
presented in this paper should not be used by clinicians to
fight against COVID-19 infections. The interested reader is
referred to [15, 19, 31] and the references therein for studies on
data-driven development of mortality predictors in COVID-19
pneumonia.

6.2.1. Dataset
The dataset consists of 704 patients diagnosed with COVID-

19 pneumonia admitted from February to November 2020 to

Table 2: Case study: parameter setting for Algorithm 1 and 2. Within brackets
the values used in Section 6.2.4, if changed.

Param Value
Ninit 5
Nmax 150 (60)
Isc {10, 20, . . . , 140} ({1, 2, . . . , 59})
δ 1
σ 0.0001
ε 1

Np 100
µ j 0.016
µmin 0.001
µmax 0.999

K 1

the Guglielmo da Saliceto Hospital, Piacenza, in northern Italy.
Among the considered patients, 438 (62%) were discharged,
while the remaining 266 (38%) deceased. Data characterizing
the patients includes demographic information, comorbidities,
laboratory tests, symptoms and blood examinations at hospital
admission, etc., for a total of 64 features (see Table 4 for the
complete list). Continuous features are normalized in the [0, 1]
range, and a nearest-neighbour method is used to fill in missing
data. The overall patient data set is randomly split into training
(599) and test (105) sets.

6.2.2. Fictitious quantitative cost function
For the sake of illustration, we first test the algorithm by

defining preferences based on a fictitious quantitative cost func-
tion, to verify that it is able to reach good solutions although it
ignores the cost function employed by the expert and only em-
ploys the coarse information provided by the given preferences.
To this aim, we employ the following multi-objective fictitious
cost to rate classifiers:

p(s; gϑ(s)) = (1 − acc(gϑ(s))) +
‖s‖21
64 + fsens(gϑ(s)) + fspec(gϑ(s)),

where acc(gϑ(s)), sens(gϑ(s)), and spec(gϑ(s)) measure respec-
tively the accuracy, sensitivity and specificity of the classifier
gϑ(s), and

fsens(gϑ(s)) =

exp(−10(sens(gϑ(s)) − 0.6)), if sens(gϑ(s)) ≥ 0.6
(1 + 10|sens(gϑ(s)) − 0.6|), otherwise

fspec(gϑ(s)) =

exp(−10(spec(gϑ(s)) − 0.85)), if spec(gϑ(s)) ≥ 0.85
(1 + 10|spec(gϑ(s)) − 0.85|), otherwise

The rationale behind the designed cost function p(s; gϑ(s))
is to maximize the overall classifier performance and to com-
ply with a desired minimum level of sensitivity, i.e., 60%, and
specificity, i.e., 85%. Classifier complexity is penalized as well.
The parameter settings for Algorithms 1 and 2 are reported in
Table 2.

Figure 3 shows the designed cost function p(s; gϑ(s)) and its
contribution as a function of the number of queried preferences
(number of iterations) for an execution of the proposed algo-
rithm. Apparently, the designed cost function fulfills its pur-
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poses, as the preferences defined based on it suffice to steer the
algorithm towards a parsimonious solution (9 features) with the
desired overall performance. As can be observed in the figure,
the optimal solution is found after 60 iterations.

6.2.3. Effects of feature correlation
Table 3 reports the classifier performance assessed in terms

of model accuracy, specificity, sensitivity, and the selected fea-
tures obtained by executing three times the presented algorithm
with the designed cost function p(s; gϑ(s)). In this way, three
different classifiers, denoted as C1, C2 and C3 are obtained.
Although the three classifiers show similar performance, their
structure is extremely different. This is due to the fact that many
features are correlated (see Figure 4), which implies that mul-
tiple equivalent classifiers can be obtained. Nonetheless, the
obtained classifiers C1, C2, and C3 are not equivalent from a
clinical point of view, as here discussed.

The PaO2-to-FiO2 ratio is known to be one of the most im-
portant predictor of mortality in COVID-19 pneumonia, and is
present in all three models. Creatinine is present in the first
and second classifier, and not in the third one. Nevertheless,
the third classifier comprises the urea level, which is strongly
correlated with the creatinine, as also observed experimentally,
with a linear correlation coefficient equal to 0.72. It is worth
remarking that a third of patients with severe COVID-19 pneu-
monia presents also an acute kidney injury [26], and thus crea-
tinine/urea turns out to be strongly related to the worse outcome
in these patients. However, high creatinine/urea levels is con-
sistently found not only in COVID-19 pneumonia, but also in
other diseases that compromise kidney function.

Looking at the single classifiers, all features involved in C1
can be easily collected at the hospital admission. The only ex-
ception is the respiratory rate, which is mostly measured man-
ually and it is believed to waste valuable time for clinicians,
especially in emergency settings. Furthermore, although the
accuracy in the measurements of respiratory rate by healthcare
professionals has been reported to be fairly high, minor changes
in this variable may have an important effect in risk assessment
in critically ill COVID-19 patients [21]. Overall, classifier C1
shows good performance, but lacks inflammatory parameters
(such as the neutrophil-to-lymphocyte ratio and the C-reactive
protein) which are the most predictive laboratory variables in
COVID-19 pneumonia.

Classifier C2, is the simplest in terms of required predictors,
but it provides information only on kidney and pulmonary func-
tions. Furthermore, it comprises the sodium level as a predictor,
whose correlation with prognosis in COVID-19 is still a matter
of debate.

The last classifier C3 is the most complete and informative
from a physician perspective, as it comprises clinical and lab-
oratory parameters, such as: PaO2-to-FiO2 ratio; symptom du-
ration; and neutrophil-to-lymphocyte ratio. Notably, C3 is the
only classifier considering the age as a feature. However, it
comprises the PaO2 (i.e., partial pressure of oxygen dissolved in
plasma), that is redundant with respect to the PaO2-to-FiO2 ra-
tio. Overall, the two clinicians involved in this study (Dr. Geza
Halasz and Dr. Matteo Villani), agree to consider C3 as the

most valuable classifier among the three in predicting COVID-
19 mortality.

The above discussion highlights the differences among the
three classifiers, and shows the importance of involving experts
to drive the construction of prognostic models for clinical
practices.

6.2.4. Clinician-in-the-loop decision making
The clinician Dr. Geza Halasz was asked to act as expert in

the application of the proposed preference-based algorithm.
To start the experiment, five initial classifiers are randomly

generated with the following constraints: maximum number of
features equal to 15; accuracy larger than 0.7, sensitivity and
specificity larger than 0.5. An initial comparison between these
five classifiers is then performed, as detailed in Algorithm 1.

New models are then iteratively proposed according to Algo-
rithm 1. To avoid unnecessary queries to the expert, only mod-
els with an accuracy acc(gϑ(s)) higher than 0.7 are proposed
for comparison. Classifiers not satisfying this constraint are
thus automatically “labelled” as worse than the previous best
classifier. Besides quantitative metrics such as accuracy, sensi-
tivity, specificity, and required features, the clinician implicitly
considered the following criteria in expressing his preference:
clinical interpretability of the model; cost and difficulty in ob-
taining the features; presence of variables typically associated
with mortality in COVID-19 pneumonia. For instance, at itera-
tion N = 12 the comparison between the following two models
is proposed:

• best model gϑ(s(N)
? ) achieved up to iteration N = 12:

acc(gϑ(s(N))) = 77.14%; spec(gϑ(s(N))) = 64.10%;
sens(gϑ(s(N))) = 84.85%; features = { neutrophil-to-
lymphocyte ratio, white blood cells count, monocytes per-
centage, monocytes count, prothrombin time, age, PaO2-
to-FiO2 ratio, chronic obstructive pulmonary disease,
chronic kidney disease, coronary artery disease}.

• new candidate model gϑ(s(N)): acc(gϑ(s(N))) = 76.20%;
spec(gϑ(s(N))) = 58.98%; sens(gϑ(s(N))) = 86.36%; fea-
tures = { neutrophil-to-lymphocyte ratio, white blood cells
count, monocytes percentage, eosinophil count, prothrom-
bin time, age, PaO2-to-FiO2 ratio, chronic obstructive pul-
monary disease, chronic kidney disease}.

Although accuracy and sensitivity of the new candidate model
are lower than the best model proposed so far, the former is
preferred since it involves less features and also includes the
eosinophil count which, according to the literature, is strongly
related to mortality in COVID-19 pneumonia.

It is interesting to discuss also the comparison proposed at the
next iteration (i.e, N = 13), where the best model is the one just
reported, while the new candidate model has the following char-
acteristics: acc(gϑ(s(N))) = 74.28%; spec(gϑ(s(N))) = 56.41%;
sens(gϑ(s(N))) = 84.85%; features = { neutrophil-to-lymphocyte
ratio, monocytes percentage, prothrombin time, chronic ob-
structive pulmonary disease, chronic kidney disease}. The two
models are different in terms of selected features, and the first
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Figure 3: Cost function p(s; gϑ(s)) and its contributions as a function of the
number of queried preferences (number of iterations). The green marker de-
notes the found optimal solution.

Table 3: Performance and selected features of three different classifiers.

Accuracy [%] Sensitivity [%] Specificity [%] Selected features
C1 81.91 71.80 87.88 creatinine level

cholinesterase
haemoglobin
red cell distribution width
monocytes percentage
prothrombin activity percentage
respiratory rate
PaO2-to-FiO2 ratio

C2 80.95 64.10 90.91 creatinine level
sodium level
oxygen saturation
PaO2-to-FiO2 ratio

C3 80.00 66.667 87.88 urea level
neutrophils count
age
PaO2-to-FiO2 ratio
symptoms
peripheral artery disease
neutrophil-to-lymphocyte ratio
PaO2

one outperforms the second one. However, the latter has a sim-
ilar clinical interpretability, although it contains less variables.
In this case, the clinician defines the two models as “compara-
ble”.

At iteration N = 20, the model with the following char-
acteristics is proposed and selected: acc(gϑ(s(N))) = 79.05%;
spec(gϑ(s(N))) = 64.10%; sens(gϑ(s(N))) = 87.88%; features =

{ neutrophil-to-lymphocyte ratio, white blood cells count, pro-
thrombin time, age, PaO2-to-FiO2 ratio, symptoms, chronic ob-
structive pulmonary disease, chronic kidney disease}. The pro-
cedure keeps going until Nmax = 60 iterations, but no better
models are selected. This model contains a “reasonable” num-
ber of variables, which turns out to be quite informative from a
clinical perspective. In fact, this model includes: laboratory pa-
rameters; symptom duration before hospital admission; clinical
variables as the PaO2-to-FiO2 ratio; and coexisting pathologi-
cal conditions. For the above reasons, both clinicians involved
in this study agree that this model model is better than the three
ones discussed in Section 6.2.3 and reported in Table 3.
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Figure 4: Linear correlation coefficients between pairs of features: x and y axis
represent the feature number.

Table 4: Complete list of patients’ characteristics available in the COVID-19
dataset.

Number Feature Number Feature
1 glucose level 33 prothrombin time
2 urea level 34 prothrombin activity percentage
3 creatinine level 35 prothrombin time - INR
4 sodium level 36 partial thromboplastin time
5 potassium level 37 activated partial thromboplastin time
6 chloride level 38 C-reactive protein
7 conjugated total 39 age
8 conjugated bilirubin 40 gender
9 aspartate aminotransferase 41 systolic blood pressure
10 alanine aminotransferase 42 heart rate
11 lactate dehydrogenase 43 oxygen saturation
12 creatine kinase 44 respiratory rate
13 amilase 45 temperature
14 lipase 46 PaO2-to-FiO2 ratio
15 cholinesterase 47 symptoms
16 white blood cells count 48 hypertension
17 red blood cells count 49 atrial fibrillation
18 haemoglobin 50 chronic obstructive pulmonary disease
19 hematocrit 51 dislypidemia
20 mean corpuscular volume 52 chronic kidney disease
21 mean hemoglobin concentration 53 diabetes
22 mean corpuscular hemoglobin concentration 54 malignancy (active or previously treated)
23 platelets count 55 previous stroke
24 red cell distribution width 56 peripheral artery disease
25 neutrophils percentage 57 comorbidities
26 lymphocytes percentage 58 neutrophil-to-lymphocyte ratio
27 monocytes percentage 59 coronary artery disease
28 eosinophil percentage 60 arterial pH
29 lymphocytes count 61 PaO2
30 monocytes count 62 PaCO2
31 eosinophil count 63 HCO3
32 neutrophils count 64 glasgow coma scale

7. Conclusion

A novel algorithm for active preference-based FS in classi-
fication problems has been discussed. It relies on a suitable
formulation of the FS problem based on the optimization of
a latent cost function describing the subjective opinion of an
external expert about the selected feature subset and about the
classifier performance. Since this term is not directly available
to the algorithm, a surrogate of it is iteratively trained based
on binary preferences expressed by the expert on pairs of can-
didate feature subsets. The proposed method has been tested
on both synthetic and experimental FS problems, proving its
effectiveness in selecting the relevant features. Notably, the po-
tentiality of the proposed approach has been validated by two
clinicians involved in the study dealing with predicting mor-
tality in COVID-19 pneumonia. The preliminary experimental
results are promising, in that a parsimonious and accurate solu-
tion is obtained after a relatively short exploration phase. Future
research will focus on deriving alternative parameterizations of
the surrogate function, as well as addressing the confirmation
bias issue.
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