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Abstract

The container loading problem has important industrial and commercial applications. An
increase in the number of items in a container leads to a decrease in cost. For this reason the
related optimization problem is of economic importance. In this work, a procedure based on
a nonlinear decision problem to solve the cylinder packing problem with identical diameters
is presented. This formulation is based on the fact that the centers of the cylinders have to be
inside the rectangular box defined by the base of the container (a radius far from the frontier)
and far from each other at least one diameter. With this basic premise the procedure tries to
find the maximum number of cylinder centers that satisfy these restrictions. The continuous
nature of the problem is one of the reasons that motivated this study. A comparative study
with other methods of the literature is presented and better results are achieved.
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1 Introduction

The container loading problem is a three-dimensional problem that consists of arranging items of
different sizes inside large objects, in such a way that an objective function (in general, the volume
loaded) is optimized. This problem has important industrial and commercial applications. The
goods are packed into standard containers for ease of handling so they can be transported by ship,
trucks or rail car with minimum damage. An increase in the number of items in a container
leads to a decrease in cost. For this reason the related optimization problem is of economic
importance.

In the present work we are particularly concerned with the densest packing of identical
cylinders inside a container. All cylinders are considered to have the same height. Consequently,
the problem can be solved as a two-dimensional problem where the solution method has to
present the position of the circular bases of the cylinders inside the rectangular container floor
without overlapping.

In [11] some algorithms for packing identical circles with single geometric patterns are pro-
posed. A practical application can be found in [12] where the authors present a container loading
software for a paper manufacturer. They use an heuristic method based on several patterns to
deal with the two-dimensional circle packing problem. The paper [10] is concerned with the
relationship between the way circles are packed into a rectangular box and the efficiency of the
resultant palletisation. In [7] algorithms based on Simulated Annealing are presented. Fur-
thermore, the same authors [8] propose a new upper bound for this problem. In [14] several
heuristic approaches are discussed for the problem of packing cylinders of different diameters
inside a container. A mixed integer nonlinear formulation is proposed, but the authors warn
that the associated computational effort is excessive.

In this work, we present a procedure based on a nonlinear decision problem to solve the
cylinder packing problem with identical diameters. This formulation is based on the fact that
the centers of the cylinders have to be inside the rectangular box defined by the base of the
container (a radius far from the frontier) and far from each other at least one diameter. The
computational procedure tries to find the maximum number of cylinder centers that satisfy these
constraints. A comparative study with other methods of the literature is presented and better
results are achieved.

This paper is organized as follows. Section 2 describes the nonlinear decision problem.
Section 3 is devoted to the procedure which uses the decision problem to pack as many circles
as possible. In Section 4 numerical results and a comparison with other methods are presented.
Section 5 briefly describes some extensions for packing circles into circles. The last section
contains final remarks.

2 Decision problem

The decision problem treated in this section is:

Given k circles of radio r and a rectangular box of dimension d1 × d2, whether is it
possible to locate all the circles into the box or not.
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We introduce a nonlinear model for this problem. Finding the answer for the decision problem
will depend on finding the global minimizer of a nonconvex and nonlinear optimization problem.
We also describe a solver to find first order stationary points (very likely, local minimizers) of
the introduced model and a strategy to enhance the probability of finding global minimizers.

2.1 Nonlinear formulation

We wish to place k circles of radius r into the rectangular box [0, d1] × [0, d2] in such a way
that the intersection between any pair of circles i and j, i 6= j, is at most one point, i.e.,
the circles are not overlapped. Therefore, given k, r, d1 and d2, the goal is to determine
p1, . . . , pk ∈ [r, d1 − r]× [r, d2 − r] solving the problem:

Minimize
∑

i6=j

max(0, (2r)2 − ‖pi − pj‖22)
2

subject to
r ≤ pi

1 ≤ d1 − r, and
r ≤ pi

2 ≤ d2 − r, for i = 1, . . . , k.

(1)

The points p1, . . . , pk are the centers of the desired circles. pi
1 and pi

2 represent the abscissa and
the ordinate of pi ∈ IR2, i = 1, . . . , k. If the objective function value at the global minimizer of
this problem is zero then the answer of the decision problem is YES, otherwise, the answer is
NO.

Observe that (1) is a continuous optimization problem where the objective function has
continuous first derivatives but discontinuous second derivatives. This motivates the method
used in the following section.

2.2 Regularized Hessians

The problem considered in Section 2.1 has the following general form:

Minimize Φ(x) s.t. x ∈ Ω ⊂ IRn, (2)

where

Φ(x) = f(x) +
1

2

m
∑

i=1

max{0, gi(x)}
2,

and Ω is closed and convex. In our application f(x) ≡ 0, but we would like to consider the
formulation (2) having in mind further applications. The factor 1

2 in the second term of the
objective function merely simplifies derivatives.

Assuming that gi has continuous second derivatives, it is easy to see that Φ has continuous
first (but not second) derivatives. The second derivatives of Φ are, in general, discontinuous
at the points where gi(x) = 0. This is an disadvantage for minimization algorithms based on
quadratic models, like Newton’s method, which enjoys good convergence properties. We aim to
overcome this disadvantage by means of a perturbation of the Hessian matrix of Φ in the points
where gi(x) ≤ 0 for some i. Unlike the original one, the perturbed Hessian will be continuous.
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Consider the associated problem

Minimize ψ(x, z) s.t. x ∈ Ω ⊂ IRn, (3)

where

ψ(x, z) = f(x) +
1

2

m
∑

i=1

[ gi(x) + z2
i ] 2.

In the following lemma we prove that problems (2) and (3) are equivalent. Problem (3) has
continuous second derivatives but depends on the additional variables z1, . . . , zm. We will see
that discontinuities of the second derivatives of (2) correspond to singularities of the Hessian of
the objective function of (3).

Lemma 2.1 The point x̄ ∈ Ω is a global minimizer of (2) if, and only if, there exists z̄ ∈ IRm

such that (x̄, z̄) is a global minimizer of (3). Moreover, Φ(x̄) = ψ(x̄, z̄).

Proof. See Appendix.

This equivalence motivates us to study Newton-like minimization methods for solving (3).
Problem (3) has continuous second derivatives, but it has m additional variables. Computing
the gradient of ψ, we get

∇ψ(x, z) =













∇f(x) +
∑m

i=1[gi(x) + z2
i ]∇gi(x)

2[gi(x) + z2
1 ]z1

...
2[gm(x) + z2

m]zm













,

and computing the Hessian matrix, we get

∇2ψ(x, z) =

















∇2f(x) +
∑m

i=1∇gi(x)∇gi(x)
T

+
∑m

i=1[gi(x) + z2
i ]∇2gi(x)

2z1∇g1(x) . . . 2zm∇gm(x)

2z1∇g1(x)
T 6z2

1 + 2g1(x) 0
...

. . .

2zm∇gm(x)T 0 6z2
m + 2gm(x)

















.

We shall call “good pairs” (x, z) to those pairs such that z2
i = −gi(x)

2 when gi(x) ≤ 0 and
zi = 0 when gi(x) > 0. In other words, z2

i = max{0,−gi(x)
2}. The denomination is justified

because, as it can be seen in the proof of the lemma above, whenever (x, z) is a feasible point of
(3), we can obtain a “good pair” where the functional value is not larger. If (x, z) is an iterate of
a minimization method for (3), its replacement by the corresponding good pair always represents
an improvement.

Therefore, it is interesting to compute the gradient and the Hessian of ψ at good pairs. In that
case, assuming without loss of generality that gi(x) < 0, i = 1, . . . , p, gi(x) ≥ 0, i = p+1, . . . ,m,
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we obtain

∇ψ(x, z) =













∇f(x) +
∑m

i=p+1 gi(x)∇gi(x)

0
...
0













and

∇2ψ(x, z) =







































∇2f(x) +

m
∑

i=1

∇gi(x)∇gi(x)T

+

m
∑

i=p+1

gi(x)∇2gi(x)

2
√

−g1(x)∇g1(x) . . . 2
√

−gp(x)∇gp(x) 0

2
√

−g1(x)∇g1(x)T −4g1(x) 0

...
. . . 0

2
√

−gp(x)∇gp(x)T 0 −4gp(x)

2gp+1(x) 0

0 0
. . .

0 2gm(x)







































.

Although ∇2ψ(x, z) is continuous, it is a singular matrix for all the points x such that gi(x) = 0
for some i. So, this Hessian is singular exactly at the points where the Hessian of Φ may not
exist. This confirms our previous claim on the relation between discontinuities and singularities
of the Hessians of (2) and (3).

It is interesting to interprete Newtonian iterations associated to ψ in terms of the variables
x only. We do this in the following theorem.

Theorem 2.1 Assume that (x, z) is a good pair. Assume that ∆x ∈ IRn satisfies

[∇2f(x) +
m
∑

i=p+1

[∇gi(x)∇gi(x)
T + gi(x)∇

2gi(x)]∆x = −[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)]. (4)

Then, there exists ∆z ∈ IRm such that

∇2ψ(x, z)

(

∆x
∆z

)

= −∇ψ(x, z). (5)

Proof. See Appendix.

Remarks.

(i) The theorem above shows that, essentially, a Newtonian iteration for the minimization of
ψ(x, z) followed by a restoration z2

i ← max{0,−gi(x)
2} is equivalent to a Newton iteration

for minimizing Φ(x) provided that we define

∇2 max{0, gi(x)}
2 = ∇2[gi(x)

2], if gi(x) = 0.

In this way, we defined the Hessian at the points where it does not exist.
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(ii) The singularity of ∇2ψ(x, z) corresponds to the discontinuity of ∇2Φ(x).

These observations motivate the study of perturbations of the Newtonian system that eliminate
the essential singularity. Using appropriate perturbations of singular matrices in order to improve
conditioning and solvability is a common device in numerical linear algebra. Accordingly, we
define the regularized Hessian ∇2ψ(x, z, ε) for all good (x, z) and ε > 0 as follows:

∇2ψ(x, z, ε) =







































∇2f(x) +

m
∑

i=1

∇gi(x)∇gi(x)T

+

m
∑

i=p+1

gi(x)∇2gi(x)

2
√

−g1(x)∇g1(x) . . . 2
√

−gp(x)∇gp(x) 0

2
√

−g1(x)∇g1(x)T −4g1(x) + 2ε 0

...
. . . 0

2
√

−gp(x)∇gp(x)T 0 −4gp(x) + 2ε

2gp+1(x) + 2ε 0

0 0
. . .

0 2gm(x) + 2ε







































.

The following theorem, in analogy to Theorem 2.1, relates perturbed Newtonian iterations
corresponding to the minimization of ψ to perturbed (regularized) iterations related to the min-
imization of Φ.

Theorem 2.2. Assume that (x, z) is a good pair. Assume that ∆x satisfies

{∇2f(x) +
p
∑

i=1

ε

ε− 2gi(x)
∇gi(x)∇gi(x)

T +
m
∑

i=p+1

[∇gi(x)∇gi(x)
T + gi(x)∇

2gi(x)]}∆x =

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)].

(6)

Then, there exists ∆z ∈ IRm such that

∇2ψ(x, z, ε)

(

∆x
∆z

)

= −∇ψ(x, z). (7)

Proof. See Appendix.

Remarks.

(i) Unlike Theorem 2.1, in Theorem 2.2 we see that the ∆z-part of the solution of (7) is
uniquely determined. This is due to the regularizing perturbation. Defining, as before,

∇2 max{0, gi(x)}
2 = ∇2[gi(x)

2]
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when gi(x) = 0, the system (6) can be written as

{∇2[f(x) +
1

2

m
∑

i=1

max{0, gi(x)}
2] +

p
∑

i=1

ε

ε− 2gi(x)
∇gi(x)∇gi(x)

T }∆x =

−∇[f(x) +
1

2

m
∑

i=1

max{0, gi(x)}
2]

or, equivalently,

[∇2Φ(x) +
p
∑

i=1

ε

ε− 2gi(x)
∇gi(x)∇gi(x)

T ]∆x = −∇Φ(x). (8)

(ii) Observe that the perturbation related to gi, i ≤ p, of ∇2Φ(x) tends to ∇gi(x)∇gi(x)
T

when gi(x)→ 0 and tends to 0 as gi(x) tends to −∞. The perturbation matrix is positive
semidefinite, therefore it adds stability to the system. Finally the iteration (8) do not
exhibit discontinuities on the boundaries gi(x) = 0.

The reasoning above leads us to define the Regularized Hessian of Φ as

∇2Φ(x, ε) = ∇2Φ(x) +
p
∑

i=1

ε

ε− 2gi(x)
∇gi(x)∇gi(x)

T . (9)

Since the perturbation is positive semidefinite, the perturbed Hessian is positive semidefinite
provided that ∇2Φ(x) is. This is an advantage for minimization algorithms based on quadratic
models.

For solving
Minimize Φ(x) s.t. x ∈ Ω

iterative methods are used. At each iteration k a Hessian approximation Bk is usually needed. In
this work, based on the considerations above, we will use the regularized Hessian approximations
given by formula (9). Experiments confirm that this is more stable than merely using ∇2Φ(x).

2.3 Nonlinear optimizer

The method briefly described in this section deals with the minimization of a smooth function
ϕ : IRn → IR with bounds on the variables. The feasible set is defined by {x ∈ IRn | ℓ ≤ x ≤ u}
and the problem is:

Minimize ϕ(x) subject to l ≤ x ≤ u. (10)

GENCAN [4] is a recently introduced active-set method for smooth box-constrained mini-
mization. For a description of basic techniques of continuous optimization and active-set meth-
ods see, for example, [9] and [16] (pp. 326–330). GENCAN adopts the leaving-face criterion of
[3], that employs the spectral projected gradients defined in [5, 6]. For the internal-to-the-face
minimization it uses a general algorithm with a line search that combines backtracking and ex-
trapolation. In the present form, GENCAN uses, for the direction chosen at each step inside the
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faces, a truncated-Newton approach. This means that the search vector is an approximate min-
imizer of the quadratic approximation of the function in the current face. Conjugate gradients
are used to find this direction. The method is fully described in [4] where extensive numerical
experiments assess its reliability.

In this application, the truncated-Newton approach uses as Hessian approximations the reg-
ularized Hessian approximations defined in the previous section. GENCAN with the regularized
Hessian turned out to be much more efficient than the same method using the discontinuous
Hessian. Satisfactory results were obtaining with ε = 0.01.

2.4 Solving the decision problem

The method described in the previous subsection finds first-order stationary points (very likely,
local minimizers) of problem (10). To enhance the probability of finding a global minimizer, the
method is started from many randomly generated initial guesses. With probability 1, eventually,
the method will start from an initial guess in the basin of convergence of a global minimizer.
Nevertheless, this framework has two drawbacks: (i) we do not want to wait an infinite time;
and (ii) unless we have an a priori knowledge of the optimal cost of problem (1) at the global
minimizer, we will not be able to distinguish the global minimizer from other stationary points.

In practice, we run the method starting from N different initial guesses. If a solution with
optimal cost equal to zero is found then the answer for the decision problem is YES, else the
answer is “we do not know” and we assume it is NO. The fluxogram in Figure 1 shows this
strategy.

3 Packing as many circles as possible

In the previous section we described a strategy to answer the question of whether is it possible
packing k circles into the box or not. In order to pack as many circles as possible, we act as
follows.

We start trying to pack just one circle and ask to the decision problem whether this is possible
or not. While the answer is YES we try once more. If the answer is NO, we stop. The diagram
of Figure 2 sketches this strategy. In the figure, n is the number of circles we were able to pack.
Note that it is not necessary to start trying to pack just one circle if it is known that the answer
for the decision problem with, say, k = k̄ is YES. In such a case, it is enough to start from k̄+1.

4 Numerical experiments

All the experiments were run on a Sun SparcStation 20 with the following main characteristics:
128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops. Codes are in Fortran77 and the compiler
option adopted was “-O4”.

Looking for a global minimizer of the decision problems (1) (see Figure 1) we set N = 50, 000,
which means that we run the local-minimization solver from 50,000 different initial guesses or
until we find a global minimizer (detected by its null functional cost).
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Decision problem 

with k circles

t ← 00

t  <  N

t ← t + 1

Generate an

initial guess

Solve problem (1)

with k circles

Null  

optimal cost 

ANSWER ← YES

Return ANSWER

ANSWER ← NO

YES

NO

NO

YES

Figure 1: Solving the decision problem.

For each trial t (see Figure 1) the initial guess was generated as follows. Random points
pi ∈ IR2 were generated inside the feasible region of problem (1). The random numbers where
generated in the order p1

1, p
1
2, p

2
1, p

2
2, p

3
1, p

3
2, . . . and the Schrage’s random number generator [18]

(double precision version) with seed t was used for a machine-independent generation of random
numbers.

The first set of problems consists of 3 problems taken from [11]. The description of the
problems, the number of packed cylinders presented in [11] and by the new method (called
GENPACK from now on), and some figures which help to have an idea of the computational
effort of GENPACK, are shown in Table 1. In the table, NDPS means “number of decision
problems solved”and Time is the CPU time in seconds used to solve all these decision problems.
The other columns are self-explanatory. Observe that, for the third problem, we were able to
pack more circles than [11]. Figure 3 shows the solution. Note that no clear pattern is detected
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General strategy

k ← 11

k ← k + 1

Solve the

decision problem

for k circles

End

ANSWER = YES

YES

NO
n ← k − 1

Figure 2: General scheme for the cylinder packing problem.

and that this kind of packing was not considered at all in [11].

Problem Number of packed circles GENPACK figures
Name Box dimensions Circle radius In [11] By GENPACK NDPS Time

1 1200 × 800 102 22 22 5 0.32
2 1200 × 800 101 23 23 32 3.51
3 471 × 196 14 124 126 289 1824.85

Table 1: Performance of GENPACK for the problems presented in [11].

The second set of problems was taken from [7, 8] and is described in Table 2. As mentioned
in [7, 8], the test instances were generated such as to be representative of three possible relations
between the rectangular box and the circle area: in problems 1.x, 2.x, 3.x, 4.x and 5.x, the
circle area is approximately 1%, 2.5%, 5%, 10% and 15% of the rectangular box, respectively.
In terms of the box shape, problems x.1, x.2, x.3 are long-rectangular, problems x.4, x.5, x.6 are
short-rectangular and problems x.7, x.8, x.9 are squares.

As it can be shown in Table 2, many results for problems in subsets 1.x and 2.x were
improved. Both subsets seems to be the harder ones, as mentioned in [7]. The reason for which
no problems from subsets 3.x, 4.x and 5.x were improved is because, probably, since these are
easier problems, the number of cylinders packed in [7] are the optimal ones. Figure 4 shows the
packings found for the 6 improved problems of this second set.
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Figure 3: 126 circles of radius 14 packed in a box of dimension 471 × 196. In [11] a suboptimal
solution with 124 circles was reported.

5 An extension: packing circles into circles

The methodology can be extended for packing identical circles into a circle of radius ∆, instead
of a rectangular box. The decision problem (1) becomes

Minimize
∑

i6=j

max(0, (2r)2 − ‖pi − pj‖22)
2

subject to
‖pi‖22 ≤ (∆ − r)2, for i = 1, . . . , k.

(11)

Problem (11) is not a bound-constrained problem, but a convex-constrained one. In such case,
the bound-constrained solver GENCAN is not applicable any more and another solver, like SPG
[5, 6] can be used. See also [1, 2] for other applications of SPG.

In [15] a similar problem is treated. The radio ∆ of the circular box and the number l of
circles that must be packed are fixed, and the problem is to determine the maximum radius of
the identical circles to be packed. Optimal radius r∗l for this problem with l = 1, . . . , 65 and the
centers of the l circles inside a circular box of unity radius are known (see, for example, [15]).
For websites of this and related problems see [19, 17, 13] and the references therein.

If we consider circular boxes of fixed radius 1+ r∗l and circular objects of radius r∗l , we know
that at least l circles can be packed, i.e., the answer of the decision problem (11) with ∆ = 1+r∗l ,
r = r∗l , and k = l is YES. In other words, a solution of the problem of maximizing the radius of
the objects to be packed provides a lower bound for the problem of maximizing the number of
packed objects. Both problems are not equivalent as 7 circles of radius r∗6 can be packed into a
circular box of radius 1 + r∗6 (see [15]).

Table 3 shows the main characteristics of 3 problems taken from [15] and the performance of
GENPACK (combined with SPG for solving the nonlinear decision subproblems (11)). Figure 5
illustrates the packings found.

The decision problems (1) and (11), for packing circles into rectangles and circles into circles,
respectively, can also be extended to considerer k non-identical circles with radius r1, r2, . . . , rk

11



(a) (b) (c)

(d) (e) (f)

Figure 4: Problems (a), (b), (c), (d), (e) and (f) correspond to problems 1.1, 1.3, 1.8, 1.9, 2.5
and 2.9 from [7], respectively. In problems 1.1, 1.3, 1.8, 1.9 and 2.9 one more circle was packed.
In problem 2.5 two more circles were packed.

as follows:
Minimize

∑

i6=j

max(0, (ri + rj)2 − ‖pi − pj‖22)
2

subject to
ri ≤ pi

1 ≤ d1 − r
i, and

ri ≤ pi
2 ≤ d2 − r

i, for i = 1, . . . , k;

(12)

and
Minimize

∑

i6=j

max(0, (ri + rj)2 − ‖pi − pj‖22)
2

subject to
‖pi‖22 ≤ (∆− ri)2, for i = 1, . . . , k.

(13)

6 Final remarks

This work presented a methodology, based on a nonlinear decision problem, to solve the problem
of packing identical circles into a rectangular box. The numerical results show that this is a
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(a) (b) (c)

Figure 5: Some examples of packing circles into circles.

promising approach. It should be noted that, in principle, the problem is not concerned with the
geometrical complexity of the solution. If an application imposes restrictions to the distribution
of the circles, these constraints may be taken into account by means of an adequate nonlinear
programming reformulation.

A common criticism against piecewise defined models in practical optimization is the lack
of second derivatives in the boundary that separates the regions where the objective function
“changes” its analytical definition. In this paper we proposed a way of overcoming this difficulty
by means of a regularization of the Hessian. Unlike the original one, the regularized Hessian is
continuous. This ensures more stability of the iterations.

The introduced model was also extended for packing identical circles into circles and non-
identical circles into rectangles and circles. In the later cases, the scheme on Figure 1 for solving
the decision problem is applicable. On the other hand, it is not clear which decision problems
should be solved in order to maximize the used area. Some heuristics approach may be devel-
oped. This requires further research.
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Problem Number of packed circles GENPACK figures
Name Box dimensions Circle radius In [7] By GENPACK NDPS Time

1.1 160 × 80 6 90 91 61 734.05
1.2 100 × 200 8 84 84 4304 5791.83
1.3 120 × 240 10 73 74 2723 4065.91
1.4 100 × 80 5 86 86 27987 37108.39
1.5 120 × 80 6 68 68 16 23.35
1.6 120 × 100 6 87 87 864 2273.14
1.7 80 × 80 5 68 68 16794 12336.67
1.8 100 × 100 6 70 71 80 225.57
1.9 120 × 120 7 73 74 5 18.53
2.1 160 × 80 10 32 32 2 0.67
2.2 100 × 200 13 29 29 11 2.51
2.3 120 × 240 15 32 32 1 0.42
2.4 100 × 80 8 32 32 2016 232.45
2.5 120 × 80 9 28 30 25 3.12
2.6 120 × 100 10 30 30 12 1.42
2.7 80 × 80 7 32 32 10 7.91
2.8 100 × 100 9 30 30 1 0.18
2.9 120 × 120 11 29 30 33 11.21
3.1 160 × 80 14 15 15 2 0.02
3.2 100 × 200 18 15 15 26 0.41
3.3 120 × 240 21 15 15 1 0.01
3.4 100 × 80 11 16 16 30 0.75
3.5 120 × 80 12 15 15 1 0.01
3.6 120 × 100 14 14 14 17 0.30
3.7 80 × 80 10 16 16 2 0.03
3.8 100 × 100 13 13 13 1 0.02
3.9 120 × 120 15 16 16 2 0.04
4.1 160 × 80 20 8 8 1 0.04
4.2 100 × 200 25 8 8 1 0.11
4.3 120 × 240 30 8 8 1 0.11
4.4 100 × 80 16 6 6 1 0.00
4.5 120 × 80 17 7 7 1 0.00
4.6 120 × 100 20 6 6 1 0.01
4.7 80 × 80 14 6 6 1 0.00
4.8 100 × 100 18 6 6 1 0.00
4.9 120 × 120 21 6 6 1 0.00
5.1 160 × 80 25 3 3 1 0.00
5.2 100 × 200 31 3 3 1 0.00
5.3 120 × 240 37 3 3 1 0.00
5.4 100 × 80 19 4 4 1 0.00
5.5 120 × 80 21 4 4 1 0.00
5.6 120 × 100 24 4 4 1 0.00
5.7 80 × 80 17 4 4 1 0.00
5.8 100 × 100 22 4 4 1 0.00
5.9 120 × 120 26 4 4 1 0.00

Table 2: Performance of GENPACK for the problems presented in [7].
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Problem Number of packed circles GENPACK figures
Name Circular box radius Circles radius In [14] By GENPACK NDPS Time

1 1.1632960610 0.1632960610 40 40 1 5.23
2 1.1439363515 0.1439363515 50 50 332 456.11
3 1.1307835795 0.1307835795 60 60 155 363.62

Table 3: Performance of GENPACK for packing circles into circles.
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Appendix

Proof of Lemma 2.1. Assume that x ∈ Ω. Define

zi =

{

√

−gi(x), if gi(x) ≤ 0,
0, otherwise.

Then, Φ(x) = ψ(x, z). Conversely, assume that x ∈ Ω, z ∈ IRm. Replacing z by z′ where

z′i =

{

√

−gi(x), if gi(x) ≤ 0,
0, otherwise,

we obtain that
Φ(x) = ψ(x, z′) ≤ ψ(x, z).

Therefore, the thesis is proved. 2

Proof of Theorem 2.1. Let us analyze the set of solutions of the Newtonian linear system
(5). Those solutions should satisfy

∇2f(x) +
m
∑

i=1

∇gi(x)∇gi(x)
T +

m
∑

i=p+1

gi(x)∇
2gi(x)]∆x+ 2

p
∑

i=1

√

−gi(x)∇gi(x)∆zi =

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)],

√

−gi(x)∇gi(x)
T ∆x− 2gi(x)∆zi = 0, i = 1, . . . , p,

and
gi(x)∆zi = 0, i = p+ 1, . . . ,m.

So, regrouping the first block and dividing the second block by
√

−gi(x) > 0, we see that the
solutions of (5) are the pairs (∆x,∆z) that satisfy

{∇2f(x) +
m
∑

i=p+1

[∇gi(x)∇gi(x)
T + gi(x)∇

2gi(x)]}∆x+
p
∑

i=1

∇gi(x)[∇gi(x)
T ∆x+ 2

√

−gi(x)∆zi] =

−[∇f(x) +
p+1
∑

i=1

gi(x)∇gi(x)],
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∇gi(x)
T ∆x+ 2

√

−gi(x)∆zi = 0, i = 1, . . . , p,

and
gi(x)∆zi = 0, i = p+ 1, . . . ,m.

So, the solutions of (5) are the pairs (∆x,∆z) that satisfy

{∇2f(x) +
m
∑

i=p+1

[∇gi(x)∇gi(x)
T + gi(x)∇

2gi(x)]}∆x = −[∇f(x) +
p+1
∑

i=1

gi(x)∇gi(x)], (14)

∇gi(x)
T ∆x+ 2

√

−gi(x)∆zi = 0, i = 1, . . . , p, (15)

and
gi(x)∆zi = 0, i = p+ 1, . . . ,m. (16)

Since ∆x satisfies the first block of the above equations, it turns out that the theorem is proved
if we are able to compute the solution with ∆z satisfying the second and the third block. This
can be trivially done, for example, defining

∆zi =
−∇gi(x)

T ∆x

2
√

−gi(x)
, i = 1, . . . , p,

∆zi = 0, i = p+ 1, . . . ,m.

So, the theorem is proved. 2

Remark. Observe that the choice ∆zi = 0 for i > p is not unique in the case that gi(x) = 0.
This is the case in which the Hessian of ψ(x, z) is singular. So, the theorem proves that the
existence of the Newtonian direction for ψ depends only on the existence of a solution of the
first block of equations (14). When the Newtonian system of ψ is singular and ∆x exists, there
are infinitely many solutions for each i such that gi(x) = 0, and these solutions are due to the
freedom in the choice of ∆zi.

Proof of Theorem 2.2. As in Theorem 2.1, let us analyze the set of solutions of system (7).
Those solutions should satisfy

[∇2f(x) +
m
∑

i=1

∇gi(x)∇gi(x)
T +

m
∑

i=p+1

gi(x)∇
2gi(x)]∆x+ 2

p
∑

i=1

√

−gi(x)∇gi(x)∆zi =

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)],

√

−gi(x)∇gi(x)
T ∆x+ [ε− 2gi(x)]∆zi = 0, i = 1, . . . , p,

[gi(x) + ε]∆zi = 0, i = p+ 1, . . . ,m.

Therefore, ∆zi = 0 for all i = p+1, . . . ,m. Moreover, the second block of equations is equivalent
to

∆zi =

√

−gi(x)∇gi(x)
T ∆x

2gi(x)− ε
, i = 1, . . . , p.
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Replacing ∆zi in the first block, we obtain:

[∇2f(x) +
m
∑

i=1

∇gi(x)∇gi(x)
T +

m
∑

i=p+1

gi(x)∇
2gi(x)]∆x+ 2

p
∑

i=1

(−gi(x)∇gi(x)∇gi(x)
T )∆x

2gi(x)− ε
=

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)].

Therefore,

{∇2f(x) +
p
∑

i=1

[1−
2gi(x)

2gi(x)− ε
]∇gi(x)∇gi(x)

T +
m
∑

i=p+1

∇gi(x)∇gi(x)
T +

m
∑

i=p+1

gi(x)∇
2gi(x)}∆x =

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)].

But

1−
2gi(x)

2gi(x)− ε
=

ε

ε− 2gi(x)
,

therefore this block of equations is equivalent to

[∇2f(x) +
p
∑

i=1

ε

ε− 2gi(x)
∇gi(x)∇gi(x)

T +
m
∑

i=p+1

∇gi(x)∇gi(x)
T + gi(x)∇

2gi(x)]∆x =

−[∇f(x) +
m
∑

i=p+1

gi(x)∇gi(x)].

This completes the proof. 2
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