
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Montréal 
Octobre 2002 

 
 
 
 
© 2002 Jawad Abrache, Teodor Gabriel Crainic, Michel Gendreau. Tous droits réservés. All rights reserved. 
Reproduction partielle permise avec citation du document source, incluant la notice ©. 
Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. 
 
 
 

 

 
Série Scientifique 
Scientific Series 

 
  2002s-84  
 

Models for Bundle Trading in 
Financial Markets 

 
Jawad Abrache, Teodor Gabriel Crainic, 

Michel Gendreau 



CIRANO 

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le 
financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-
membres, d’une subvention d’infrastructure du ministère de la Recherche, de la Science et de la Technologie, de 
même que des subventions et mandats obtenus par ses équipes de recherche. 

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and 
research activities are funded through fees paid by member organizations, an infrastructure grant from the 
Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its 
research teams. 

Les organisations-partenaires / The Partner Organizations 

•École des Hautes Études Commerciales 
•École Polytechnique de Montréal 
•Université Concordia 
•Université de Montréal 
•Université du Québec à Montréal 
•Université Laval 
•Université McGill 
•Ministère des Finances du Québec 
•MRST 
•Alcan inc. 
•AXA Canada 
•Banque du Canada 
•Banque Laurentienne du Canada 
•Banque Nationale du Canada 
•Banque Royale du Canada 
•Bell Canada 
•Bombardier 
•Bourse de Montréal 
•Développement des ressources humaines Canada (DRHC) 
•Fédération des caisses Desjardins du Québec 
•Hydro-Québec 
•Industrie Canada 
•Pratt & Whitney Canada Inc. 
•Raymond Chabot Grant Thornton 
•Ville de Montréal 
 

 
 
 

 
ISSN 1198-8177 

Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au 
CIRANO afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications 
scientifiques. Les idées et les opinions émises sont sous l’unique responsabilité des auteurs et ne 
représentent pas nécessairement les positions du CIRANO ou de ses partenaires. 
This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. 
The observations and viewpoints expressed are the sole responsibility of the authors. They do not 
necessarily represent positions of CIRANO or its partners. 



Models for Bundle Trading in Financial Markets 

 
 

Jawad Abrache†, Teodor Gabriel Crainic‡, Michel Gendreau* 
 

 
 

Résumé / Abstract 
 
 

Une nouvelle tendance dans les marchés financiers consiste à transiger des valeurs financières 
sous forme d’ordres composites d’achat et de vente. Nous proposons une nouvelle formulation 
basée sur les ordres composites du problème d’allocation de valeurs financières. Notre modèle, 
comparativement à ceux de la littérature, permet une représentation plus détaillée des 
portefeuilles financiers et la formulation de nouvelles contraintes transactionnelles. Nous 
présentons en outre une procédure de discrimination d’ordres équivalents sur la base de leur 
temps de soumission. Les résultats numériques de notre étude permettent d’évaluer 
empiriquement l’effet « ordres composites », ainsi que la flexibilité et la complexité numérique 
de notre formulation. 
 
Bundle trading is a new trend in financial markets that allows traders to submit consolidated 
orders to sell and buy packages of assets. We propose a new formulation for portfolio bundle 
trading that extends the previous models of the literature through a more detailed representation 
of portfolios and the formulation of new bidding requirements. We also present post-optimality 
tie-breaking procedures intended to discriminate equivalent orders on the basis of their 
submission times. Numerical results evaluate the “bundle” effect as well as the bidding 
flexibility and the computational complexity of our formulation. 
 
 

Mots clés: Mécanisme d’enchères, marchés financiers, ordres composites, 
procédures de discrimination. 

  
Keywords: Auction Design, Financial Markets, Bundle Trading, Discrimination 

Procedures. 

                                                 
† Département d’informatique et recherche opérationnelle, Université de Montréal, Centre de recherche sur les 

transports, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Canada, H3C 3J7, 
jawad@crt.umontreal.ca. 

‡ Département management et technologie, Université du Québec à Montréal, Centre de recherche sur les transports, 
Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Canada, H3C 3J7, CIRANO, 
theo@crt.umontreal.ca. 

* Département d’informatique et recherche opérationnelle, Université de Montréal, Centre de recherche sur les 
transports, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Canada, H3C 3J7, CIRANO, 
michelg@crt.umontreal.ca. 



1 Introduction

The emergence of the Internet as a quasi universal medium for trading goods and services has
changed in an unpreceded manner the way financial services are offered. The most obvious
manifestation of these changes is the phenomenal growth in popularity of online asset trading.
More and more individuals and corporate investors have now access to a wide selection of
cyber-brokerages that set themselves as an alternative to full-service brokers, a fact that
has greatly enhanced competitiveness in the financial services industry and contributed to
increase the quality of service and to lower transaction costs.

The most significant changes, however, were probably those that impacted the financial
marketplaces themselves. Traditional models of stock markets, which are generally specialist-
run, on-the-floor exchanges (the NYSE model), or market-maker, over-the-counter auctions
(the NASDAQ model), faced the challenge of Electronic Communications Networks (ECNs).
The ECNs are fully-automated, computerized networks that can efficiently match sell and
buy orders of financial assets, while offering customers several advantages such as anonymous
access and after-hour trading. For traditional financial marketplaces, structural changes
(mergers, strategic alliances, etc.) and, most importantly, re-organization of internal policies
and procedures were necessary actions for survival. Meanwhile, we witnessed a ressurging
interest in auction-based mechanism design for financial marketplaces (e.g., Domowitz 1990
and Madhavan 1992), which seems to reflect a growing awareness that innovative and efficient
market mechanisms are key to successful financial marketplaces.

One of the most critical design issues financial marketplaces need to consider is making their
procedures reflect as much as possible the bidding needs and requirements of their users.
Unfortunately, there is still a large gap between market procedures and what traders may
actually want to do in most cases. For instance, while financial portfolios tend to be increas-
ingly more diversified, comprising notably stocks, futures, bonds, and foreign currencies of
different kinds, the current organization of financial marketplaces remains heavily sectoral.
This fact, combined with the lack of institutionalized links between different marketplaces,
increases the dependency of traders with large portfolios on brokerage institutions. More-
over, the fact that most financial marketplaces trade assets on an individual basis makes it
difficult for investors to maintain a precise and timely control of the composition of their
portfolios. In that regard, a market mechanism based on bundle trading, which would allow
traders to submit consolidated orders to sell and buy different quantities of various assets,
such that the whole packages are traded, or nothing at all, would be an extremely interesting
feature.

Bundle trading is not, strictly speaking, a new concept in financial markets, as its origins
could be traced to Markowitz’s seminal paper (Markowitz 1952) setting the foundations of
modern portfolio selection theory. It is not specific to financial markets, either, since it
may be encountered in many other contexts where items of different physical nature are
traded and the traders’ valuations of a given item depend on whether or not other items
are traded as well. In all generality, item interdependency takes two basic forms: two

1



items A and B are complementary if the trader’s valuation of the bundle {A,B} is greater
than the valuations of A and B taken separately; they are substitutable if the valuation
of {A,B} is lower than the valuations of A and B taken separately. The well-known and
focal exposure problem (see Rothkopf, Pekeč, and Harstad 1998, for instance) may arise in
parallel, combined negotiations in which complementarity effects prevail: one may lose on
one item in a desired bundle. Traders are then brought to bid strategically in single-item
based auctions, which often results in socially inefficient outcomes. Combinatorial bidding,
where bids and allocations are based on bundle of items, alleviates the problem by allowing
traders to reflect directly their preferences in the bids they submit.

Other than solving the exposure problem, bundle trading in financial markets has many
other potential benefits, that include:

1. Opportunities for cumulative aggregation of value. By submitting consolidated orders,
a trader could combine trade orders with very competitive prices (for highly sought-
after assets it desires to sell, for instance) and orders with less competitive prices. Even
without taking complementarity effects into consideration, the trader will obviously
increase its chances of executing all its orders. Srinivasan, Stallaert, and Whinston
(1998) illustrate cumulative value aggregation in Table 1. Here, the trader builds its
ask-offer prices on the basis of the last trading day closure prices. If trading were to
be done asset by asset, the trader’s portfolio would remain over-exposed in the car
industry sector and under-exposed in the technology sector. Bundle trading, on the
other hand, permits to completely balance the portfolio, even with respect to the worst
prices of the day.

Stock Quantity Yesterday’s Today’s price Worst price Trade
close price range executed?

IBM +100 74 3/4 75 1/8 - 75 5/8 75 5/8 no
Microsoft +200 148 144 1/4 - 146 3/4 146 3/4 yes
Cisco +50 76 1/8 75 - 76 1/4 76 1/4 yes
GM -200 84 1/4 84 1/2 - 85 3/4 84 1/2 yes
Ford -100 122 1/2 121 3/8 - 122 3/8 121 3/8 no
Chrysler -50 99 98 3/4 - 102 1/2 98 3/4 yes
Bundle 6831 1/4 6750 yes

Table 1: Example of portfolio bundle trading

2. Bundle trading often involves large packages of assets, bringing more liquidity to the
marketplace. Concerning this aspect, Popper (1995) reports that, according to brokers’
estimates in the UK, the majority of bundle trades customers ask them to realize are
worth between $15M and $80M, and huge transactions involving packages of $1B and
more are encountered from time to time.

3. Bundle trading should lower commission and transaction fees. Since fund managers
and private traders will be able to submit directly their orders to the market, they
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will be less dependent on intermediaries. Moreover, end users retain the largest part
of execution risks, and commissions should be lower. Finally, bundle trading generates
fewer orders, which means lower operation and administrative costs.

Recent years have seen growing interest in developing and implementing financial market
mechanisms based on bundle trading. Among these efforts, Srinivasan, Stallaert, and Whin-
ston (1998) propose a bundle trading market mechanism based on a simple market clearing
linear programming formulation. They also discuss the qualitative advantages of bundle trad-
ing mechanisms over elaborate trading mechanisms based on single-asset orders, naming the
OptiMark Trading System (http://www.optimark.com) as an example. Fan, Stallaert, and
Whinston (1998, 1999) present FBTS, which is an experimental web-based bundle trading
system employing a real-time order matching and execution mechanism. Bossaerts, Fine, and
Ledyard (2000) exhibit another advantage of portfolio bundle trading mechanisms. Starting
from the observation that thin financial markets often fail to fully equilibrate due to a lack
of liquidity (according to the maximum reward/risk ratio criterion of the well-known Capital
Asset Pricing Model, Sharpe 1964), the authors experimentally show that implementing a
portfolio bundle trading mechanism can “induce” extra liquidity in the market and boost
equilibration. Finally, Polk and Schulman (2000) analyze specifically the bond market con-
text and conclude that a proper use of the combined-value logic inherent to bundle trading
mechanisms enhances liquidity in that kind of markets.

Generally speaking, bundle trading market mechanisms for financial markets consist of
matching algorithms based on simple linear programming formulations to compute alloca-
tions and determine payments participants make or receive, such that the economic surplus
of the market is maximized. However, these early models are arguably not sophisticated
enough to allow traders to control with flexibility the composition of their portfolios after
the trade. For example, no known financial e-market model would permit a trader to in-
dicate its willingness to trade a bundle A or a “substitutable” bundle B, but not both of
them. Another aspect on which the literature has been quite elusive is the post-optimality
discrimination of the solutions, when multiple optimal allocations and prices exist. These
two issues therefore constitute the core contribution of the present paper. We propose a
bundle trading market clearing model in which we introduce new categories of constraints
representing various order execution requirements of the traders. We will not try to address
the full complexity of a complete bidding vocabulary, but only consider a number of bidding
requirements that have special interest in the context of financial markets such as setting
limitations on volumes of assets traded in a portfolio, requiring minimal proportions of bun-
dles to be traded, and defining exclusive OR relations between traded bundles. We also
present post-optimality tie-breaking procedures intended to discriminate optimal allocations
and prices with respect to an “ethical” criterion. Experimental results analyze empirically
bundle trading effects from the perspective of economic surplus. They also verify the im-
pact of bidding requirements introduced in our market clearing formulations on allocation
complexity and solution times.

The article is organized as follows. In Section 2, we present our market clearing formula-
tions and use dual information to compute acceptable market prices in the continuous case.
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In Section 3, we introduce allocation and price discrimination procedures and prove their
validity. Section 4 is devoted to an experimental study. Finally, Section 5 sums up our
contribution and discusses directions for future research.

2 Portfolio Bundle Trading Market Mechanisms

Bundle trading is best motivated in the context of “end-of-day” re-balancing of financial
portfolios. Traders, which are private investors or professional managers of portfolios, need to
simultaneously sell and buy various financial assets (stocks, futures, bonds, foreign currencies,
etc.) to reflect customer or company guidelines concerning the composition of their portfolios.
The structure of current financial marketplaces is nonetheless not well suited to re-balance
portfolios, having been designed with other purposes in mind. Hence, traders that want to re-
balance their portfolios must be involved in several “combined negotiations”, possibly across
different marketplaces, and submit bids that are good enough to ensure all the corresponding
single-asset trade orders are executed. This practice typically induces important transaction
costs, a burdensome and complex strategic analysis, and most importantly, a significant risk
to end up with unbalanced portfolios.

Many-to-many, auction-based e-markets that rely on bundle trading offer an interesting al-
ternative. In this market model, traders that are willing to re-balance their portfolios register
in an electronic marketplace. A market maker, which may be a human or a virtual soft-
ware agent, organizes a single-round auction between traders in which it acts as a mediator.
Traders submit to the market sealed bundle orders to simultaneously sell and buy different
assets, along with maximum prices they are willing to pay or receive if these orders are
executed. When they submit their trade orders, traders understand and accept that the
market maker may only execute proportions of these orders. After it receives all the orders,
the market maker invokes a market clearing mechanism, which consists in an optimization
model and an algorithm that solve two problems: the allocation problem and the pricing
problem. The allocation problem consists in determining many-to-many sell and buy as-
sociations between the traders (matching the bundle orders) and the executed proportion
of each order, whereas the pricing problem consists in determining acceptable prices that
traders will pay or receive when the trade is completed.

2.1 The allocation problem

Prior to presenting formulations of the market clearing allocation problem, we introduce
some basic notation and definitions.

Let

4



• I= the set of assets traded in the market; and

• K= the set of traders.

Definition 1 (Bundle Order) A bundle order j defined by trader k ∈ K is submitted to the
market as a vector Oj = ({qji}i∈I , pj) where:

• qji is the maximum volume of asset i ∈ I that may be traded in order j; qji > 0
corresponds to a buy order, qji < 0 to a sell order, and qji = 0 if asset i is not traded
in order j;

• pj is the maximum (minimum) price trader k is willing to pay (receive) if order j is
entirely executed; pj > 0 if the trader is willing to pay pj, pj < 0 if the trader is willing
to receive −pj, and pj = 0 if the trade is balanced.

A bundle order j is said to be executed in a trade if a positive proportion of the maximum
volumes qji, i ∈ I, requested in order j is traded.

Let also define

• Jk= the set of bundle orders formulated by trader k ∈ K;

• J =
⋃
k∈K Jk= the set of all bundle orders formulated by traders.

2.1.1 The basic formulation

The basic formulation of the allocation problem considers only a minimal set of constraints
that express the physical conservation of assets in the trade. Decision variables are:

xj= the traded proportion of bundle order j, j ∈ Jk, k ∈ K.

The allocation problem corresponds in this case to optimization model (M1):

max
∑

k∈K

∑

j∈Jk

pjxj (1)

s.t.
∑

k∈K

∑

j∈Jk

qjixj = 0, i ∈ I (2)

xj ≤ 1, j ∈ Jk, k ∈ K (3)

xj ≥ 0, j ∈ Jk, k ∈ K (4)
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Model (M1) is very similar to bundle order matching formulations already proposed by Srini-
vasan, Stallaert, and Whinston (1998) and Fan, Stallaert, and Whinston (1998). Constraints
(2) express the balance of the market: the volume of an asset i ∈ I that is sold in bundle
orders equals the volume that is bought. Constraints (3) define valid traded proportions.
The objective reflects the market maker’s desire to seek the maximum market surplus, so
that highly-priced buy orders (bundle orders with positive limit prices) and lowly-priced sell
orders (bundle orders with negative limit prices) are given high execution priority.

2.1.2 Extensions

The only element considered thus far in the formulation of the allocation problem from the
trader side is the definition of the basic bundle order structure, that is the specification of
the maximum volumes of assets to sell and buy, and the limit prices the trader is ready to
pay or receive if the order is executed. However, it can safely be assumed that traders would
need to formulate more complex trading conditions and requirements. In their simplest form,
these requirements directly reflect traders’ valuations of single assets and bundles translating,
in particular, various complementarity and substitutability relationships. They could also
express, however, constraints derived from more elaborate business policies and practices.

Bidding vocabularies (Nisan 2000 and Abrache et al. 2002) address the issue of bidding
requirements by providing participants in general combinatorial auctions with the means to
define their bids, formulate complex requirements on their execution, and communicate them
to the auctioneer. In Abrache et al. (2002), we have proposed a new bidding framework
that relies on a two-level representation of a combined bid. At the inner level, atomic bids,
which are single-item sell or buy orders, are defined and combined with the help of bidding
operators that represent continuous constraints on the traded proportions of atomic bids.
So called partial bids created this way are then recursively combined at the outer level with
the help of logical bidding operators. In this section, we specifically consider three classes of
operators that can be particularly useful in the context of portfolio bundle trading, and we
analyze how the corresponding bidding requirements impact the formulation of the allocation
problem.

Global upper bounds on the traded volume of an asset. These bounds correspond
to limitations (due to internal trading policies, liquidity issues, etc.) traders may have on
the total volumes of some assets to be bought or sold as part of a trade. More precisely, let
us define:

Mki= the maximum volume of asset i trader k is ready to trade.

A bound Mki adds the following constraint to the formulation of the allocation problem:

εki
∑

j∈Jk

qjixj ≤Mki (5)
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where εki = +1 if the bound corresponds to a buy limitation, and εki = −1 if the bound
corresponds to a sell limitation.

Lower bounds on the traded proportions of an order. There exists circumstances
under which traders may consider that a bundle should be executed only if a minimal propor-
tion of the bundle is traded; otherwise, they prefer not to trade the bundle. This is notably
the case when fixed-charge execution commissions and fees make execution of marginally
small proportions of some orders non profitable. Hence, consider

lj= the minimum proportion of bundle order j to be executed.

In order to formulate the bidding conditions corresponding to these bounds, we need to
define the following auxiliary binary variables:

yj = 1 if bundle order j is executed, and yj = 0 otherwise.

Constraints of the allocation problem corresponding to a lower bound lj are then:

ljyj ≤ xj ≤ yj (6)

Constraints (6) impose that the traded proportion xj of order j be greater than lower bound
lj when the order is executed; otherwise, xj = 0 and nothing at all is traded.

XOR relations. XOR (exclusive OR) relations are best explained with the help of an
example. Hence, consider the following trade situation:

Asset Bundle Order 1 Bundle Order 2
GM 1000 (Sell)
Toyota 200 (Sell)
Ford 1500 (Sell)
IBM 1000 (Buy)
AMD 1000 (Buy)
Cisco 2500 (Buy)

The trader in this example formulates two “equivalent” trade orders in the sense that both
of them sell assets in the automotive sector and buy assets in the technology sector. In order
to preserve its portfolios from unnecessary fragmentation, the trader may ask that at most
one of the two bundle orders be executed as part of the trade, but without specifying which
one.

More generally, we define a XOR relation X , formulated by trader k, as a subset of bundle
orders in Jk which indicates that at most one order in X should be executed. Let Xk be the
set of all XOR relations defined by trader k, k ∈ K.
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The corresponding XOR constraints in the formulation of the allocation problem:
∑

j∈X

yj ≤ 1, X ∈ X k, k ∈ K (7)

In summary, the market-clearing allocation problem can be formulated as model (M2):

max
∑

k∈K

∑

j∈Jk

pjxj (8)

s.t.
∑

k∈K

∑

j∈Jk

qjixj = 0, i ∈ I (9)

εki
∑

j∈Jk

qjixj ≤Mki, k ∈ K, i ∈ I (10)

ljyj ≤ xj ≤ yj j ∈ Jk, k ∈ K (11)
∑

j∈X

yj ≤ 1, X ∈ X k, k ∈ K (12)

xj ≥ 0, j ∈ Jk, k ∈ K (13)

yj = {0, 1}, j ∈ Jk, k ∈ K (14)

2.2 The pricing problem

The pricing problem answers the following question: are there acceptable payments that
traders can make or receive such that the market is budget-balanced, that is, the economic
surplus is redistributed to the traders? To answer this question, let us consider first in the
continuous case the dual (D1) of the allocation model (M1):

min
∑

k∈K

∑

j∈Jk

µj (15)

s.t.
∑

i∈I

qjiΠi + µj ≥ pj, j ∈ Jk, k ∈ K (16)

µj ≥ 0, j ∈ Jk, k ∈ K (17)

where {Πi}i∈I and {µj}j∈Jk,k∈K are dual variables corresponding to constraints (2) and (3),
respectively. Variables {Πi}i∈I and {µj}j∈Jk,k∈K are interesting because of the following
result.

Proposition 1 Let {Π?
i }i∈I and {µ

?
j}j∈Jk,k∈K be optimal solutions of model (D1). Bundle

prices Pj =
∑

i∈I qjiΠ
?
i , j ∈ Jk, k ∈ K have the following properties:
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(a) When a bundle order j formulated by trader k is executed, i.e., xj > 0, the payment
trader k makes or receives, computed on the basis of the bundle price Pj, is always at
least as good as the trader’s limit price pj.

(b) Payments determined on the basis of bundle prices Pj, j ∈ Jk, k ∈ K, make the market
budget-balanced.

Proof. Let {x?j}j∈Jk,k∈K be an optimal solution of the allocation model (M1). Statement (a)
of the proposition is a result of complementarity slackness conditions x?j(pj −

∑
i∈I qjiΠi) =

x?jµ
?
j ≥ 0, j ∈ Jk, k ∈ K, which is equivalent to x?jPj ≤ x?jpj. Statement (b) follows immedi-

ately from constraints (2).

Solving the pricing problem is far more difficult when the general market-clearing model
(M2) is considered. In fact, due to non-convexities introduced by constraints corresponding
to lower bounds and XOR relations, there is even an issue of the existence of acceptable
market clearing prices. This issue is beyond the scope of the present paper. We point,
however, to some interesting research avenues in Section 5.

3 Discrimination Procedures

A practical problem may arise when the market mechanism determines an optimal market
clearing allocation and a set of acceptable prices: what happens if the allocation, or the
prices, or both of them, are not unique? This issue of uniqueness is particularly critical
in the context of financial markets where the market maker should provide traders with
a satisfactory justification of the auction outcomes. Therefore, since an arbitrary choice
between possibly multiple optimal solutions is clearly unacceptable, what is required is a
discrimination procedure based on “ethical” criteria.

Submission time of bundle orders is such a criterion that can reasonably be used to separate
equivalent orders. Suppose for instance that two traders A and B submit one bundle order
each. Trader A sends bundle order OA, which is received by the market maker at time t,
and trader B sends bundle order OB that the market maker receives later, at time t′ > t.
On the basis of the submission time criterion, trader A has got an advantage. In this case,
discriminating between traders A and B means that, if there are multiple optimal solutions,
the market maker will use the following choice strategy:

1. Ensure that the selected optimal allocation gives the largest volume possible to trader
A that submitted the earliest bid.

2. Guarantee trader A of getting as much pricing “reward” as possible from the trade,
that is, paying the less if it buys and receiving the most if it sells.
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Lexicographical orderings of optimal solutions conceptualize best allocation and price pref-
erences on the basis of submission time. Denote by tj the submission time of order j,
j ∈ J . Suppose that the submission times of any two orders can be compared in a strict way
(tj1 > tj2 or tj2 > tj1 , ∀j1, j2 ∈ J, j1 6= j2). We may also suppose with no loss of generality
that the ordering of the index set of orders J is the same as that of submission times, that
is, j1 > j2 ≡ tj1 > tj2 ,∀j1, j2 ∈ J .

Definition 2 (Primal lexicographical ordering) Let X (1)? = {x(1)?

j}j∈Jk,k∈K and X(2)? =

{x(2)?

j}j∈Jk,k∈K be two different optimal allocations (i.e., optimal solutions of model (M1)).

We say that X (1)? is lexicographically better than X (2)? with respect to submission times, and
denote X(1)?ÂPX

(2)?, if there exists j ∈ J such that

1. x(1)?

j′ = x(2)?

j′, ∀j
′ ≤ j − 1; and

2. x(1)?

j > x(2)?

j .

In other terms, the optimal allocation X (1)? is lexicographically better than the optimal
allocation X (2)? with respect to submission times if there exists an index j ′ such that the j ′th

order has a larger execution proportion in X (1)? than in X(2)?, while the first j ′ − 1 orders
have equal execution proportions in X (1)? and X(2)?. A similar definition can be proposed
for a dual lexicographical ordering, where bundle prices are compared instead of execution
proportions.

Definition 3 (Dual lexicographical ordering) Let Y (1)? = [{Π(1)?

i }i∈I , {µ
(1)?

j}j∈Jk,k∈K ] and

Y (2)? = [{Π(2)?

i }i∈I , {µ
(2)?

j}j∈Jk,k∈K ] be two different optimal set of prices (i.e., dual solutions

of model (M1)), and consider bundle prices computed on the basis of Y (1)? and Y (2)?, that

is, P
(1)
j =

∑
i∈I qjiΠ

(1)?

i , P
(2)
j =

∑
i∈I qjiΠ

(2)?

i , j ∈ Jk, k ∈ K. We say that Y (1)? is lexico-

graphically better than Y (2)? with respect to submission times, and denote Y (1)?ÂDY
(2)?, if

there is j ∈ J such that

1. P
(1)
j′ = P

(2)
j′ , ∀j

′ ≤ j − 1; and

2. P
(1)
j > P

(2)
j .

We next propose a post-optimality procedure (Algorithm 1) that discriminates optimal allo-
cations of model (M1) using lexicographical ordering ÂP. Let P denote the polyhedron that
represents the set of optimal allocations of model (M1). The procedure consists in a search
algorithm that works on the vertices of P . Starting at an arbitrary vertex of P , which corre-
sponds to a basic optimal solution of (M1), the algorithm constructs a sequence of vertices of
P in which a move from a vertex to the next one is done similarly to the simplex algorithm,

10



and in such a way that ordering ÂP is improved. In practice, these moves correspond to
(degenerate) pivots, driven by ÂP, of the simplex method. Once the algorithm is unable to
locally improve the current optimal solution with respect to ÂP, it returns it as the best
allocation found.

Algorithm 1 Primal Discrimination

Require: Solve (M1); Let X? be an arbitrary basic optimal solution of (M1).
if X? is unique then

Stop; return X?

else {There are multiple optimal solutions}
SOL⇐ X?; BestAllocFound ⇐ FALSE
while NOT (BestAllocFound) do
A ⇐ set of basic optimal solutions (M1) that are adjacent to SOL
if SOL ÂP S?, ∀S? ∈ A then

BestAllocFound ⇐ TRUE
else

Choose S? ∈ A such that S? ÂP SOL
SOL ⇐ S?

end if

end while

return SOL
end if

Ensure: SOL is lexicographically the best optimal allocation according to submission times

We now proceed to prove the validity of the primal discrimination procedure. But let us
first consider the following result.

Lemma 1 Let P be a polytope (bounded polyhedron) and x0 a vertex of P. Suppose there
are l other vertices of P, x1, . . . , xl that are adjacent to x0. Now consider xl+1, a vertex of
P that is not adjacent to x0. Then, there exists z = λxl+1 + (1− λ)x0, 0 < λ < 1 such that
z ∈ P ′ = CONV (x0, . . . , xl).

Proof. Consider polyhedronR defined by vertex x0 and extremal rays ri = xi−x0, 1 ≤ i ≤ l,
that is R = {x : x = x0 +

∑
1≤i≤l αir

i, αi ≥ 0, 1 ≤ i ≤ l}. We have indeed that P ⊂ R: if
{x : Ax ≤ b} is a representation of P , then R is the intersection of all half-spaces defined
by facets of P that are binding at x0. Hence, there exist α1, . . . , αl ≥ 0, such that xr+1 =
x0 +

∑
1≤i≤l αir

i, and
∑

1≤i≤l αi > 0 since xr+1 6= x0. Consider now z = λxr+1 + (1 − λ)x0.

It is easy to verify that if 0 < λ ≤ 1∑
1≤i≤l

αiri , then z ∈ CONV (x0, . . . , xl).

Proposition 2 The discrimination procedure of Algorithm 1 terminates after a finite num-
ber of iterations, and provides an optimal solution that is lexicographically the best with
respect to submission times.
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Proof. Consider the polytope P of optimal solutions of model (M1). It is easy to verify that
the discrimination procedure terminates in a finite number of iterations: at an optimal solu-
tion SOL, either the algorithm moves to an adjacent basic solution that is lexicographically
better than SOL, or it returns SOL as the best solution found. Since there is a finite number
of basic solutions of (M1), the algorithm cannot improve indefinitely optimal solutions with
respect to lexicographical ordering ÂP .

We need to prove that SOL, the optimal solution the algorithm returns, is really the best
according to lexicographical ordering ÂP . First, we note that no basic optimal solution of
(M1) that is adjacent to SOL is better than SOL with respect to ÂP . Suppose now that
x1, . . . , xl are basic optimal solutions adjacent to SOL, and there exists xl+1, an optimal basic
solution that is not adjacent to SOL, which verifies xl+1 ÂP SOL. According to Lemma 1,
there exists z = λxl+1+(1−λ)SOL, 0 < λ < 1, such that z ∈ P ′ = CONV (SOL, x1, . . . , xl).
It is easy to establish that z ÂP SOL. On the other hand, since SOL ÂP xi,∀i, 1 ≤ i ≤ l,
then ∀i ∈ {1, . . . , l},∃j ′i ∈ J, such that SOLj = xij,∀j ≤ j ′i − 1, and SOLj′

i
> xij′

i

. Now, if

jmin = min{j ′i}1≤i≤l, then SOLj = zj,∀j ≤ jmin−1, and SOLjmin
> zjmin

, which contradicts
the previous statement that z ÂP SOL. Therefore, SOL is the best basic optimal solution
according to lexicographical ordering ÂP , and overall the best optimal solution since all
optimal solutions in P can be represented as convex combinations of basic optimal solutions
of P .

The dual discrimination procedure presented in Algorithm 2 is quite similar to the primal
procedure of Algorithm 1. The only differences are that the dual procedure works on the
space of the dual optimal solutions of model (M1) and relies on lexicographical ordering ÂD

to separate optimal set of prices.

4 Experimental Analysis

In this section, we present the main numerical results and conclusions of our computational
study. The experiments involved several data sets corresponding to instances of bundle trad-
ing allocation models (M1) and (M2). Each data set comprised several series of randomly
generated test problems, with the following characteristics: 200 to 2000 assets in 27 differ-
ent sectors, 100 traders, and up to 40 bundle orders per trader. All computational testing
was carried out on a SUN Enterprise 10000, with SunOS 5.8 as the operating system. Test
problems generation procedures and the allocation problem solution algorithms were coded
in C++, and used the ILOG CPLEX 7.1 MIP solver callable library, with no particular
parameter tuning.

The experiments were conducted with two objectives in mind. We first intended to measure
the “bundle effect” in the basic allocation model (M1). A formulation of traditional single-
asset market clearing mechanisms is thus required as a benchmark. In that regard, we
adopted a simple “disaggregation” approach that consists in decomposing each bundle order
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Algorithm 2 Dual Discrimination

Require: Solve (D1); Let Y ? be an arbitrary basic optimal solution of (D1).
if Y ? is unique then

Stop; return Y ?

else {There are multiple optimal solutions}
SOL⇐ Y ?; BestPricesFound ⇐ FALSE
while NOT (BestPricesFound) do
D ⇐ set of basic optimal solutions of (D1) that are adjacent to SOL
if SOL ÂD S?, ∀S? ∈ D then

BestPricesFound ⇐ TRUE
else

Choose S? ∈ D such that S? ÂD SOL
SOL ⇐ S?

end if

end while

return SOL
end if

Ensure: SOL is lexicographically the best optimal set of prices according to submission
times

into its elementary components, that is, the single-asset sell and buy orders from which
the bundle is made. The resulting formulation preserves the main trading objectives of
each trader, but does not consider complementarity and substitutability effects and also
relaxes the requirement that sell and buy orders in a same bundle must be executed in equal
proportions. Comparisons between model (M1) and the single-asset formulation relied on
two evaluation metrics: 1) the total economic surplus achieved by the market, and 2) the
number of cumulative value aggregation occurrences, which are the cases where a trader
obtains better execution proportions on some of the assets it desires to sell or buy when a
bundle-based market clearing formulation is used instead of single-asset allocation. We also
investigated how various parameters of the allocation problem (number of assets and orders,
bundle size, etc.) influence the efficiency of the market mechanisms.

Our second objective was to estimate, from economic and algorithmic perspectives, the
impact of additional bidding requirements introduced in the combinatorial market clearing
formulation (M2). We focused on lower bounds and XOR relations and considered instances
of model (M2) in which constraints corresponding to one or the other of these two classes of
requirements are generated. We then measured relative gains or losses in economic surplus,
this time using the basic allocation model (M1) as the reference formulation. We also report
integrality gaps and CPU solution times of the corresponding MIP problems, which help
gain insights about the allocation complexity of model (M2).
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4.1 Basic formulation problems

DATASET-1 consists of several series of test problems that correspond to the basic bundle-
based market clearing formulation (M1). The structure of these problems is shown in Table
2. Each series is made of 150 test problems, equally distributed in three bundle size classes:
problems with small bundle orders (3 to 5 assets), medium bundles (10 to 20 assets), and
large bundles (30 to 50 assets).

Problem Problem description

series #assets #traders #orders per trader (#assets/#orders) ratio

SB − 01 200 100 3 2/3
SB − 02 300 100 4 3/4
SB − 03 400 100 5 4/5
SB − 04 400 100 10 2/5
SB − 05 500 100 10 1/2
SB − 06 1000 100 15 2/3
SB − 07 1000 100 20 1/2
SB − 08 2000 100 30 2/3
SB − 09 2000 100 40 1/2

Table 2: DATASET-1 - Basic bundle trading allocation problems

The results of the experiments run on DATASET-1 problems are summarized in Figure
1. We measured the ratio of the economic surplus achieved by the bundle-based market
mechanism to the one of the corresponding single-asset benchmark formulation, and took
the average of that ratio over the 50 problems in each class of each problem series. This
measure is intended to give a rough indication of how market liquidity compares among the
two market models. Our main observation is that the market liquidity of the bundle-based
mechanism is poor in general, as the average ratio is always below 30%. We also note that
bundle size and the (#assets/#orders) ratio of the number of assets traded in the market
to the total number of orders submitted by traders are the two factors that significantly
influence market liquidity: the more small bundles are submitted to the market, the higher
is the economic surplus achieved. On the other hand, cumulative value aggregation occurs
quite frequently (for 64% of the submitted orders on average) and seems not to depend on
bundle size or the (#assets/#orders) ratio.
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Basic Formulation − Market surplus
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Basic Formulation − Value aggregation

Problem series
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Figure 1: DATASET-1: Market surplus and cumulative value aggregation
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4.2 Lower bounds and XOR problems

Table 3 presents DATASET-2, which displays the attributes of the instances of the combi-
natorial market clearing model (M2) with lower bounds. Two additional parameters have
been taken into account when lower bound problems are generated. FLB is the generation
frequency of lower bounds, and indicates the probability that a lower bound is attached to
a bundle order, whereas LBmax is the maximum value (comprised between 0 and 1) that
a lower bound can take. Therefore, lower bounds are generated according to a Bernoulli
probability law and their value is uniformly distributed in the range [0, LBmax].

Problem Problem description

series #assets #traders #orders per trader FLB LBmax

SLB − 01 200 100 3 1/10 0.2
SLB − 02 500 100 10 1/10 0.2
SLB − 03 1000 100 20 1/10 0.2

SLB − 04 200 100 3 1/10 0.9
SLB − 05 500 100 10 1/10 0.9
SLB − 06 1000 100 20 1/10 0.9

SLB − 07 200 100 3 1/3 0.2
SLB − 08 500 100 10 1/3 0.2
SLB − 09 1000 100 20 1/3 0.2

SLB − 10 200 100 3 1/3 0.9
SLB − 11 500 100 10 1/3 0.9
SLB − 12 1000 100 20 1/3 0.9

Table 3: DATASET-2 - Lower bounds allocation problems

XOR relations formulate traders’ bidding requirements on the execution of “equivalent”
bundle orders. A complete characterization of that equivalence relationship is a difficult task
that relies on the good understanding of the traders’ profile, the objectives that drive their
trade activities in the market, etc. Notwithstanding its importance, this issue is well beyond
the scope of our study, and we will rather limit ourselves to simple empirical techniques
to generate XOR relations. One of these techniques, which we call asset-switching, can be
described as follows. Given a bundle order Oj = ({qji}i∈I , pj), an asset i0 ∈ I that belongs
to activity sector A and which is traded in Oj (qji0 > 0, for instance) is arbitrarily selected.
Asset-switching consists here in choosing an asset i1 ∈ I that also belongs to activity sector
A but is not traded in Oj, and building a new bundle Oj′ = ({qj′i}i∈I , pj′) such that qj′i0 = 0,
qj′i1 > 0, and qj′i = qji0 ,∀i ∈ I, s.t. i 6= i0, i 6= i1. Computation of pj′ and qj′i1 is carried
out such that orders Oj and Oj′ have approximately equivalent monetary values and some
predefined conditions on demand and supply of assets in the portfolio are satisfied. Finally,
a XOR relation X , involving bundle orders Oj and Oj′ , is generated. The process may be
easily extended to generate XOR relations between more than two bundle orders.

DATASET-3, which structure is shown in Table 4, is a set of problem series that represent
instances of model (M2) with XOR relations. Parameter FXOR, which varies in the table
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between 1/10 and 3/4, denotes the generation frequency of XOR constraints.

Problem Problem description

series #assets #traders #orders per trader FXOR

SXOR − 01 200 100 3 1/10
SXOR − 02 500 100 10 1/10
SXOR − 03 1000 100 20 1/10

SXOR − 04 200 100 3 1/3
SXOR − 05 500 100 10 1/3
SXOR − 06 1000 100 20 1/3

SXOR − 07 200 100 3 3/4
SXOR − 08 500 100 10 3/4
SXOR − 09 1000 100 20 3/4

Table 4: DATASET-3 - XOR allocation problems

Figure 2 represents average integrality gaps and CPU solution times of lower bound problems
in DATASET-2. Due to the special structure of lower bounds in formulation (M2), the
integrality gap also indicates the relative “loss” in economic surplus when lower bounds are
taken into account. Several factors seem to influence integrality gaps. Hence, we observe that
problems with smaller number of assets and large bundle sizes are more sensitive to lower
bounds. The relative difference of the three integrality gap figures (corresponding to small,
medium, and large bundle problems) also indicates that allocation problems become more
constrained as bounds become larger and more often included in bundles. CPU solution
times, as expected, grew exponentially with the number of assets. In that regard, problems
with larger bundles were also significantly more costly to solve, which is consistent with our
previous integrality gap observations.

We define the economic gap as the additional market surplus when XOR relations are gener-
ated and taken into consideration in the allocation model (M2). Average economic gaps over
DATASET-3 problems are represented in Figure 3. While XOR relations clearly enhance
the bidding flexibility from the trader perspective, they also significantly impact the market
behavior through high levels of additional liquidity induced in the marketplace. Economic
gaps are, of course, more important when the generation frequency of XOR relations is high,
but also seem to be more pronounced in problems with larger bundles. As for integrality
gaps and CPU times depicted in Figure 4, they broadly follow the same tendencies reported
for lower bound problems. It is however interesting to note that, while integrality gaps are
relatively small (below 15%), the problems are nevertheless as costly to solve to optimality
as lower bound problems.
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Lower Bound Problems − Integrality gaps
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Figure 2: Integrality gaps and CPU times for DATASET-2 test problems
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XOR Problems − Economic gaps
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Figure 3: Economic gaps of DATASET-3 test problems

5 Concluding Remarks

In this paper, we have presented a new bundle-based market clearing allocation model for
financial marketplaces. Our formulation introduced classes of constraints that correspond to
various bidder trading requirements. We have focused on three bidding operators that allow
traders to set limitations on volumes of assets to be traded and on bundle execution propor-
tions, as well as to define exclusive OR execution relations between “equivalent” bundles.
We believe that, despite being very simple, these requirements are particularly important in
the context of portfolio bundle trading, as they make it possible for traders to design more
elaborate bidding strategies and enhance considerably the accuracy of their control over the
composition of their portfolios. The experimental study examined continuous and combina-
torial variants of the market clearing model and verified the impact of several parameters of
the allocation problems on allocation efficiency and computational complexity. Among the
important findings of this study is the fact that bundle trading mechanisms, by their very
nature, improve bidders’ chances of balancing portfolios but achieve relatively poor market
surplus, which makes them appealing for private, inter-institution secondary markets specif-
ically intended to realize portfolio re-balancing operations. We have furthermore confirmed
that additional bidding requirements, especially XOR relations, can also have a significant
economic impact on market surplus.

The combinatorial bundle-based market clearing formulation (M2) raises theoretical and
practical challenging issues. First of all, solutions times for large problems (1000 assets and
more) have been huge (in the day order), which is clearly inappropriate for a mechanism
supposed to run at least once a day and stresses out the necessity to develop more efficient
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XOR Problems − Integrality gaps
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Figure 4: Integrality gaps and CPU times for DATASET-3 test problems
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solution methods. The existence of budget-balance prices that are acceptable to traders
and their computation in the combinatorial case is another difficult problem. Vickrey-based
payments could be a promising avenue. In that regard, Parkes, Kalagnanam, and Eso (2001)
have adapted the classical Vickrey-Clarke-Groves pricing mechanism (Vickrey 1961, Clark
1971, Groves 1973) for exchanges involving heterogeneous non-divisible items to achieve
budget-balance. We believe that their approach can be readily extended to divisible items.

We are also much interested in evaluating bundle trading market mechanisms over longer
periods of time. Concerning this aspect, simulation techniques can be extremely valuable
in creating controlled environments for manipulating market conditions and trader profiles
regarding asset preference, risk aversion, bid sophistication, and so on.
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