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Abstract

We describe the cost-minimization problem faced by the purchasing department of a
multi-plant company when its suppliers offer discounts based simultaneously on plant
and on corporate purchases, when discount schedules depend on the total quantity
(rather than cost) of ingredients purchased, and when alternative production recipes
exist for each final product. We formulate the problem as a nonlinear mixed 0-1
programming problem and we propose various ways to linearize this formulation.
The quality of these models is evaluated on real-world data.

Keywords: purchasing, supply chain management, mixed integer programming,
quantity discounts, flexible recipes.



1 Introduction

Today’s fierce competitive environment and strong emphasis on efficient supply chain
management entice companies to select suppliers that score high on a broad array
of performance criteria, with price, quality and delivery reliability ranking among
the most important ones. Several publications have addressed this issue in recent
years. Weber, Current and Benton [26], for instance, discuss the complexity of the
procurement process from an OR perspective and review the literature on this subject
(see also Weber and Current [25]). Recent papers by Degraeve, Labro and Roodhooft
[7] or Ghodsypour and O’Brien [9] position the supplier selection issue in the context
of the “total cost of ownership” or “total cost of logistics” criterion and propose a
brief overview of the literature. Roethlein and Mangiameli [14] stress the point of
view of the supplier. More references will be cited below.

Assuming that a company has made a preselection of suppliers who are able to sat-
isfy its requirements for quality and reliability, a main selection criterion remains the
purchasing cost of ingredients. Even in this restricted framework, however, the pro-
cess leading to optimal purchasing decisions may be complicated by various factors.
In this paper, we consider the medium-term purchasing decisions faced by a major
chemical company and we develop an integer programming model which provides
useful support to the planners.

The medium-term production plan of the company specifies the quantity of each
product to be manufactured over the next year, based on forecasts provided by the
marketing department. Each product is manufactured by blending various ingredients
purchased from several suppliers. The suppliers are assumed to be reliable, and Just-
In-Time strategies significantly reduce the inventory costs, which can therefore be
disregarded from the analysis.

Two main characteristics concur to render the purchasing decision especially complex:
• each supplier offers quantity discounts based on the total quantity of ingredients
purchased by the company;
• each product made by the company can be processed according to several alternative
recipes, where each recipe specifies which proportion of each ingredient should be
included in the blend.

Observe that, were it not for the second feature, and under the assumption that each
ingredient can be purchased from a single supplier, the company would have no real
decision to make: it would simply buy the ingredients prescribed by each product
recipe from the appropriate suppliers and collect the discounts at the end of the year.

Also, were it not for the first feature, the company’s problem would be easily solved:
it would suffice, for each product, to adopt the recipe with the lowest cost.
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The combination of both features, however, makes the problem more intricate and
more interesting. To the best of our knowledge, it has not been previously investigated
in this form.

Classical inventory models traditionally involve two types of discounts: either quantity
discounts, i.e. discounts based on the quantity of each ingredient ordered from a
supplier, or business volume discounts, i.e. discounts based on the total dollar value
of all ingredients ordered from a supplier.

Quantity discount models involve distinct price breaks for each ingredient and sup-
plier. This type of model is well-known and is discussed for instance in [3], [5], [11],
[22], [23], [24]. Chaudry, Forst and Zydiak [5], in particular, consider a supplier se-
lection problem involving multiple side-contraints: capacity, delivery performance,
ingredient quality, etc. They propose a mixed integer programming formulation to
minimize the purchasing costs for each ingredient separately.

Business volume discounts yield advantages both to the buyer and to the suppliers.
This framework is described in detail by Sadrian and Yoon [19] and Katz, Sadrian
and Tendick [12]. Buyers benefit because they diminish the number of active suppli-
ers, which leads to reductions in the administrative costs and better relations with
the suppliers. Suppliers simplify their discount schedules and promote more balanced
sales over multiple ingredients. The application of this discount strategy may some-
times enable suppliers to sell at higher prices than those of the competitors. Also,
larger orders reduce order processing costs (paperwork, setups, packaging, shipping)
both for suppliers and buyers [20].

Sadrian and Yoon [19], [20] proposed a mixed-integer programming model to optimize
the total cost of purchases in the presence of business volume discounts. Their model,
just like ours, considers only one period, and thus does not take inventory costs and
other time-dependent parameters into account. It is solved using a standard commer-
cial mathematical progamming package. Related models dealing with bundling are
discussed by Rosenthal, Zydiak, and Chaudhry [16] and Sarkis and Semple [21].

A third class of discounting strategies, to be further considered in this paper, is based
on the concept of total quantity discounts. As mentioned above, we encountered this
situation in the chemical industry. Here, the discount schedule of each supplier is
expressed as a function of the total quantity of ingredients purchased over the year
(rather than the total dollar value of these purchases, as in the previous case).

The problem gets even more complex when consumption forecasts for each ingredient
are not known, but only demand forecasts for the final products are available. As
mentioned above, final products are mixtures of ingredients and, as is very common
in process industries, several alternative recipes are available to manufacture each final
product (see e.g. Crama, Pochet and Wera [6], Rutten [17], Rutten and Bertrand [18]).
Thus, in this case, consumption forecasts are expressed in terms of the final products,
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discount schedules are expressed in terms of the ingredients and there is no unique
relationship between the demand for ingredients and the demand for products. These
features result in a very complex problem, where decisions relating to production
planning and to purchasing should be tightly integrated.

Finally, in the industrial situation that we encountered, the company operates several
plants which purchase their ingredients from the same suppliers. Each supplier offers
discounts based either on the local purchases of each plant or on the consolidated
purchases of the company (we make this more precise below). It turns out that this
last feature is, in a sense, the most difficult one to model, as it forces the company
to consider several alternative discount schedules as well as alternative suppliers and
alternative recipes.

The article is organized as follows. A more precise description of the problem is given
in Section 2. Section 3 proposes a mathematical programming formulation for the
single plant case, and Section 4 extends it to multiple plants. Some computational
results are presented in Section 5. Finally, conclusions and future research directions
are outlined in Section 6.

2 Problem statement and notations

We consider a company manufacturing a set of products j = 1, 2, . . . , J . Each product
can be obtained by blending a set of ingredients i = 1, 2, . . . , I according to certain
recipes. Several recipes r = 1, 2, . . . , R are actually available for any given product and
the company is free to choose among them (the production costs are not affected by
this choice, beyond the cost of the ingredients themselves). Ingredients are purchased
from a set of suppliers s = 1, 2, . . . , S (see Figure 1). Let us first consider the simplest
case, where the company operates a single plant.

Each supplier s offers a discount schedule which only depends on the total quantity
(expressed in tons, for example) of all the ingredients purchased by the plant over a
year. The schedule is described by D(s) + 1 cutoff points us,0 = 0 < us,1 < . . . <
us,D(s) = +∞ and by D(s) corresponding discount rates rs,1 < . . . < rs,D(s). If the
plant buys Qs tons from supplier s and Qs belongs to the interval [us,d−1, us,d) of
the discount schedule, then the supplier awards the discount rate rs,d on the total
dollar value of the purchases. Thus, the schedule of supplier s can also be viewed as
a piecewise constant curve consisting of D segments.

Discount programs based on the total quantity of purchases generate discontinuities
in the cost of the purchases from a given supplier. Since there are several suppliers,
the superposition of the discount schedules generates an intrincate discontinuous cost
surface.

3



Demand forecasts for each product are available. The problem is to determine which
recipe(s) should be used for each product and, simultaneously, which quantity of
each ingredient should be purchased from each supplier, in order to satisfy demand.
Note that the plant may decide to produce a fraction of the demand for product j
according to recipe r1 and another fraction according to a different recipe r2. As
discussed in the Introduction, we assume that the company only aims at minimizing
its total purchasing costs.

plant





product 1





recipe 1





ingredient 1
...
ingredient I

...
recipe R . . .

...
product J . . .

quantity discounts⇐=





supplier 1
...
supplier S

Figure 1: The Simple Plant Total Quantity Discount model

The business volume discount problem described in [19] handles a simpler situation
where a unique recipe is available for each product. In this case, if the demand for
the final references is known, the demand for the input ingredients is also known (see
Figure 2). Discount curves in [19] are similar to those for the total quantity discount
problem, except that the total dollar value of purchases is used in order to define the
curve segments, instead of the total quantity purchased.

plant





product 1





ingredient 1
...
ingredient I

...
product J . . .

volume discounts⇐=





supplier 1
...
supplier S

Figure 2: The Business Volume Discount model in [19]

Consider now the situation where the company operates several plants p = 1, 2, . . . , P
which manufacture different products. We assume that the company purchasing
decisions are centralized and optimized at the company level, rather than by each
individual plant. The suppliers offer two discount schedules to each plant. The
first one, to be called plant or local schedule, is specific to each plant and is based
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exclusively on this plant’s purchases as in the simple plant situation. The other one,
to be called company or group schedule, is identical for all plants; it carries a rebate
on the purchases of each individual plant, but its discount levels are a function of the
consolidated purchases of the whole company. More precisely, consider a supplier s
and a plant p. If the purchases from supplier s at plant p yield the discount rate rl
on the plant schedule, while the consolidated company purchases yield the discount
rate rg on the company schedule, then s awards the discount rate max{rl, rg} on
the total dollar value of all purchases of plant p. In this case, the decision criterion
consists in minimizing the total consolidated purchasing costs of the company, rather
than the individual plant costs.





plant 1





product 1





recipe 1





ingredient 1
...
ingredient I

...
recipe R . . .

...
product J . . .

...
plant P . . .

plant discounts⇐=
company discounts⇐=





supplier 1
...
supplier S

Figure 3: The Multi-plant Total Quantity Discount model

Several mixed integer linear programming (MILP) formulations of the total quantity
discount problem are presented in the next sections. For the sake of clarity, we
start with a formulation of the simple-plant problem before proceeding with the more
complex multi-plant formulations.

Since a standard commercial package will be used to solve these problems, we do
not concentrate on the solution process, but only on the choice of the most appro-
priate model. In order to stress the structure of the models and to facilitate their
understanding, we use lower case letters for parameters and upper case letters for
decision variables. The following indices are used in all models: p = 1, 2, . . . , P for
plants, i = 1, 2, . . . , I for ingredients, j = 1, 2, . . . , J for products, r = 1, 2, . . . , R
for recipes, s = 1, 2, . . . , S for suppliers, d = 1, 2, . . . for discount segments. Unless
explicitly stated otherwise, these indices always run over their full range of possible
values. (Note that the range of d may depend on s, p, and on whether we consider
local or global discounts. For simplicity of notations, we usually do not indicate this
dependence explicitly, but it should be clear from the context).

Finally, all variables are implicitly constrained to be non-negative.
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3 Simple plant formulation

3.1 Parameters

Let us introduce the following parameters.

oi,s

{
1 if ingredient i is offered by supplier s
0 otherwise

wi,r quantity of ingredient i used to obtain one unit of product according
to recipe r (where the recipe implicitly defines the product)

demj demand forecast for product j
pi unit price of ingredient i
rs,d discount rate associated with segment d of supplier s’ schedule
us,d upper cutoff point for segment d of supplier s’ schedule
pmaxs upper bound on the price of ingredients offered by supplier s

The formulation is simplified if we assume that each ingredient is offered by one
supplier only (

∑
s oi,s = 1 for all i). This was actually the case in the industrial

environment that we encountered, where ingredients sold by different suppliers were
sometimes close substitutes, but never exactly identical. In case a same ingredient
would be offered by several suppliers, then the recipes could be artificially duplicated
in order to abide by our assumption.

We further assume that total mass is conserved in each recipe (
∑

i wi,r = 1 for all r),
and that the schedule cutoff points are listed in increasing order (us,d−1 < us,d for all
s, d).

3.2 Variables

Four classes of decision variables are defined. In a first attempt, one may want to
introduce variables Qs and Vs, indicating respectively how many tons of ingredients
are purchased from supplier s and the total dollar business volume awarded to supplier
s, for s = 1, 2, . . . , S. These variables, however, do not allow for an appropriate
expression of the discounts. Therefore, it is necessary to split each of these variables
into D copies Qs,d and Vs,d, respectively, corresponding to D segments in the discount
schedule. In every feasible solution, at most one of Q1,s, . . . , Qs,d and at most one of
V1,s, . . . , Vs,d will be nonzero (this is similar to [12, 20]).
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Fj,r quantity of product j produced using recipe r

Is,d





1
if the total quantity purchased from supplier s gives right
to the discount rate rs,d

0 otherwise

Qs,d total quantity of ingredients purchased from supplier s and car-
rying the discount rate rs,d

Vs,d business volume awarded to supplier s and carrying the discount
rate rs,d.

3.3 Model

The aim is to minimize the total purchasing costs of the company over the given
horizon:

min Cost =
∑
s

∑

d

(1− rs,d) · Vs,d. (1)

A first set of constraints express that demand must be satisfied for each product:

∑
r

Fj,r = demj for all j. (2)

The next constraints define the total quantity of ingredients purchased from each
supplier and the corresponding business volume:

∑

d

Qs,d =
∑

i

oi,s

∑

j

∑
r

wi,r · Fj,r for all s, (3)

∑

d

Vs,d =
∑

i

oi,s pi

∑

j

∑
r

wi,r · Fj,r for all s. (4)

For each supplier s, at most one of the variables Qs,d can be non-zero. Some modelling
languages allow to express this constraint by simply stating that “the variables Qs,d

form a special ordered set of type 1” (SOS1) for each s (see e.g. [2, 27]). We adopt here
a more generic approach, as in [20]. Namely, we use the auxiliary variables Is,d which
link the total quantities Qs,d to the appropriate segments of the discount schedules:

Qs,d ≤ us,d · Is,d for all s, d, (5)

Qs,d ≥ us,d−1 · Is,d for all s, d, (6)
∑

d Is,d = 1 for all s (7)

(recall that each Is,d is a zero-one variable). Observe that, if the total quantity
supplied by s is exactly equal to some cutoff point us,d, then feasible solutions are
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defined by setting either Is,d = 1 and Qs,d = us,d, or Is,d+1 = 1 and Qs,d+1 = us,d. But
since rs,d < rs,d+1, the higher discount rate will be selected in the optimal solution,
in agreement with our definition of the discount intervals.

Finally, we relate the variables Vs,d to the variables Qs,d by imposing the constraints:

Vs,d ≤ pmaxs ·Qs,d for all s, d. (8)

These constraints ensure that Vs,d is zero whenever Qs,d is zero. Together with con-
straints (4), this is sufficient to enforce the correct value of Vs,d, and model (1)-(8)
provides a complete formulation of the simple plant problem.

4 Multi-plant formulation

We now turn to the more general case involving multiple plants. We start with a
definition of the problem parameters.

4.1 Parameters

oi,s

{
1 if ingredient i is offered by supplier s
0 otherwise

cp,j

{
1 if product j is manufactured at plant p
0 otherwise

wi,r quantity of ingredient i used to obtain one unit of product ac-
cording to recipe r

demj demand forecast for product j
pi unit price of ingredient i
rlp,s,d discount rate associated with segment d of supplier s’ local sched-

ule for plant p
ulp,s,d upper cutoff point for segment d of supplier s’ local schedule for

plant p
rgs,d discount rate associated with segment d of supplier s’ group

schedule for the company
ugs,d upper cutoff point for segment d of supplier s’ group schedule

for the company
pmaxp,s upper bound on the price of ingredients offered by supplier s at

plant p
vmaxp,s upper bound on the total purchases from supplier s by plant p.
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As in the single-plant case, we assume that ingredients are supplier-exclusive (
∑

s oi,s =
1 for all i), that total mass is conserved in each recipe (

∑
i wi,r = 1 for all r), and

that the schedule cutoff points are listed in increasing order (ulp,s,d−1 < ulp,s,d and
ugs,d−1 < ugs,d for all p, s, d). We also assume that each product is manufactured in
a unique plant (

∑
p cp,j = 1 for all j).

Except for vmaxp,s, all parameters are readily available as part of the problem de-
scription. A value for vmaxp,s is easily obtained by assuming for instance that, for
each product, plant p always selects the recipe which entails the largest amount of
purchases from supplier s.

4.2 Variables

Unfortunately, we need to introduce quite a lot of variables. Their meaning will
hopefully become clear in subsequent sections. For now, let us just stress that IL,
QL and V L refer to local discounts to which each plant is entitled independently of
the company’s consolidated purchases; IG and QG refer to group discounts to which
each plant is entitled as a consequence of the company’s cumulative purchases; I,
L and G refer to the discounts which are actually applied on each plant’s purchases
after comparing local and group discounts.

Fj,r quantity of product j produced using recipe r

ILp,s,d





1 if the total quantity purchased by plant p from supplier s
entitles p to the discount rate rlp,s,d on the local schedule;

0 otherwise;

IGs,d





1 if the total quantity purchased by the company from supplier s
entitles each plant to the discount rate rgs,d on the group schedule;

0 otherwise;

Ip,s





1 if the discount rate associated to the local schedule is eventually
applied to the total quantity purchased by plant p from supplier s;

0 if the discount rate associated to the group schedule is eventually
applied to the total quantity purchased by plant p from supplier s.
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Vp,s business volume awarded to supplier s by plant p;
QLp,s,d total quantity of ingredients purchased from supplier s by plant

p if it entitles p to the discount rate rlp,s,d on the local schedule;
0 otherwise;

V Lp,s,d business volume awarded to supplier s by plant p if it entitles p
to the discount rate rlp,s,d on the local schedule; 0 otherwise;

QGs,d total quantity of ingredients purchased from supplier s by the
company if it entitles each plant to the discount rate rgs,d on the
group schedule; 0 otherwise;

Lp,s,d business volume awarded to supplier s by plant p if the local rate
rlp,s,d is eventually applied to this volume; 0 otherwise;

Gp,s,d business volume awarded to supplier s by plant p if the group
rate rgs,d is eventually applied to this volume; 0 otherwise.

4.3 Model

The cost function (9) decomposes into two terms: the first one models the costs to
which local discounts apply; the second one models the costs to which group discounts
apply.

min Cost =
∑
p

∑
s

∑

d

(1− rlp,s,d) · Lp,s,d

︸ ︷︷ ︸
with local discounts

+
∑
p

∑
s

∑

d

(1− rgs,d) ·Gp,s,d.

︸ ︷︷ ︸
with group discounts

(9)

• Demand constraints

Demand constraints have the usual form:

∑
r

Fj,r = demj for all j. (10)

• Quantities ordered and business volumes - plant level

The total quantity purchased by each plant from each supplier is expressed as:

∑

d

QLp,s,d =
∑

i

oi,s

∑

j

cp,j

∑
r

wi,r · Fj,r for all p, s. (11)

Next, we find it convenient to express in two different ways the business volume of
plant p with each supplier s, as the auxiliary variables Vp,s will be used separately
below (see constraints (29)-(30)).
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∑

d

V Lp,s,d = Vp,s for all p, s, (12)

Vp,s =
∑

i

oi,s pi

∑

j

cp,j

∑
r

wi,r · Fj,r for all p, s. (13)

• Positioning in the discount schedule - plant level

The next constraints link the local variables ILp,s,d, QLp,s,d, V Lp,s,d in the same way
as in the simple plant model.

V Lp,s,d ≤ pmaxp,s ·QLp,s,d for all p, s, d, (14)

QLp,s,d ≤ ulp,s,d · ILp,s,d for all p, s, d, (15)

QLp,s,d ≥ ulp,s,d−1 · ILp,s,d for all p, s, d, (16)
∑

d ILp,s,d = 1 for all p, s. (17)

• Quantities ordered - company level

The cumulated variables QGs,d are defined from their plant counterparts.

∑

d

QGs,d =
∑
p

∑

d

QLp,s,d for all s. (18)

• Positioning in the discount schedule - company level

Similarly to constraints (15)-(17), we impose:

QGs,d ≤ ugs,d · IGs,d for all s, d, (19)

QGs,d ≥ ugs,d−1 · IGs,d for all s, d, (20)
∑

d IGs,d = 1 for all s. (21)

• Linking the business volume variables

Note that the variables Lp,s,d and Gp,s,d appearing in the objective function (9) have
not been linked, yet, to other variables representing business volumes. In view of the
interpretation of the variables, there holds

Lp,s,d = Ip,s · V Lp,s,d for all p, s, d, (22)
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and
Gp,s,d = (1− Ip,s) · IGs,d · Vp,s for all p, s, d. (23)

Unfortunately, these equations are nonlinear. Since most commercial optimization
systems are unable to handle large scale mixed 0-1 nonlinear programming prob-
lems, additional modelling work is required here. In the next sections, we examine
alternative ways to remove these nonlinearities.

4.4 Removing nonlinearities - I

Constraints (22) and (23) both involve products of binary and continuous variables.
Several authors have proposed generic ways to linearize such constraints, i.e. to replace
them by equivalent linear constraints (see e.g. [1, 2, 4, 10, 13, etc.]). A standard trick
to linearize a constraint of the form Y = I1 I2 X, where I1, I2 are binary variables
and X,Y are real variables subject to the range constraint 0 ≤ X ≤ u, consists in
imposing the following constraints:

Y ≤ u I1

Y ≤ u I2

Y ≤ X

Y ≥ X − u (1− I1)− u (1− I2)

Y ≥ 0.

It is easy to see that these constraints force Y to take the value of the product I1 I2 X
for every assignment of 0-1 values to I1 and I2.

Let us apply this procedure in order to linearize (22) (here, one of the binary variables
is viewed as identically 1). Remember that vmaxp,s is, by definition, an upper-bound
on Vp,s, and hence on V Lp,s,d, for all p, s, d. Besides the nonnegativity contraints
(which we always treat implicitly), we obtain

Lp,s,d ≤ vmaxp,s · Ip,s for all p, s, d, (24)

Lp,s,d ≤ V Lp,s,d for all p, s, d, (25)

Lp,s,d ≥ V Lp,s,d − vmaxp,s · (1− Ip,s) for all p, s, d. (26)

We next turn to (23), and we obtain

Gp,s,d ≤ vmaxp,s · (1− Ip,s) for all p, s, d, (27)

Gp,s,d ≤ vmaxp,s · IGs,d for all p, s, d, (28)

12



Gp,s,d ≤ Vp,s for all p, s, d, (29)

Gp,s,d ≥ Vp,s − vmaxp,s · Ip,s − vmaxp,s · (1− IGs,d) for all p, s, d. (30)

We claim that the cost function (9) and the contraints (10)-(21), (24)-(30) give a
complete formulation of the multi-plant problem. Since the model is non trivial, it
may actually be useful to establish the validity of this claim. Before we proceed
with a proof, we first observe that we can safely discard the constraints (24)-(25) and
(27)-(29) without affecting the optimal solutions of the model.

Lemma. Every optimal solution of the model (9)-(21), (26), (30) satisfies the con-
straints (24)-(25) and (27)-(29).

Proof. Note that the variables Lp,s,d and Gp,s,d only appear in the cost function,
in the constraints (24)-(26), (27)-(30), and in the implicit nonnegativity constraints.
Moreover, Lp,s,d and Gp,s,d have positive coefficients in the cost function. Therefore,
in every optimal solution of (9)-(21), (26), (30), there holds

Lp,s,d = max{0, V Lp,s,d − vmaxp,s · (1− Ip,s)}

and
Gp,s,d = max{0, Vp,s − vmaxp,s · Ip,s − vmaxp,s · (1− IGs,d)}.

Now, it is easy to check that these values satisfy (24)-(25) and (27)-(29). 2

In the sequel, we refer to the model (9)-(21), (26), (30) as model Multi-plant 1 , or
MP1 for short. (In this model, the variables Vp,s could actually be eliminated by
substituting the left-hand side of (12) for Vp,s in all other constraints. But, except for
reducing the number of variables and constraints, this substitution does not result
in any improvement of the formulation, i.e., it does not tighten the mixed-integer
programming model.)

We now sketch a proof that the model is indeed correct.

Proposition 1. Model MP1 provides a correct description of the multi-plant total
quantity discount problem.

Proof. Consider any optimal mixed 0-1 solution of the model. Total demand is
satisfied, since constraint (10) holds. Note that the remaining constraints can be
partitioned into S independent subsystems, corresponding to the different suppliers.
Therefore, we focus in the sequel on a fixed supplier s.

(a) For every plant p, by (15)-(17), there exists a unique discount rate d1(p) such
that QLp,s,d = ILp,s,d = 0 for all d 6= d1(p). Moreover, by (14), V Lp,s,d = 0 for all
d 6= d1(p).
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(b) Similarly, because of (19)-(21), there exists a unique discount rate d2 such that
QGs,d = IGs,d = 0 for all d 6= d2.

(c) In view of (a), (b) and (18), there holds QGs,d2 =
∑

p QLp,s,d1(p).

(d) For every plant p, we deduce from (a) and (11) that the total quantity of ingre-
dients purchased by plant p from supplier s is equal to QLp,s,d1(p). Similarly, from
(a) and (12)-(13), the business volume awarded by plant p to supplier s is equal to
V Lp,s,d1(p) = Vp,s.

(e) From (c) and (d), we deduce that QGs,d2 is the total quantity of ingredients
purchased from supplier s.

(f) By Lemma 1, (24)-(25), (27)-(29) hold, and hence (22) and (23) also hold.

(g) We would like now to conclude that all quantities Lp,s,d and Gp,s,d have their
intended meaning. Fix a plant p. There are two cases.
• If Ip,s = 1, then Gp,s,d = 0 for all d, by (23). Moreover, (a), (d) and (22) together
imply that Lp,s,d = 0 for all d 6= d1(p), and Lp,s,d1(p) = V Lp,s,d1(p) = Vp,s as required.
• Assume now that Ip,s = 0. Then, by (22), Lp,s,d = 0 for all d. By (b), (e) and (23),
Gp,s,d = 0 for all d 6= d2, and Gp,s,d2 = Vp,s as required.

In conclusion, for each supplier s and plant p, at most one of the quantities Lp,s,d and
Gp,s,d does not vanish. This nonzero quantity (either Lp,s,d1(p) or Gp,s,d2) exactly rep-
resents the business volume of plant p with supplier s, and the corresponding discount
rate (either rlp,s,d1(p) or rgs,d2) is indeed applicable to this business volume. Hence,
the objective function (9) correctly computes the costs incurred. 2

4.5 Removing nonlinearities - II

We next propose another approach to linearize the constraints (22) and (23). Al-
though this alternative approach is more ad hoc than the first one, it will prove, in
our experiments, to provide a tighter formulation of the problem.

The main idea consists in substituting the constraints (26) and (30) (which essentially
force one of Lp,s,d1(p) or Gp,s,d2 to take the value Vp,s - see point (g) in the proof of
Proposition 1) by a new aggregated constraint

∑

d

Lp,s,d +
∑

d

Gp,s,d =
∑

d

V Lp,s,d for all p, s. (31)

For the resulting formulation to be complete, we need to add a constraint which
guarantees that Gp,s,d is zero when IGs,d is zero. Contraint (28) would do the job,
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but we prefer to use the following contraint, which is usually stronger:

Gp,s,d ≤ pmaxp,s ·QGs,d for all p, s, d. (32)

Note that the relative strength of (28) and (32) really depends on the numerical
value chosen for the bound vmaxp,s in (28). For instance, if one replaces vmaxp,s by
pmaxp,s · ugs,d (a rather reasonable choice), then (19) implies that (32) is a tighter
constraint then (28).

Another valid constraint which can also be substituted for (32) (or better yet, added
to it) is the aggregated constraint

∑
p

Gp,s,d ≤ max
p

(pmaxp,s) ·QGs,d for all s, d. (33)

This constraint is valid, as it expresses that the d-th discount rate will not be applied
by supplier s when QGs,d = 0.

The model (9)-(21), (25), (31)-(33) will be referred to as model Multi-plant 2 , or MP2
for short. Note that the variables Ip,s do not play any role in this model, and can
be suppressed altogether. The variables Vp,s could also be eliminated, exactly as in
model MP1.

Proposition 2. Model MP2 provides a correct description of the multi-plant total
quantity discount problem.

Proof. The proof of Proposition 1 remains valid, up to and including step (e).

(f’) Fix p and s. By step (a), V Lp,s,d = 0 for all d 6= d1(p). Hence, constraint (25)
implies that Lp,s,d = 0 for all d 6= d1(p). Similarly, step (b) and (32) (or (33)) imply
that Gp,s,d = 0 for all d 6= d2. So, there follows from constraint (31) that

Lp,s,d1(p) + Gp,s,d2 = V Lp,s,d1(p) (34)

and, in view of step (d), this quantity represents exactly the business volume awarded
by plant p to supplier s. As a matter of fact, (34) is the only equation restricting the
values of Lp,s,d1(p) and Gp,s,d2 in the model. Therefore, because of the form of the cost
function (9), there is an optimal solution of the model in which at most one of the
variables Lp,s,d1(p) and Gp,s,d2 is nonzero (namely, that variable corresponding to the
maximum of the discounts rlp,s,d1(p) and rgs,d2). 2

4.6 A relaxed formulation

In models MP1 and MP2, the purchased quantities of each ingredient allow to satisfy
exactly the demand, by virtue of the demand constraints (10). In practice, however,
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the company may want to exploit the discontinuities of the discount curves by buying
more ingredients than strictly necessary. Indeed, as a bizarre implication of the
discount policies, total purchasing costs can sometimes be reduced by raising the
purchased volume into the next segment of a discount curve (a similar effect has
already been observed by Sarkis and Semple [21] in the context of bundled purchases).
We now propose a model which accounts for this possibility.

Remark. The practical side-implications of overbuying are not entirely clear, and
may vary with each specific industrial setting. For instance, inventory costs may rise,
or some of the superfluous ingredients may have to be eliminated. In other contexts,
they may also be put to some alternative use, or sold on a secondary market. A
reasonable assumption may actually be that the additional quantities would not be
purchased at all, even when it would prove advantageous to do so, but that the mere
existence of this possibility could be used in negotiations with the suppliers in order
to obtain further rebates. Therefore, in our formulation, we limit ourselves to the
consideration of purchasing costs.

In order to relax the link between demand and purchase levels, we introduce a new
class of variables QEp,s, representing the number of additional units of ingredients
which plant p purchases from supplier s. Since the only use of these units is to
increase the total quantity purchased, we may as well assume that they correspond to
the cheapest ingredient offered by s to p. These extra units are added to constraints
(11) and (13), which respectively become

∑

d

QLp,s,d =
∑

i

oi,s

∑

j

cp,j

∑
r

wi,r · Fj,r + QEp,s for all p, s, (35)

Vp,s =
∑

i

oi,s pi

∑

j

cp,j

∑
r

wi,r · Fj,r + pminp,s ·QEp,s for all p, s, (36)

where pminp,s is the lowest price of an ingredient offered by supplier s to plant p.

The model obtained when substituting (35) and (36) for (11) and (13) in MP2 will
be referred to as model MP3. Conversely, MP2 can be viewed as the restriction of
MP3 where extra purchases are frozen to zero.

4.7 Extensions

Various extensions of the above models can easily be formulated, for instance in order
to limit the volume of business with certain suppliers (e.g., when their reliability is
questionable), or to express their capacity restrictions on certain ingredients.

In the chemical industry application that we tackled, we had to face another extension
of the basic model. Besides the nominal price pi of ingredient i, each supplier can
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quote a second price pσ
i , called the spot price of i. The spot price is lower than the

nominal price. When both prices are offered for a particular ingredient, each plant
can decide whether the ingredient will be acquired at its nominal price or at its spot
price. However, if the spot price is selected, then the quantities purchased at that
price are not taken into consideration when computing the discount to be awarded.

To account for this added complexity, we duplicate every ingredient for which a spot
price has been quoted and we introduce a new parameter σi for each ingredient, where
σi = 1 if i is a spot ingredient, and σi = 0 otherwise. The cost function (9) is now
replaced by the following expression:

min Cost =
∑
p

∑
s

∑

d

(1− rlp,s,d) · Lp,s,d +
∑
p

∑
s

∑

d

(1− rgs,d) ·Gp,s,d

+
∑
p

∑
s

∑

i

oi,s σi p
σ
i

∑

j

cp,j

∑
r

wi,r · Fj,r. (37)

The last term in the expression (37) corresponds to the purchasing cost of the spot
ingredients. The right-hand sides of (11) and (13) have to be adapted accordingly.
Constraint (11) becomes

∑

d

QLp,s,d =
∑

i

oi,s (1− σi)
∑

j

cp,j

∑
r

wi,r · Fj,r for all p, s (38)

and constraint (13) becomes

Vp,s =
∑

i

oi,s (1− σi) pi

∑

j

cp,j

∑
r

wi,r · Fj,r for all p, s. (39)

These changes yield a valid formulation of model MP2 in the presence of spot prices.
Similar modifications of (35) and (36) are necessary when using the relaxed model
MP3 .

5 Experimental evaluation

5.1 Main test case

Data for the test case were obtained from a large chemical company that operates two
plants. Plant I manufactures a mix of 30 distinct products and plant II manufactures 7
additional products. Each product can be processed according to several alternative
recipes: from 1 to 15 recipes per product, with a grand total of 52 recipes. Each
recipe uses from 1 to 3 basic ingredients. Altogether, 25 different ingredients can be
purchased from eight suppliers.

All three mixed integer models MP1, MP2 and MP3 have been formulated in the
AIMMS modeling language version 3.2 [2] and solved by branch-and-bound using
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the XA solver on a 750 MHz Pentium III with 256Mb RAM. The main goal of the
experiments was to evaluate and to compare the difficulty of solving these alternative
formulations. When interpreting the results, it is necessary to remember that MP3
is slightly different from the other formulations, since it allows for extra purchases.

Table 1 displays the size of the models.

MP1 MP2 MP3
Nr of variables 901 888 904

Nr of constraints 886 966 966

Table 1: Problem size

An important user parameter of the XA solver is the Relative Optimality Criterion -
ROC - which stops the branch-and-bound process if the solver can guarantee that the
cost of the best current solution is less than ROC% away from the global optimum.
Three tests were performed. The first one uses a ROC value of 0%. The second one
uses a value of 1%. The third one uses a value of 5%. Moreover, the maximum number
of branch-and-bound iterations was set to 10000. The main results of the tests are
displayed in Tables 2 -4. The first line of each table indicates the number of iterations
performed by the solver. The second line gives the total computing time in seconds.
The third line contains the cost of the best available solution (i.e., purchasing plan).
The fourth line gives the optimal value of the linear relaxation of each model (i.e.,
of the LP model obtained by relaxation of the integrality constraints). Finally, the
last line indicates whether the ROC criterion was satisfied upon termination of the
branch-and-bound process.

MP1 MP2 MP3
Iterations 10000 10000 1634

Computing time (s) 9 9 1
Cost 179.67 178.86 178.45

LP relaxation 0.00 178.45 178.45
ROC criterion satisfied no no yes

Table 2: ROC 0%

Only model MP3 can be solved to optimality (i.e., with ROC = 0%) within 10000
iterations, but MP2 is almost as easy, since it can be solved within 1% of optimality in
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MP1 MP2 MP3
Iterations 10000 725 363

Computing time (s) 9 1 1
Cost 181.18 179.59 178.64

LP relaxation 0.00 178.45 178.45
ROC criterion satisfied no yes yes

Table 3: ROC 1%

MP1 MP2 MP3
Iterations 10000 725 363

Computing time (s) 9 1 1
Cost 183.03 179.03 178.64

LP relaxation 0.00 178.45 178.45
ROC criterion satisfied no yes yes

Table 4: ROC 5%

1 second of CPU time. Model MP1, however, appears to be more difficult to handle:
for this model, good solutions are obtained by the solver in a reasonable amount of
CPU time, but the quality of these solutions can only be assessed by reference to the
lower bound (“LP relaxation”) computed for model MP2. As a matter of fact, both
MP2 and MP3 yield linear programming relaxations whose optimal value is very
close to the optimal value of the MIP models (within 1%), thus giving rise to small
branch-and-bound trees. The LP relaxation of model MP1, by contrast, is extremely
weak, and this prevents the branch-and-bound process from converging within an
acceptable time limit (we checked that for this model, the best available lower bound
is still equal to zero after 106 branch-and-bound iterations).

In conclusion, both models MP2 and MP3 appear to be computationally tractable,
while model MP1 is more complex to solve. In a real-world setting, the choice between
MP2 and MP3 should probably be based on their practical relevance, rather than on
pure computational considerations.

5.2 Auxiliary tests

Besides the main test case described above, we also carried out some additional
experiments with modified data sets. These experiments confirmed our previous
conclusions regarding the computational behavior of all three models. For instance,
Table 5 displays the results obtained in a case involving two plants, with 20 distinct
products in plant I and 17 products in plant II. Here again, we see that models MP2
and MP3 are much easier to solve to optimality than model MP1.

19



MP1 MP2 MP3
Iterations 10000 888 482

Computing time (s) 9.71 2.19 1.61
Cost 176.11 172.36 171.62

LP relaxation 0.00 171.49 171.44
ROC criterion satisfied no yes yes

Table 5: ROC 1%

In order to illustrate how the models could be used in a negotiation setting, we
also propose the following simulation. In the initial test case, one of the suppliers
(supplier 7) did not offer any quantity discount to the company and, as a result of the
optimization process, none of the ingredients sold by this supplier appeared in the
optimal purchasing plan. Therefore, we examined what would happen if, prompted
by these disappointing conclusions, supplier 7 agreed to adopt the same discount
curves as the most generous supplier. A run of the models with these new parameters
leads to a new purchasing plan whereby supplier 7 is awarded 4.2% of the business
volume of plant 1.

6 Final remarks

We have described a tactical purchasing planning problem involving total quantity
discounts and alternative product recipes, and we have presented several mixed integer
programming models for this problem. Depending on the industrial and planning
context, these models could or should be enriched by a number of additional features.
Such extensions have already been discussed in Section 4.7. We now sketch a few
more.

• Typically, demand and production forecasts may be revised several times over
the course of a year. If the initial purchasing decisions are non-committal, then
the MIP models could be run whenever the forecasts are updated, so as to
reoptimize the procurement plan. Only small modifications would be required
to take into account the quantities already ordered from different suppliers.

• Our models do not take the production capacity of the company into account:
implicitly, the procurement decisions are supposed to be made on the basis of
a medium-term (e.g., annual) production plan. It may be interesting, however,
to integrate the purchasing issues directly and explicitly into the production
planning models. In this framework, inventory costs may have to be considered
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in the models, as well as decisions related to the allocation of products to the
plants.

• Many companies are currently striving to reduce the number or their suppliers
in order to promote better relations with the few chosen ones (e.g., exchanges of
commercial, technical or planning information). Therefore, in a strategic, rather
than tactical use of our models, it may be interesting to introduce constraints
which limit the number of active suppliers.
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