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Abstract

Learning Classifier Systems (LCS) are rule based Reinforcement Learning (RL) systems
which use a generalization capability. In this paper, we highlight the differences between two
kinds of LCSs. Some are used to directly perform RL while others latently learn a model of
the interactions between the agent and its environment. Such a model can be used to speed up
the core RL process. Thus, these two kinds of learning processes are complementary. We show
here how the notion of generalization differs depending on whether the system anticipates (like
ACS, Anticipatory Classifier System and YACS, Yet Another Classifier System) or not (like
XCS). Moreover, we show some limitations of the formalism common to ACS and YACS, and
propose a new system, called MACS (Modular Anticipatory Classifier System), which allows
the latent learning process to take advantage of new regularities. We describe how the model
can be used to perform active exploration and how this exploration may be aggregated with
the policy resulting from the reinforcement learning process. The different algorithms are
validated experimentally.

1 Introduction

The Reinforcement Learning (RL) framework [KLM96, SB98] considers adaptive agents involved
in a sensory-motor loop (see figure 1). Such agents perceive situations through their sensors, and
use these perceptions to select the action they will perform in the environment. As a result pf
their action, the agents receive a scalar reward from the environment and they perceive a new
situation. The task of the agents is to learn the optimal policy — i.e. how to act in every situation
in order to maximize the cumulative reward on the long run — in an unknown environment.

This classical Situated Artificial Intelligence problem is an optimization problem whose formal
foundations are drawn from Dynamic Programming [Bel57] and which addresses several issues in
the field of Operational Research. In particular, learning incrementally how to act according to
perceptions is a particular classification problem which can be solved by local search algorithms
like Genetic Algorithms (GAs) as evidenced, for instance, by the application of Learning Classifier
Systems (LCSs) to Data Mining problems [BXMO1]. Other connections between Situated Artificial
Intelligence and Operational Research concern Multi Criteria Decision Problem [RV81, GSH99],
when the agent has to select actions giving rise to different kinds of rewards.

The originality of Reinforcement Learning with respect to other Artificial Intelligence learning
techniques is that the agent has to improve its behavior by drawing information from its interac-
tions with the environment, without being explicitly taught what to do by an external teacher. In
this framework, the learning process cannot rely on any tagged sample dataset. On the contrary,
the agent must learn in an incremental way, by taking into account the information provided by its
sensors along its actions. In particular, the necessity to adapt to a possibly changing environment
prevents it from relying too much on the memory of its past experience.
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Figure 1: In Reinforcement Learning (RL) problems, the agent is situated in an a priori unknown
environment. At each time step, it perceives its situation through its sensors and can perform an
action thanks to its effectors before a new time step starts. The goals of the agent are defined by
scalar rewards provided by the environment. In this example, the agent gets a reward as soon as
it reaches the cell F that provides food. The task of the agent consists in learning the optimal
behavior. Here, the agent must learn how to reach the food by performing as few successive actions
as possible, starting from any cell. RL tackles problems which can be represented as finite-state
diagrams. Maze problems are well suited to study such problems since they provide an intuitive
view of such diagrams.

Trying to improve the policy does not impede extracting knowledge about the problem that
the agent has to solve. Indeed, a way to speed up the policy learning process is to simultaneously
learn a model of the dynamics of the interactions between the agent and its environment [SB9S].
In this article, we will mainly focus on the problem of extracting such a model.

This idea reaches far back in psychology. In sharp contrast with behaviorist theories, Tolman
[Tol32] proposed that learning is the process of discovering what leads to what — i.e. that animals
develop a sort of internal representation of the world. Seward [Sew49] provided further empirical
evidences of such latent learning, which is defined as learning without environmental reward or
punishment. Such a representation of the environment can be used to anticipate the consequences
of an action in a given situation.

Computational models of learning are also concerned by such evidences of latent learning.
When an agent interacts with its environment, the consequence of an action does not only consist
in a possible reward, but also in a resulting new situation. Thus the agent may learn latently what
happens immediately after the execution of an action and may build a model of the transitions
between situations perceived successively. This model of the transitions makes it possible to
anticipate and this capacity can be used either for planning thanks to Dynamic Programming
techniques, or for speeding up the RL process by simulating actions according to the model, as
shown in [SB9§]. In other words, learning latently a model of the dynamics of the interactions
between the agent and its environment is independent from the reward but helps to improve the
overall RL process.

In this paper, we study how generalization capacities may expedite latent learning in a Learning
Classifier System (LCS) devoted to anticipation. The problem to be solved is that of extracting
knowledge about the dynamics of the interactions between the agent and its environment. It is a
classification problem since the agent must learn a model that distinguishes situations which lead
to different effects.

More specifically, we study how to acquire and to use anticipation capabilities in order to solve
the action decision problem faced by the agent. In particular, we describe how to use Dynamic
Programming techniques in order to build two different policies: one for active exploration and
one for cumulative reward maximization. These two policies define two criteria that the system
has to combine in order to solve the overall RL problem stated above.

In section 2, we briefly present the usual LCS approach to generalization as an extension of
Q-learning [Wat89]. In section 3 we introduce the formalism used in the so-called Anticipatory



Classifier System ACS [Sto98, BGS00] and YACS! [GS01b, GSS02, GSOla] so as to combine
generalization and latent learning. We also discuss a variety of regularities in the interactions
between the agent and its environment that neither ACS nor YACS are able to consider. Then,
we propose a new formalism to deal with that kind of regularities, thus making it possible to learn
a more compact model. In section 4 we describe MACS?: a new LCS using this formalism to learn
the model that is required to use iterative planning techniques from Dynamic Programming. In
section 5 we show how MACS uses this model to build separate policies for active exploration and
exploitation, and how these policies are combined. Section 6 provides experimental comparisons
of MACS and YACS with respect to their latent learning abilities. The results demonstrate the
capacity of MACS to use the model of the transitions to solve plain RL problems, by combining
exploration and exploitation criteria. In section 7, we enlight some limitations of MACS, and we
claim that the benefits of anticipation capabilities could be also obtained with non-specifically
dedicated systems.

2 Generalization in Learning Classifier Systems

The main advantage of Learning Classifier Systems (LCS) with respect to other Reinforcement
Learning (RL) techniques like Q-learning [Wat89] is to afford generalization capabilities. This
makes it possible to aggregate several situations within a common description so that the repre-
sentation of the RL problem gets smaller.

The first proposals for a LCS devoted to RL problems are presented in [Hol76]. The first
implementation of an actual LCS, called CS1, can be found in [HR78]. Wilson [Wil95] introduced
in LCSs a learning algorithm similar to Q-learning [Wat89] to replace the traditional Bucket
Brigade algorithm [Hol85]. This work led to a revival of LCS research since the new accuracy-based
approach in XCS overcomes the over-generalization problems found in previous LCSs [Wil89].

The usual formal representation of RL problems is a Markov Decision Process (MDP) which
is defined by:

e 3 finite state space S;
e a finite set of actions A;

e a transition function ¢ : S x A — TI(S) where TI(S) is a distribution of probabilities over the
state space S;

e areward function r : S x A x S — R which associates an immediate reward to every possible
transition.

One of the most popular RL algorithm based on this representation is Q-learning [Wat89].
This algorithm updates a Q-table which represents a quality function ¢ : § x A — R. Thus, the
quality ¢(s,a) represents the expected payoff when the agent performs the action a in the state s,
and follows the best policy thereafter.

At time step t, the qualities are updated according to the following formula based on the
Bellman equation used in Dynamic Programming:

q(st-1,at1) + (1 —a)q(st-1,at1) + alry + W?Gaj(Q(St,a)) (1)

where s; is the state resulting from taking the action a;; in the previous state s;_; and ry is
the associated immediate reward. « is the learning rate of a Widrow-Hoff delta rule. v is the
discount factor used in the Bellman equation [Bel57]. The effect of this equation is to assign low
qualities to states that are “far” from a set of distant reward sources.

1Yet Another Classifier System

2Modular Anticipatory Classifier System

3The Widrow-Hoff delta rule uses a learning rate 3 € [0,1]. A scalar z is increased with such a rule with respect
to the formula: = < (1 — 8)z + B. It is decreased according to the formula: z < (1 — 8)z
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Figure 2: A Learning Classifier System is an agent characterized by a list of classifiers. It perceives
a situation as an aggregation of several attributes. In this example, the agent is situated in a maze
and perceives the presence or absence of a block in each of the eight surrounding cells. It perceives
symbol 1 when there is a block in that cell and symbol 0 when there is not. The eight perceived
attributes are considered clockwise, starting with the cell in front of the agent. The agent has
to decide whether to rotate right [r] or left [1], or to move forward [£f]. From the cell it is
currently located in, and according to its orientation, the agent perceives [01010111]. Among
the classifiers learned during its past experience — each characterized by a condition — an action and
a payoff prediction, the LCS selects those whose conditions match the current situation. Among
this matching set, the LCS selects stochastically a classifier with a high prediction of the long term
payoff (here 0.7). The action proposed by this classifier is chosen and actually performed in the
environment. In this example, the agent rotates right.

The problems tackled by LCSs are characterized by the fact that the so-called statesin the MDP
framework are defined by several attributes representing perceivable properties of an environment.
For instance, one can define a grid world in which the agent perceives eight features, one for each
adjacent cell (see figure 2). Then, a situation is an ordered set of several discrete values, one for
each of the perceived attributes of the environment. Actions are characterized by a single attribute
that represents different possible effectors.

In [Lan00], Lanzi shows how it is possible to shift from a tabular representation of a RL problem
to a classifier-based representation. While tabular Q-learning considers triples (s, a,q) € Sx AxR,
LCSs like XCS consider C-A-p rules (Condition-Action-payoff classifiers). During the learning
process, the LCS learns appropriate general conditions and updates the payoff prediction.

Within the LCS framework, the use of don’t care symbols “#” in the condition parts of the
classifiers permits generalization, since don’t care symbols make it possible to use a single descrip-
tion to describe several situations. Indeed, a don’t care symbol matches any particular value of
the considered attribute. Therefore, changing an attribute into a don’t care symbol makes the
corresponding condition more general (it matches more situations). For instance, assuming that
the attributes that characterize situations may only take values O or 1, the condition [#01] is
general and matches the specialized situations [001] and [101]. Likewise, the condition [#0%#]
matches 4 situations: [000], [001], [100] and [101].

Thanks to the don’t care symbols, it is possible to build a model of the expected payoff with
a smaller number of classifiers than the number of possible triples in a tabular representation.
Usually, the payoff predictions p of the classifiers are learned according to different propagation of



delayed reward algorithms, like Bucket Brigade [Hol85] or Q-learning, as in XCS [Wil95].

The main issue with generalization is to learn to organize C' parts (conditions) and A parts
(actions) so that the don’t care symbols are well placed. To do so, LCSs usually call upon a
Genetic Algorithm (GA) to evolve a population of classifiers. Each classifier is an individual which
is evaluated through the interaction of the agent with the environment all along its life time. These
algorithms use classical genetic operators like crossover* or mutation®. These operators serve
to correctly position don’t care symbols and specialized values in the C' parts of the classifiers.
Classical LCSs use a selection mechanism relying on fitness values and classifiers with a low fitness
tend to be suppressed from the classifier list. Such GAs create classifiers randomly and evaluate
them afterward. Alternatively, in section 4, we propose devoted estimates and heuristics to drive
the creation of classifiers.

3 Formalisms for transitions modeling in Learning Classifier
Systems

In multi-step problems, the agent needs to act more than once so as to solve the problem. In such
conditions, in addition to a reward, the agent also receives a new situation as a result of its last
action. Then, it makes sense to use LCSs to learn a compact model of the dynamics between the
agent and its environment.

3.1 Representing regularities with ACS and YACS

Early LCSs [Hol90] actions could deposit internal messages on a so-called message list instead of
suggesting an actual action in the environment. With such internal messages, it was possible to
use tags that specified if a current “action” posted to a message list directly suggested an action
or participated in an internal reasoning process. Riolo [Rio91] implemented such capacities in
CFSC2 and demonstrated how they can be used for latent learning.

In contrast with this approach, the ALP (Anticipatory Learning Process) used in ACS [St098,
BGSO00] is a development of the Anticipatory Behavioral Control theory introduced in psychology
by Hoffmann [Hof93]. YACS [GS01b, GSS02, GS01a] is a similar approach and both systems call
upon explicit condition-action-effect classifiers, noted C-A-E. This formalism is similar to
Sutton’s DynaQ+ [Sut91] approach or to Drescher’s context-action-result rules [Dre91], but
it affords generalization capabilities.

In such classifiers, the E part represents the effects of action A in situations matched by
condition C. Tt records the perceived changes in the environment. In both ACS and YACS, a C
part is a situation which may contain don’t care symbols “#” or specific values (like 0 or 1), as
in XCS (see section 2). An E part is also divided into several attributes and may contain either
specific values or don’t change symbols “=". Such a don’t change symbol means that the attribute
of the perceived situation it refers to remains unchanged when action A is performed. A specific
value in the F part means that the value of the corresponding attribute changes to the value
specified in that E part.

For instance, let us consider the classifier [#0#1] [0] [=10=]. It anticipates the effects of the
action [0] in 4 possible situations ([0001]1, [0011], [1001] and [1011]) thanks to the don’t care
symbols in the C part. According to the F part, and if the classifier is accurate:

e the first attribute remains unchanged, whatever the initial value is (0 or 1 because of the
don’t change symbol in the C' part);

e the second attribute will change from 0 to 1;

e the third attribute will change to 1, whatever the initial value is;

4A new classifier is a combination of different segments of its parents.
5Any attribute of a new created classifier may be randomly changed to any specific value or to a don’t care
symbol.



Classifier
[#0#1] & & [o] [=10=]
[0011] &4 & & a [0101]
[1011] a& 4 a [1101]
Situations & & & a Anticipations

Table 1: Tllustration of the anticipation mechanism in YACS

e the last value of the attribute remains 1.

These cases are illustrated in table 1.

This formalism permits the classifiers to represent regularities in the interactions with the
environment, like for instance “In a grid world, when the agent perceives a wall in front of it,
whatever the other features of the current cell are, trying to move forward entails hitting the wall,
and no change will be perceived in the cell’s features”.

The latent learning process is in charge of discovering C-A-E classifiers with maximally general
C parts that accurately model the dynamics of the environment. A classifier is said to be mazimally
general if it cannot contain any other don’t care symbol without becoming inaccurate. It is said
to be accurate if, in every situation matched by its condition, effecting the corresponding action
always leads to the same changes in the perceived situations.

Thus, generalization is not the same process in ACS or YACS than in XCS [Lan97]. Indeed, in
ACS and YACS, generalization is afforded by the joint use of don’t care and don’t change symbols
and makes it possible to represent regularities in the transitions between successive situations.
Moreover, it provides the system with:

e a kind of selective attention, when some situations can be identified by paying attention to
some attributes only;

e the ability of considering several situations defined by the same condition, thus reducing the
size of the model that describes the dynamics of the environment.

As YACS does not generalize with respect to a payoff prediction, it is able to generalize over
situations with different expected payoffs. As a result, it does not make sense to store information
about the expected payoff in the corresponding classifiers. Therefore, the list of classifiers only
serves to model environmental changes.

3.2 Representing more regularities

Generalization makes it possible to represent regularities in the dynamics of the interactions with
the environment. However, if ACS and YACS are able to detect if a particular attribute is changing
or not, their formalism cannot represent regularities across different attributes because it considers
each situation as an unsecable whole. To make this point clear, let us consider an agent in a grid
world as in figure 2. Turning right results in a two-positions left shift of the attributes. For
instance, the agent may experience transitions like [11001100] [~] [00110011].

In such a case, every attribute is changing. Thus, the formalism of ACS and YACS is not
able to represent any regularity. Nevertheless, the shift in the perceived situation is actually a
regularity of the dynamics of the interactions: whatever the situation is, when the agent turns
clockwise, the value of the 1st attribute comes to the last value of the 3rd, the value of the 2nd
becomes the 4th one etc.

The particularity of such a regularity is that the new value of an attribute depends on the
previous value of another one. Expressing generalization with don’t change symbols only forbids
to represent such regularities. In the ACS/YACS formalism, the new value of an attribute may
only depend upon the previous value of the same attribute, a situation which is seldom encountered
in practice.



[11001100] + Situation
[1######E] [~] [?7777717]
[#1######] [~] [?7777771]
C##0#####] [~] [07777777
[###O####] [~] [70777777
[K:2:2:2 522 [~] [?7177777
[##t#1#4] [~]  [?7717777]
[######0%] [~]  [?7770777]
[#######0] [~]  [?7777077]
[######4#0] [~] [?7777177]
Anticipations — [00110011]
[00110111]

Table 2: During the integration process, the LCS proposed in section 3.2 scans the E parts and
selects those classifiers whose A parts match the action and whose C' part match the situation.
The integration process builds all the possible anticipated situations with respect to the possible
values of every attribute. Here, the system anticipates that using [11001100] as a current situation
should lead to [00110011] or to [00110111]. If all the classifiers were accurate, this process would
generate only one possible anticipation.

To overcome this problem, it is necessary to decorrelate the attributes in the E parts, whereas
ACS and YACS classifiers anticipate all attributes at once. To this end, we propose to describe
the expected situations E, not with don’t change symbols, but with new don’t know symbols “?”.

right, the agent always perceives a wall at his left when it perceived a wall behind, whatever the
other attributes were’. This classifier does not provide information about the new values of other
attributes (as denoted by the “?” symbol). Thus, thanks to these new don’t know symbols, a
classifier may anticipate a few attributes only and the overall system gains the opportunity to
discover new regularities.

Again, this proposal for a new formalism leads to a new conception of generalization. As usual,
a classifier is said to be mazimally general if it could not contain any additional don’t care symbol
without becoming inaccurate. But it is now said to be accurate if, in every situation matched by
its condition, taking the proposed action always actually leads the attributes to take the values
specified in the effect part, when such attributes are not don’t know symbols.

As a result, the anticipating unit is no more the single classifier but the whole LCS. Given a
situation and an action, a single classifier is not able to predict the next situation: it just describes
a partial view of it, which is focused on a few attributes only. The system accordingly needs
an additional dmechanism which integrates these partial views and builds a whole anticipated
situation, without any don’t know symbol in its description, as shown in Table 2.

4 Latent Learning in MACS

As defined in section 3.2, an E part may contain several don’t know and several specific attribute
values. In the present work, we adopted a simplified point of view by allowing one and only
one specific value in an effect part. Thus, every classifier is able to predict the value of a single
attribute only.

In this section we detail the latent learning mechanisms of MACS, a new LCS designed to take
advantage of the formalism just proposed.



4.1 Evaluation and selection of the accurate classifiers

This part of the system is in charge of evaluating the accuracy of each classifier and of suppressing
some of them if necessary. Two integer values g and ab are associated to each classifier:

e g for storing the number of good anticipations since the creation of the classifier;
e b for storing the number of bad anticipations since its creation.

MACS keeps a memory of the last perceived situation and the last performed action. Thus, it
knows the current situation s; resulting from the action a;_; in the situation s;_; at each time
step.

With this information, YACS scans the classifier list and selects the classifiers whose aC' part
matches s;_1 and whose A part matches a;_;. For each such classifier:

e if its F part matches s;°, then the classifier anticipated well and its g value is increased by
one unit;

e if its E part does not match s;, then the classifier anticipated badly and its b value is
increased by one unit;

A classifier which always anticipates badly during a given number of evaluations is considered
inaccurate and is suppressed. This number of evaluations is a parameter of the system, noted e,..
A classifier is suppressed when g= 0 and b= e,. Another parameter e, of the system monitors
how many evaluations are needed to assume that a classifier is accurate.

4.2 Specialization of conditions

As in YACS, a classifier which anticipates sometimes well, and sometimes not, is said to oscillate.
Because its condition part is too general and matches too many situations, it must be specialized.
Here again, this process is not driven by a GA but by heuristics which take advantage of specific
estimates as described below.

4.2.1 The estimates used by the specialization process

An expected improvement by specialization estimate ig is associated to each general attribute of
the C' part of each classifier — i.e to each don’t care symbol. This variable estimates how much
the specialization of the attribute would help splitting the situation set covered by the C part into
several subsets of equal cardinality.

Let us consider a classifier which tries to anticipate the consequences of an action in several
situations. If the value of a particular attribute of the situation when the classifier anticipates
well is always different from the value of that attribute when the classifier anticipates badly, then
this attribute is very relevant for distinguishing the situations covered by the C part. Thus, the
C part must be specialized according to this particular attribute, and the corresponding estimate
is should get a high value.

In order to compute the estimates i,, each classifier memorizes the situation s, preceding the
last anticipation mistake, together with the situation s, preceding the last anticipation success.
Each time a classifier is such that its C' part matches s;_; and its A part matches a;_1, its accuracy
is checked:

e if the classifier anticipates well, for each attribute:

— if a particular attribute of s, equals the corresponding attribute of s;_;, then the
corresponding estimate ¢4 is decreased;

— if a particular attribute of s; differs from the corresponding attribute of s;—;, then the
corresponding estimate g is increased,

6a don’t know symbol matches any value.



e if the classifier does not anticipate well, for each attribute:

— if a particular attribute of s, equals the corresponding attribute of s;_;, then the
corresponding estimate ¢4 is decreased;

— if a particular attribute of s, differs from the corresponding attribute of s;_;, then the
corresponding estimate 4 is increased.

The i, estimates are increased and decreased according to a Widrow-Hoff delta rule. The initial
values are 0.5. A specialized attribute is given the same default i, value of 0.5.

4.2.2 The specialization process

[###1] [0] [1?27]

Muspec

[#0#11 01 [12?2?1 [#1#11 01 [1?2?2?]

Figure 3: In this example, the mutspec operator specializes the C' part of a classifier according to
the second attribute. The original classifier is replaced by two new specialized versions.

A classifier is said to oscillate when g+b>e, and gxb> 0, where e, is a parameter of the
system that represents the number of evaluations necessary to detect that a classifier oscillates.

As soon as such a classifier is identified, the mutspec operator [Dor94] is applied (see figure 3).
This operator replaces the oscillating classifier by several more specialized versions. Some of the
classifiers thus produced by the mutspec operator will always anticipate badly, but they will be
eliminated by the selection of accurate classifiers process. Some of the classifiers created by the
mutspec operator will still oscillate and will be specialized again. Finally, a new classifier which
does not match any of the already perceived situations is not added in the set. This property can
be checked thanks to the set P of every perceived situation encountered during the lifetime of the
agent. This set only contains one single instance of each already perceived situation”.

In contrary to usual mutspec practice [Dor94], the attribute to specialize in MACS is not chosen
randomly, but thanks to the i, estimates. The specialized attribute is the one with the highest i
value, assuming such change is the most likely to improve the system.

4.3 Generalization of conditions

The specialization process may produce classifiers with a C' part at a sub-optimal level of gen-
erality, especially in the case of local exploration, when the agent only experienced a part of the
environment. Thus, MACS needs a generalization process which is in charge of reconsidering
early sub-optimal specializations. As it is the case with the specialization process, estimates ¢,
and dedicated heuristics are used in order to take advantage of experience for driving the process
of generalization.

4.3.1 The estimates used by the generalization process

In order to compute the i, estimates, MACS selects at each time step each classifier whose A part
matches a;_1 and whose C part does not match s;_1.

Considering such classifiers, for each specialized attribute in the C' part, MACS checks if the
C part of the classifier would match s;_; if the considered attribute were general. In this case,
the considered i, estimate is updated:

"The set P only contains the actually perceived situations, not all the virtually possible situations resulting
from the number of attributes and the number of values they can take. In a problem like the multi-agent Sheepdog
problem described in [SG01] for instance, the number of actually encountered situations is 290 while the number
of virtually possible situations is 8192.



e if the F part of the classifier matches s;, then a classifier with a more general C' part would
have an accurate F part and the considered i, estimate is increased;

e if the E part of the classifier does not match s;, then a classifier with a more general C' part
would have an inaccurate F part and the corresponding i, estimate is decreased.

The i, estimates are increased and decreased according to a Widrow-Hoff delta rule. The initial
values are 0.5. A general attribute is given a default i, value of 0.5.

Up to that point, according to such a mechanism, MACS is able to check if an attribute of a
C' part should be generalized or not.

4.3.2 The generalization process

-1 St
[0] [1001]
Selection of
matching classifieJ i SetB

[ #100] [ 0] [ 1???] Group by same effec{ #100] [ 0] [ 1???]
+ [#001] [0] [1?27] %* [#001] [0] [1?27]
[#000] [0] [1??7] [#000] [0] [1??7]

[ 1#0#] [0] [?0?7]

g [10#1] [0] [??07] Build set of
é' [1###] [0] [?7?1] general classifier
SetA
Solve conflicts [ #100] [ 0] [ 1???]
[#100] [0] [1??7?] [#00#] [0] [1727]
[ #OO#] [ 0] [ 1797] Keep the most gener I[ #00#] [ 0] [ l’)')')]
SetD classifiers SetC

Figure 4: The generalization process in MACS. See text for explanations.

Each time step, according to the way they are updated, the i, estimates only increased for
the classifiers whose A part matches a;—; and whose E part matches s;. They are selected by
MACS in the list of all classifiers. In the example of figure 4, these selected matching classifiers
are identified as Set A.

The classifiers of Set A are grouped by similar effects in Set B. In our example, we only consider
one of the resulting Set B, but the following process is repeated for each Set B that corresponds to
similar ' parts and similar A parts. Set B is only processed to build the Set C of general classifiers
if all the classifiers of Set B are accurate. This way, only accurate classifiers are generalized.

With Set B, MACS builds a new Set C of classifiers which are either more general or mere
replicates of the original ones. For each classifier of Set B:

e if every estimate i, of the classifier is lower than 0.5, then it is not a good candidate for the
generalization and it is added without modifications in Set C;

e otherwise, a new classifier is added to Set C. The attribute of the C' part with the highest
estimate 4,4 is generalized.

In our example, unless the estimates do not appear on figure 4, they are used to decide that the
C parts of the second and third classifiers should be generalized according to the fourth attribute.
Indeed, this attribute is not relevant since both classifiers are accurate and anticipate the same
value 1 for the fourth attribute. The first classifier remains unchanged and the two other ones are
generalized according to the fourth attribute.

At this point, each classifier of Set C is checked for conflicts with other classifiers of the global
list. Two classifiers are in conflict if they anticipate a different value for the same attribute, given
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an initial matching situation and action. If a classifier of Set C is involved into a conflict, the
corresponding original classifier of set A is added to the new Set D. Otherwise, the classifier of Set
C is added. Two classifiers are conflicting if their C and A parts are compatible, but if their FE
parts are not. Two E parts are incompatible if they do not match — i.e if the values of the symbols
that are not don’t know are different. Two C parts are compatible if they match and if at least
one possible situation is matched by both C parts. MACS finds the possible situations in the set
P of every perceived situation encountered during the lifetime of the agent (see section 4.2.2).

In order to only keep the most general classifiers in set D, MACS checks iteratively every
possible pair of classifiers in that set. When the C part of a classifier is more general that of
another classifier, the former classifier is kept and the latter is suppressed. In our example, MACS
only keeps one of the two last classifiers.

Up to that point, MACS has build a new Set D of classifiers which are equal or more general
than the original ones in Set A. The classifiers of Set A are replaced in the list of classifiers of the
system by the classifiers of Set D.

This process make it possible to replace several classifiers with a smaller or equal number of
classifiers. The C' part of the new classifiers cover the same situations. Thus they do not conflict
with other classifiers in the system (classifiers with incompatible E parts are not overlapping).

4.4 Transition covering

To fully describe a given environment, a model needs to cover every encountered transition in this
environment. This may not be the case in the following circumstances:

e the system is initialized with an empty list of classifiers;

e the selection of accurate classifiers may eliminate inaccurate or oscillating classifiers because
of local exploration, when the agent experienced only a part of the environment.;

e the condition specialization process creates a specialized classifier only when such classifier
matches at least one already perceived situation. As long as the agent does not experience
every possible situation, relevant classifiers may not be added to the classifier list.

To summarize, each time step, the system covers the transitions defined by s; 1, a;_1 and s;.
For each attribute f of s;, it considers an hypothetical part E; of E such that its single specific
attribute (which is not a don’t know symbol) is set to its value in s;. Among the classifiers with
an A part corresponding to a;_1, the system checks whether there is at least one such classifier
whose C' part matches s;_; and whose E part equals to Ey. If it is not the case, the system covers
the transition by adding a new classifier in the classifier list.

The A part of this covering classifier is set to at—1, its E part is set to Ey, whereas its C part
is set as general as possible with regards to the following constraint: its C' part does not match
each of the C parts of the classifiers with the same E and A parts, but its C' part matches s;_.

5 Combining Latent Learning and Dynamic Programming

In section 4, we described how MACS learns a model of the dynamics of the environment with
anticipating classifiers. In this section, we show how this model is used in a Dyna architecture
[Sut91] to define a policy. In such architectures, as illustrated in figure 5, the latent learning process
takes place independently from the reward, and permits to build a model of the environment.
This model is then used to improve the learning speed of a policy, thanks to methods inspired by
Dynamic Programming.

In the first part of this section, a description of how MACS uses a partial and inaccurate
model of the transitions to drive the exploration process is given. The second part is devoted to
the process of learning a policy to maximize the cumulative reward provided by the environment.
We also show how MACS combines active exploration and exploitation.

11



Reward

Situation
Y Y Y

List of List of classifiers
percegtlons (model of the environment) m
st OR(SL) L. ... wCondi tion Action Effect z
T
sn |R(Sn) Condi tion Action Effect g
<
m
zZ
_|

S

Action |

Y

Figure 5: MACS uses a Dyna architecture [Sut91] to perform reinforcement learning. In this
kind of architecture, the model of the environment is learned latently, i.e. independently from the
reward. The informations about the rewards are stored apart, here in the list of perceptions P,
and a decision module takes advantage of both informations to build a policy.

5.1 Active Exploration

The aim of active exploration is to provide the agent with a policy that maximizes the information
drawn by the sensori-motor loop. This agent will accordingly select actions that help improving
the model.

5.1.1 The internal immediate reward

In order to be able to drive the behavior of the agent, we define an internal reward function
i:Sx A — R which estimates the immediate gain in information, given a situation and an action.
With this function, MACS is able to choose the action which maximizes the information, in a
given situation.

In a situation sg, when the system has to choose an action in order to maximize the immediate
information gain, MACS selects every classifier such that its condition matches so. If the action
suggested by any of such classifiers was chosen by the system, the classifier will be evaluated at
the next time step: either the number of good evaluations g, or the number of bad evaluations b,
will increase (see section 4.1).

For each of these classifiers that match s, MACS computes an evaluation level [ € [0, 1]. This
level depends upon the number of good evaluations g, the number of bad evaluations b, and the
number of evaluations needed to declare a classifier as inaccurate, accurate or oscillating:

e if b > 0 and g > 0, then the classifier needs to be evaluated further to gain information
about the best way to specialize it and [ = min((b + g)/e,, 1);

e if b =0 and g > 0, then the classifier ¢ may be accurate but further evaluations are needed
to check that point and ! = min(g/e,, 1);

e if b > 0 and g = 0, then the classifier ¢ never anticipated well but requires further evaluations
to be suppressed and [ = min(b/e,, 1);

e if b = g =0, then the classifier has never been evaluated and [ = 0.

Thus level [ is equal to 1 if the classifier does not need to be evaluated anymore before being sup-
pressed, specialized or generalized. It is equal to 0 when the classifier needs additional evaluations.
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The classifiers that match sg are grouped by action. For each possible action a, MACS computes
the set S, ., of the possible anticipated situations as described in section 3.23. Only the anticipated
situations which belong to the set P of already encountered situations (see section 4.2.2) are
considered in Sy, .. Each triple (sg,a, s1), where s; € S, 4, is one of the possible transitions that
would be experienced if action a were performed in situation so. We define the evaluation level
I(s0,a, s1) associated to this transition as the product of the evaluation levels /. of all the classifiers
¢ involved in this anticipation:

l(So,a,Sl) = H lc

cR(80,a,51)

The classifiers ¢ matching (so,a, s1) are such that their C' part matches sg, their A part matches
a, and their F part matches s;. If the transition occurs, the associated immediate information
gain is:

Ri(s0,a,s1) =1—1(s0,a,s1)
We define the immediate information gain associated to a situation and an action as the maximum
information gain over the possible associated anticipations:

R; = ax R;

i(50,a) amax i(s0,a,51)
If the model does not provide MACS with at least one anticipated situation s;, because of incom-
pleteness, then i(sg,a) is given the default value 1, which is the maximum immediate information
gain.

This value R;(so,a) is used as an immediate reward in order to compute a policy for active

exploration. It is computed by analyzing the model and does not rely on the environment. Thus,
we call it an internal reward.

5.1.2 Planning to maximize the information gain on the long run

To perform active exploration, MACS has to maximize the cumulative immediate information
gain on the long run. Therefore, the system must perform lookahead planning to be able to act
in order to get information in the future, even if it currently perceives a situation such that no
immediate internal reward is available.

The planning process relies on the immediate internal rewards and on the current model of
the dynamics of the interactions with the environment. But, during the learning process, this
model of the transitions is not reliable and may be misleading. For instance, an agent may plan
on the bases of a transition which cannot be actually experienced. In that case, it may happen
that the policy resulting from the model leads the agent into an infinite loop, with no chance of
reconsidering the misleading transition. Thus, the planning process must be cautious because the
decision relies on inaccurate information.

During the learning process, the model of the transitions improves, and the immediate internal
rewards are changing a lot. Thus, the exploration policy of the agent is not stable at all over
successive time steps.

Nevertheless, because we want to keep the agent reactive, it is not suitable to compute a whole
plan at each time step. Therefore, we use an iterative planning approach similar to that of Value
Iteration [SB98], and inspired from the Dynamic Programming approach. Each time step, MACS
only updates once the values associated to situations and the policy improves over several time
steps and keeps near-optimal most of the time. However, since the model is not accurate anyway,
finding an optimal policy with respect to this model is not necessary. We only want that the
resulting behavior makes the agent to learn a model more quickly than with a random policy.

Each situation of the set P of already encountered situation is valued by the discounted in-
formation gain which can be expected from this point. Thus, the valued perception set P serves
to store the values of the situations while transitions are computed according to the classifier list
(see section 3.2), and immediate internal rewards are associated to each transition.

8There may be several possible anticipated situations in the case where the classifiers are not accurate.
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Each time step, MACS performs one simulated action for each situation sg of the perception
set P. For each action a, the immediate reward associated to sp and a is R;(sg,a) (see section
5.1.1). The expected future reward associated to a transition (so,a,s1) is the discounted value
Vi(s1) associated to s; in the set P.

Planning thanks to an inaccurate model can result in a sub-optimal policy and even to endless
cycles in the behavior of the agent. In order to avoid this kind of problems, MACS is cautious
with respect to the expected discounted reward Thus, given a situation sg and an action a, we
define the expected information gain as : as:

E; = in V;
i(50,a) i i(s1)
The min in this equation reflects the cautiousness of MACS. Indeed, for each action, the system
considers the minimum internal reward he should get, with respect to the model. With this
information, MACS computes the quality associated to situation s and action a:

Qi(s0,a) = R;i(s0,a) +vE;(s0,a)
Then, MACS updates the new value of sg:
Vi(so) = max Qi(s0,a)

The ~ factor is the discount factor. It plays the same role as in equation 1. This way, at each
time step, MACS updates several values in the perception set and the policy improves. During
the action selection process, when the perceived situation is s;, MACS chooses the action that
maximizes Q;(s¢,a).

5.2 Reinforcement Learning in MACS

In section 5.1, we defined how MACS performs active exploration thanks to iterative planning
techniques. In this section, we show how MACS uses the model of the transitions to build a policy
that maximizes the environmental payoff on the long run.

5.2.1 Learning a policy for the environmental reward

Each time step, MACS receives a scalar reward r; and a new situation s; from the environment,
as the result of taking action a;—; in situation s;_;. This immediate environmental reward is
associated to s, in the perception set P. We note it R,(s;). This function R, represents the goals
defined by the environmental rewards of the system. Here again, we design an iterative planning
mechanism which permits MACS to take advantage of its model to reach the goals.

As in section 5.1.2, MACS simulates several successive actions each time step. When MACS
simulates an action with the situation sy as a starting point, it uses the model of transitions
provided by the list of classifiers and the integration mechanism (see section 3.2) to compute
for each action a the set of possible anticipations s;. A payoff value V,,(s) is associated to each
situation s in the perception set P. This value represents the desirability of the corresponding
situation. The reinforcement learning process updates these values iteratively thanks to the model
of the transitions and to the immediate environmental rewards. Here again, the learning process
is cautious because along the latent learning process, the model may be inaccurate. First, given
all the possible transitions from so, MACS computes the qualities associated to the actions:

Qp(s0,a) = min [R(s1) +7V;(51))]

51€S50,a

The ~ factor is the discount factor. It plays the same role as in equation 1. MACS computes and
updates the new value of sq with this information:

Vi(s0) = max Qp(50,a)
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During the action selection process, when the perceived situation is s;, MACS chooses the action
to maximize Qp(so,a). This way, MACS builds an exploitation policy that enables it to decide
which action to take in each situation to reach the goals defined by its environmental reward.

5.2.2 Combining the exploration and the exploitation policy

Section 5.1 and 5.2.1 respectively described how MACS computes a policy devoted to active
exploration and how it computes a policy for reaching the goals defined by its environmental
reward. We now address the issue of combining these policies in order to generate a behavior
combining exploration and exploitation.

This combination takes place during the action decision process. When MACS perceives the
situation s¢, it computes for each action a the qualities Q;(so,a) and Qp(so, a) respectively as-
sociated to the exploration and the exploitation, before aggregating them. In this case, it does
not make sense to aggregate these criteria by computing a weighted sum because none of the two
qualities are bounded. Indeed :

e if there are many immediate gains of information, even if they all belong to [0,1], the
discounted sums may be high;

e the level of the environmental rewards cannot be known by the system before the learning
process is actuated since the environment is unknown.

Thus, we cannot select adequate weights in advance. However, we still can define a hierarchy
between the two criteria. As the optimality of the exploitation policy relies on the reliability of
the model, seeking information that helps improving the policy is given the priority against the
payoff maximization. The selection of an action takes place the following way (we note A\ 4,3 the
set A, excluding ag) :

e If Jag € A tq. Ja € A\ (40} tq- Qi(St,a0) > Qi(5t,a) then the chosen action is ag
e Otherwise, the chosen action a; is such that Q. (st,a1) = max,ca Qu(st,a)

This way, if the actions are equivalent with respect to the information gain, then MACS chooses
the action according to the exploitation policy.

6 Experimental study

Up to that point, we described MACS, a new LCS that performs a new kind of generalization
when compared with XCS, ACS or YACS. In [GS01a] and [GSS02], we compared the ability of
YACS and ACS to build a model of the dynamics of the interactions between the agent and
its environment. We showed that YACS provides an improvement over Stolzmann and Butz’s
ACS, in terms of learning speed as in terms of number of discovered classifiers. In this section,
we provide experimental comparisons of YACS and MACS interacting with the environments
Maze228, Maze252, Maze288 and Maze324, described in section 6.1.

We also provide experimental results about the use of MACS anticipation capabilities to provide
this system with non-random policies. The results given in section 6.2 are discussed in section 6.3.

6.1 The environments Maze228, Maze252, Maze288 and Maze324

Like the Wilson woods problems that are usually used as benchmarks in the LCS framework,
Maze228, Maze252, Maze288 and Maze324 are grid worlds.

Each cell in those grids may be empty or contain either an obstacle B or food F. The agent is
situated in a cell and is oriented toward one of the four cardinal directions. A perceived situation
is described by nine attributes : eight corresponding to the adjacent cells and one to the cell the
agent is situated in. An attribute may take three values: 0 (empty cell), 21 (H) or 2 (food)
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Figure 6: The Maze228 environment Figure 7: The Maze252 environment

I-

Figure 8: The Maze288 environment Figure 9: The Maze324 environment

The agent can choose between three actions: turning 90° left, turning 90° right or moving one
cell ahead. In this case, if the cell in front of it contains an obstacle, the agent remains in its
current cell.

Grid worlds are usually used as understandable representations of finite state automatons. In
these automatons, actions imply transitions among states, represented as graph nodes. Such au-
tomatons make it possible to represent any reinforcement learning problem with discrete states
and actions. Even if grid worlds can only represent a sub class of reinforcement, learning problems,
they can help to apprehend complex environments. In particular, they provide an easy way to
represent attributes. Moreover, maze problems provide regularities which may be used for gener-
alization. In MACS as in YACS, we did not make any assumption concerning the particularities
of grid worlds over general finite state automatons.

The topologies of Maze228, Maze252, Maze288 and Maze324 are respectively illustrated in
figures 6, 7, 8 dand 9. Maze228 contains 19 non-terminal cells and 19x4x3=228 transitions may
be experienced in the environment. As maze 252 contains 21 non-terminal cells, it is possible for
the agent to experience 252 transitions in it. Likewise, Maze288 and Maze324 respectively contain
25 and 26 empty cells and thus, 288 and 324 possible transitions.

From a qualitative point of view, the particularity of Maze288 is that it is less “open” than the
others. Its left part actually contains two dead ends because the agent cannot move diagonally,
while in the other environments, nothing equivalent exists. This originality of Maze288 leads an
agent acting randomly to visit less often all the possible situations.

The experiments are divided into trials. The agent starts a trial in a free cell chosen randomly.
A trial ends when the agent reaches the cell with food, regardless of its orientation. In that case,
the agent receives a reward of 1.0, it perceives the new situation to learn about the last transition,
and a new trial starts.

6.2 Experimental results

In order to estimate the evolution of the accuracy and completeness of the model of the transitions
provided by the classifier list and the integration mechanism (see section 3.2) over successive time
steps, we use a measure of the percentage of knowledge provided by the model. For each possible
transition in the environment, we check if the classifier system is able to model accurately the
transition — i.e. if it anticipates a single situation only, and if this situation is the actual one. The
percentage of knowledge is the ratio of transitions accurately modeled by the system against the

16



a Time to converge Nb. Classifiers
a Average | Std. Dev. Average
Maze228 - YACS (random) 9 295 1787 199
Maze228 - MACS (random) 4 960 1737 184.8
Maze228 - MACS (active) 3 001 1 006 181.8
Maze252 - YACS (random) 11 466 2 286 219
Maze252 - MACS (random) 6 695 2 353 193.8
Maze252 - MACS (active) 3716 1 306 190.2
Maze288 - YACS (random) 20 983 7114 249
Maze288 - MACS (random) 8 473 3078 205.3
Maze288 - MACS (active) 4 379 1 686 204.4
Maze324 - YACS (random) || 15 740 | 3 558 283
Maze324 - MACS (random) || 11 398 4 538 229.6
Maze324 - MACS (active) 5518 2 084 227.2

Table 3: Summary of the experimental results
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Figure 10: Number of classifiers against the size ~ Figure 11: Time to converge against the size of
of the environment the environment

total number of transitions to be modeled by the system. This percentage cannot be measured
in real world experiments since it requires a perfect knowledge of the environment. However, its
evaluation is only possible in simulated environments.

For YACS, as defined in [GSS02], the memory size m is set to 5 and the learning rates are
set to 0.1. For MACS, we also used learning rates of 0.1 and e,, e, and e, were all set to 5 (see
section 4). The discount factor v was set to 0.9.

We tested YACS in random exploration and MACS both in random and active exploration
in each of the four environments. Table 3 summarizes the results of the different experiences.
It shows the average over 100 experiences (and the associated standard deviation) of the time to
reach a perfect knowledge of the environment. It also shows the average of the number of classifiers
the systems needed to model the dynamics of the interactions with the environment.

Unilateral statistical Wilcoxon tests permit to check, with a given confidence, the hypothesis
of the equivalence of convergence time distributions, against the the hypothesis stating that the
convergence times for one set of experiments are lower than the times for another set. For each
environment, considering one 100 valued sample per experiment, the Wilcoxon tests accept, with
thresholds lower than 10~°, the hypothesis that MACS converges more quickly than YACS in
random walk, and that MACS converges faster with active exploration. &

Figures 10 and 11 show the relationships between the size of the environment on the one side,
and the average number of classifiers and the average time to converge, on the other side.

17



Percentage of knowledge for Maze228 Number of classifiers for Maze228

A4 * 500 T T T T T

YACS —o— YACS —o—

MACS (random) —o— 450 - MACS (random) —e—
MACS (active) —e— 400 F MACS (active) —e— 4

9-9-0-0-0-9-0-6

350 |- -
300
250
200 H
150
100
50 |f

percentage

number of classifiers

1 1 1 1 1 1

0 1 1 1
0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500
time step time step

Figure 12: Evolution of the percentage of  Figure 13: Evolution of the number of classi-

knowledge in Maze228 fiers in Maze228
Percentage of knowledge for Maze252 Number of classifiers for Maze252
1 « 2889-9-0-000 9000090000 500 T T T T T T
et YACS —o— YACS ——
MACS (random) —e— 450 MACS (random) —e— 7|
0.8 MACS (active) —e— - » 400 | MACS (active) —e—
& 350 b
[} [}
g 0.6 - E 300
c o
g 5 250
g 04 ] g 200
£ 150
>
0.2 B < 100
50 |
1 1 1 1 1 1 0
0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500

time step time step

Figure 14: Evolution of the percentage of  Figure 15: Evolution of the number of classi-
knowledge in Maze252 fiers in Maze252

Figures 12, 14, 16, and 18 show the evolution of the percentage of knowledge when YACS and
MACS interact with the different environments. Figures 13, 15, 17, and 19 show the evolution
of the number of classifiers in the same experiments. All these results are averaged over 100
experiments.

Figures 20, 21, 22 and 23 show how the the average number (over 100 experiments) of time
steps required by MACS to reach the food evolves along dsuccessive trials, when exploration and
exploitation are jointly used.

6.3 Experimental results analysis
6.3.1 MACS vs. YACS in random exploration

The semantics of the classifiers are different in YACS and in MACS. With the YACS formalism,
classifiers model transitions as a whole while, in the MACS formalism, each classifier predicts the
value of a single attribute only. In environments supplying few regularities across attributes, the
number of rules discovered by MACS should be higher.

Moreover, there are no don’t care symbols in the formalism of MACS. As a result, regularities
like “moving toward a wall does not make the situation change” are represented with more classifiers
in MACS than in YACS - one classifier for each value of each attribute — by taking advantage of
its ability to represent regularities involving different attributes of the situations. But the number
of such classifiers remains the same whatever the size of the grid world is.

Despite this, in Maze228, like in Maze252, Maze288 and Maze324, MACS converges toward
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a smaller number of classifiers than YACS, thanks to the new regularities taken into account in
the MACS formalism. Indeed, the larger the environment, the more MACS outperforms YACS
when considering the ratio between the number of discovered classifiers and the number of actual
transitions. MACS exhibits an ability to represent many regularities which are independent from
the particular topologies of the mazes, but that concern mazes in general:

e In MACS, every transition involving a turning action is modeled with the same number of

classifiers regardless of the number of cells in the grid world. As YACS is not able to represent
regularities across attributes, more classifiers are required to model these transitions as the
size of the environment grows.

The only attributes which are difficult to predict for MACS correspond to the cells in front
of the agent, when it moves forward and when there is no wall in front of it. Whether such
situations occur frequently or not depend on the topology of each particular maze, not on
the general structure of mazes. In that case, the latent learning process has to take into
account regularities which occur less frequently. In order to reduce the number of classifiers
necessary to predict such attributes, a solution could be to provide MACS with a mechanism
making it possible to build E parts with several specific symbols, as initially proposed in the
formalism (see section 3.2).

Regularities of the first kind are quickly discovered by MACS. Indeed, in the first 1000 time

steps of the experiments (in any of the tested environments), the percentage of knowledge grows

19



MACS in Maze228

40 60 80
trial

Figure 20: Evolution of the number of time
steps to achieve successive trials in Maze228

MACS in Maze288

40 60 80
trial

MACS in Maze252

500 T T T T 500 T T T T
w 400 . w 400 g
Q. Q.
o o
0 %]
[} - () L -
g 30 g 30
S S
5 200 ft . 5 200 g
Qo Qo
£ €
> >
£ 100 - £ 100 g
0 L 0 L

40 60 80
trial

Figure 21: Evolution of the number of time
steps to achieve successive trials in Maze252
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Figure 22: Evolution of the number of time
steps to achieve successive trials in Maze288

Figure 23: Evolution of the number of time
steps to achieve successive trials in Maze324

very fast before slowing down and the complete model is learned more quickly in MACS than in
YACS.

Such learning speed of rotation actions is due to the fact that, despite the random exploration,
there are many relevant examples to drive the learning process, since the concerned regularities
are independent from the particular topology of each environment. This is very different when
regularities that rely on the topology are concerned. In that case, the more the classifiers are spe-
cialized, the more the system experiments transitions that do not provide additional information,
and the learning process accordingly slows down.

Despite this random exploration, the learning speed of MACS is linear in the size of the tested
environment while the particular topology of Maze288 is problematic for YACS (see section 6.1).

6.3.2 MACS with active exploration and payoff maximization

When MACS uses active exploration, the average time to reach a complete knowledge is improved
over the situation of random exploration. Moreover, as shown in figure 11, the improvement gets
higher as the size of the environment grows. The evolution of the convergence speed is better than
linear in the size of the environment. In addition, the number of classifiers stabilizes quicklier.

MACS also demonstrates its ability to use the model of the dynamics of the environment in
order to learn a policy with respect to the payoff. In this respect, the learning process can be
divided into several parts.

During the very first trials, MACS mostly learns the transitions that correspond to the rota-
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tions. Because the model is highly inaccurate, MACS cannot propagate the internal reward very
well and the system does not take much advantage of the Value Iteration algorithm. The resulting
behavior almost looks like a random behavior.

Once the first regularities have been learned, MACS becomes able to plan one step ahead when
performing rotation actions, and it is more likely to learn what is happening when moving ahead.
Thus, the behavior mostly consists of long straight lines and MACS experiences many different
situations. As a result, it reaches the goal more often : the number of time steps to achieve the
successive trials decreases.

As the knowledge of MACS about what leads to what when moving ahead improves, the
system becomes able to build more complex exploration policies and therefore stays longer without
reaching the goal. Thus, the time to reach the goal increases until there is almost no information
to gain.

At this point, thanks to the aggregation method of exploration and exploitation policies, MACS
starts to maximize the payoff. The behavior becomes optimal with respect to the payoff, although
it may happen that MACS reconsiders early suboptimal specializations. In that case, the new
classifiers must be validated and MACS switches temporally back to active exploration. This
phenomenon explains the peaks in the late trials.

7 Discussion

7.1 Latent learning in MACS and the uncertain

In [GSS02], we showed that the mechanisms of YACS improve the learning speed over ACS. In
this paper, we proposed a new formalism for the problem of anticipation in the LCS framework.
We showed how MACS, which uses this formalism, improves the learning speed over YACS, then
over ACS.

Nevertheless, we pointed in [GSS02], that extensions have been added to ACS in order to deal
with the uncertain®, while YACS only deals with markov and deterministic environments. Such
extensions do not exist for MACS either.

The outcomes of an action in a particular situation may be uncertain because:

e the environment is stochastic. In that case, the perceptions or the actions may be noisy, and
the outcomes of an action in a given situation are not always the same. This case may occur
when the sensors or the effectors are not absolutely reliable;

e some perceptions are ambiguous. In that case, the agent perceives the same situation in
different states of the environment (see figure 24). Then, the information provided by the
current perception is not sufficient to decide the optimal action, and the problem is told non-
markov. The agent must deal with an internal state to disambiguate the aliased perception.
The internal state is defined by an information about past situations and actions.

In order to deal with stochastic environments, ACS [BGS01] uses multiple effect parts per
classifier, each valued by a probability measure. Some specific heuristics have been added to ACS
to deal with this new feature. In MACS, as in YACS, the heuristics presented in section 4 should
also be modified to tackle stochastic environments, but the estimates could be kept. Indeed, MACS
estimates are robust to noise, because they use Widrow-Hoff equations. Rather than designing
new heuristics, the estimates could also be used to bias usual genetic algorithms.

In order to deal with ambiguous perceptions, ACS uses action sequences. In the LCS frame-
work, several other ways have been explored. CXCS!® [TB00| builds sequences of classifiers and
XCSM!! [Lan98| uses explicit memory registers to define internal states. In the general Rein-

9The learning speed improvements of YACS over ACS have been shown by considering ACS without these
extensions.

10CXCS stands for Corporate XCS

X (CSM stands for XCS with Memory
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Figure 24: In this environment, the agent always faces north and perceives the eight surrounding
cells. The agent can move to any of the eight surrounding cells. Many of the cells are ambiguous.
For instance, the agent perceives the same situation in the cells marked a, b and c. The conse-
quences of an east movement in any of these cells are different. Inside each of the highlighted
zones, there are no aliased situations

forcement Learning framework, Wiering [WS97] and Sun [SP00] propose to learn how to divide a
non-markov problems into several markov ones (see figure 24).

These techniques all require that information about internal state changes can be associated to
transitions. Unfortunately, MACS classifiers do not represent whole transitions, but provide only
partial anticipations, thus a particular classifier may be involved in several transitions. Therefore,
the solutions mentioned above could be adapted to YACS, but the partial anticipations of MACS
forbid to use such techniques.

7.2 Relations between Dyna and MACS
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Figure 26: MACS architecture for latent learning.

In section 5, we described MACS as a Dyna architecture [Sut91]. The main difference with
MACS and Dyna@Q+ is the model of the environment which is learned. In Dyna@Q+, this model
consists of an exhaustive list of (s;—1,a:—1,s;) triples, each specifying a whole transition, i.e. the
expected value of every attribute. ACS and YACS improve the model by adding generalization
in the triples, but each classifier still specify complete transitions. Conversely, in MACS, each
classifier only provides a prediction concerning one attribute.
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Due to conditions, each classifier of YACS (or (s;—1,a;—1, s¢) triple of Dyna@Q+) is a subfunction
of the global transition function T' : s1 X... X 8gX a1 X ... X@e = 81 X... X 5q' 2. Conversely, in MACS,
each classifier is a subfunction of a partial transition function T; : s X ... X Sg X a1 X ... X @e —>
s;. Then, it is possible to consider groups of classifiers, each group anticipating one particular
attribute. The global transition function can be obtained by integrating the partial anticipations.

The MACS architecture illustrated in figure 26 shows how the latent learning part of MACS
can be considered as a modular system, each module anticipating one attribute. By contrast, figure
25 shows the monolithic architecture of a Dyna@Q+ or ACS/YACS model. Each of this module
provides an approximation of one partial transition function, each predicting one single value.
This architecture suggests that one could replace MACS modules by any function approximation
system. This way, it should be possible to take advantage of usual LCSs (which do not use special
effect parts) to draw the benefits of anticipation in reinforcement learning problems.

For symbolic functions, it is possible to use well known systems as XCS for these partial antic-
ipations. For numerical functions, it should be possible to use numerical function approximators
from the LCS field like XCSF [Wil01], Neural Networks, locally-weighted function approximators
or any other, provided that it is incremental.

8 Conclusion

In this paper, we described several LCSs, each of them casting a new light on the concept of
generalization in the LCS framework. In particular, we enlighted how most LCSs — like XCS —
consider generalization with respect to an expected payoff, while other LCSs — like ACS or YACS
— consider it with respect to anticipated effects in terms of situations. We also enlighted some
limitations of the formalism of ACS and YACS. To overcome these limitations, we proposed MACS,
a new LCS which uses a different formalism. This formalism makes it possible to use additional
regularities for generalization, in the latent learning process of the model of the dynamics in the
interactions between the agent and its environment.

Such a model is a prerequisite for the application of Dynamic Programming iterative algorithms
for planning. With MACS, we used a Dyna architecture to separate the information about the
transitions, and the information about the reward. This kind of architecture makes it possible
to use techniques from operational research to speed up the reinforcement learning process. This
way, MACS is able to compute policies for active exploration and payoff maximization. Among
different methods for aggregating criterions, we have chosen a hierarchical aggregation in order to
tackle the exploration/exploitation tradeoff.

MACS formalism for latent learning does not consider situations as an unsecable whole, but it
decorrelates the attributes, making it possible to represent regularities across attributes. Experi-
mental results demonstrated that the new formalism used by MACS actually affords more powerful
generalization capacities than the formalism of YACS, without any cost in terms of learning speed.
In addition, we showed how decorrelating attributes in the effect part, leads to consider an antic-
ipatory system as a modular system, composed of several systems, each of them predicting one
single value. Then, it is possible to use regular and widely studied learning algorithms to learn a
model of the environment so that it becomes possible to take advantage of Dynamic Programming
techniques to speed up the reinforcement learning process.

We now intend to design a general numerical function approximator with a learning classifier
system which makes use of estimates to drive the learning process. This new system will next be
integrated in a MACS architecture. This way, we intend to build an anticipatory reinforcement
learning system, for stochastic and continuous environments.
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