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Combining Latent Learning with Dynami
 Programmingin the Modular Anti
ipatory Classi�er SystemPierre Gérard �;��, Jean-Ar
ady Meyer �, Olivier Sigaud �� LIP6, AnimatLab �� Dassault Aviation, DGT/DPR/DESA8, Rue du Capitaine S
ott 78, Quai Mar
el Dassault75015 Paris 92552 St-Cloud CedexAbstra
tLearning Classi�er Systems (LCS) are rule based Reinfor
ement Learning (RL) systemswhi
h use a generalization 
apability. In this paper, we highlight the di�eren
es between twokinds of LCSs. Some are used to dire
tly perform RL while others latently learn a model ofthe intera
tions between the agent and its environment. Su
h a model 
an be used to speed upthe 
ore RL pro
ess. Thus, these two kinds of learning pro
esses are 
omplementary. We showhere how the notion of generalization di�ers depending on whether the system anti
ipates (likeACS, Anti
ipatory Classi�er System and YACS, Yet Another Classi�er System) or not (likeXCS). Moreover, we show some limitations of the formalism 
ommon to ACS and YACS, andpropose a new system, 
alled MACS (Modular Anti
ipatory Classi�er System), whi
h allowsthe latent learning pro
ess to take advantage of new regularities. We des
ribe how the model
an be used to perform a
tive exploration and how this exploration may be aggregated withthe poli
y resulting from the reinfor
ement learning pro
ess. The di�erent algorithms arevalidated experimentally.1 Introdu
tionThe Reinfor
ement Learning (RL) framework [KLM96, SB98℄ 
onsiders adaptive agents involvedin a sensory-motor loop (see �gure 1). Su
h agents per
eive situations through their sensors, anduse these per
eptions to sele
t the a
tion they will perform in the environment. As a result pftheir a
tion, the agents re
eive a s
alar reward from the environment and they per
eive a newsituation. The task of the agents is to learn the optimal poli
y � i.e. how to a
t in every situationin order to maximize the 
umulative reward on the long run � in an unknown environment.This 
lassi
al Situated Arti�
ial Intelligen
e problem is an optimization problem whose formalfoundations are drawn from Dynami
 Programming [Bel57℄ and whi
h addresses several issues inthe �eld of Operational Resear
h. In parti
ular, learning in
rementally how to a
t a

ording toper
eptions is a parti
ular 
lassi�
ation problem whi
h 
an be solved by lo
al sear
h algorithmslike Geneti
 Algorithms (GAs) as eviden
ed, for instan
e, by the appli
ation of Learning Classi�erSystems (LCSs) to Data Mining problems [BXM01℄. Other 
onne
tions between Situated Arti�
ialIntelligen
e and Operational Resear
h 
on
ern Multi Criteria De
ision Problem [RV81, GSH99℄,when the agent has to sele
t a
tions giving rise to di�erent kinds of rewards.The originality of Reinfor
ement Learning with respe
t to other Arti�
ial Intelligen
e learningte
hniques is that the agent has to improve its behavior by drawing information from its intera
-tions with the environment, without being expli
itly taught what to do by an external tea
her. Inthis framework, the learning pro
ess 
annot rely on any tagged sample dataset. On the 
ontrary,the agent must learn in an in
remental way, by taking into a

ount the information provided by itssensors along its a
tions. In parti
ular, the ne
essity to adapt to a possibly 
hanging environmentprevents it from relying too mu
h on the memory of its past experien
e.1
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Figure 1: In Reinfor
ement Learning (RL) problems, the agent is situated in an a priori unknownenvironment. At ea
h time step, it per
eives its situation through its sensors and 
an perform ana
tion thanks to its e�e
tors before a new time step starts. The goals of the agent are de�ned bys
alar rewards provided by the environment. In this example, the agent gets a reward as soon asit rea
hes the 
ell F that provides food. The task of the agent 
onsists in learning the optimalbehavior. Here, the agent must learn how to rea
h the food by performing as few su

essive a
tionsas possible, starting from any 
ell. RL ta
kles problems whi
h 
an be represented as �nite-statediagrams. Maze problems are well suited to study su
h problems sin
e they provide an intuitiveview of su
h diagrams.Trying to improve the poli
y does not impede extra
ting knowledge about the problem thatthe agent has to solve. Indeed, a way to speed up the poli
y learning pro
ess is to simultaneouslylearn a model of the dynami
s of the intera
tions between the agent and its environment [SB98℄.In this arti
le, we will mainly fo
us on the problem of extra
ting su
h a model.This idea rea
hes far ba
k in psy
hology. In sharp 
ontrast with behaviorist theories, Tolman[Tol32℄ proposed that learning is the pro
ess of dis
overing what leads to what � i.e. that animalsdevelop a sort of internal representation of the world. Seward [Sew49℄ provided further empiri
aleviden
es of su
h latent learning, whi
h is de�ned as learning without environmental reward orpunishment. Su
h a representation of the environment 
an be used to anti
ipate the 
onsequen
esof an a
tion in a given situation.Computational models of learning are also 
on
erned by su
h eviden
es of latent learning.When an agent intera
ts with its environment, the 
onsequen
e of an a
tion does not only 
onsistin a possible reward, but also in a resulting new situation. Thus the agent may learn latently whathappens immediately after the exe
ution of an a
tion and may build a model of the transitionsbetween situations per
eived su

essively. This model of the transitions makes it possible toanti
ipate and this 
apa
ity 
an be used either for planning thanks to Dynami
 Programmingte
hniques, or for speeding up the RL pro
ess by simulating a
tions a

ording to the model, asshown in [SB98℄. In other words, learning latently a model of the dynami
s of the intera
tionsbetween the agent and its environment is independent from the reward but helps to improve theoverall RL pro
ess.In this paper, we study how generalization 
apa
ities may expedite latent learning in a LearningClassi�er System (LCS) devoted to anti
ipation. The problem to be solved is that of extra
tingknowledge about the dynami
s of the intera
tions between the agent and its environment. It is a
lassi�
ation problem sin
e the agent must learn a model that distinguishes situations whi
h leadto di�erent e�e
ts.More spe
i�
ally, we study how to a
quire and to use anti
ipation 
apabilities in order to solvethe a
tion de
ision problem fa
ed by the agent. In parti
ular, we des
ribe how to use Dynami
Programming te
hniques in order to build two di�erent poli
ies: one for a
tive exploration andone for 
umulative reward maximization. These two poli
ies de�ne two 
riteria that the systemhas to 
ombine in order to solve the overall RL problem stated above.In se
tion 2, we brie�y present the usual LCS approa
h to generalization as an extension ofQ-learning [Wat89℄. In se
tion 3 we introdu
e the formalism used in the so-
alled Anti
ipatory2



Classi�er System ACS [Sto98, BGS00℄ and YACS1 [GS01b, GSS02, GS01a℄ so as to 
ombinegeneralization and latent learning. We also dis
uss a variety of regularities in the intera
tionsbetween the agent and its environment that neither ACS nor YACS are able to 
onsider. Then,we propose a new formalism to deal with that kind of regularities, thus making it possible to learna more 
ompa
t model. In se
tion 4 we des
ribe MACS2: a new LCS using this formalism to learnthe model that is required to use iterative planning te
hniques from Dynami
 Programming. Inse
tion 5 we show how MACS uses this model to build separate poli
ies for a
tive exploration andexploitation, and how these poli
ies are 
ombined. Se
tion 6 provides experimental 
omparisonsof MACS and YACS with respe
t to their latent learning abilities. The results demonstrate the
apa
ity of MACS to use the model of the transitions to solve plain RL problems, by 
ombiningexploration and exploitation 
riteria. In se
tion 7, we enlight some limitations of MACS, and we
laim that the bene�ts of anti
ipation 
apabilities 
ould be also obtained with non-spe
i�
allydedi
ated systems.2 Generalization in Learning Classi�er SystemsThe main advantage of Learning Classi�er Systems (LCS) with respe
t to other Reinfor
ementLearning (RL) te
hniques like Q-learning [Wat89℄ is to a�ord generalization 
apabilities. Thismakes it possible to aggregate several situations within a 
ommon des
ription so that the repre-sentation of the RL problem gets smaller.The �rst proposals for a LCS devoted to RL problems are presented in [Hol76℄. The �rstimplementation of an a
tual LCS, 
alled CS1, 
an be found in [HR78℄. Wilson [Wil95℄ introdu
edin LCSs a learning algorithm similar to Q-learning [Wat89℄ to repla
e the traditional Bu
ketBrigade algorithm [Hol85℄. This work led to a revival of LCS resear
h sin
e the new a

ura
y-basedapproa
h in XCS over
omes the over-generalization problems found in previous LCSs [Wil89℄.The usual formal representation of RL problems is a Markov De
ision Pro
ess (MDP) whi
his de�ned by:� a �nite state spa
e S;� a �nite set of a
tions A;� a transition fun
tion t : S�A! �(S) where �(S) is a distribution of probabilities over thestate spa
e S;� a reward fun
tion r : S�A�S ! < whi
h asso
iates an immediate reward to every possibletransition.One of the most popular RL algorithm based on this representation is Q-learning [Wat89℄.This algorithm updates a Q-table whi
h represents a quality fun
tion q : S � A ! <. Thus, thequality q(s; a) represents the expe
ted payo� when the agent performs the a
tion a in the state s,and follows the best poli
y thereafter.At time step t, the qualities are updated a

ording to the following formula based on theBellman equation used in Dynami
 Programming:q(st�1; at�1) (1� �)q(st�1; at�1) + �(rt + 
maxa2A q(st; a)) (1)where st is the state resulting from taking the a
tion at�1 in the previous state st�1 and rt isthe asso
iated immediate reward. � is the learning rate of a Widrow-Ho� delta rule3. 
 is thedis
ount fa
tor used in the Bellman equation [Bel57℄. The e�e
t of this equation is to assign lowqualities to states that are �far� from a set of distant reward sour
es.1Yet Another Classi�er System2Modular Anti
ipatory Classi�er System3The Widrow-Ho� delta rule uses a learning rate � 2 [0; 1℄. A s
alar x is in
reased with su
h a rule with respe
tto the formula: x (1 � �)x+ �. It is de
reased a

ording to the formula: x (1� �)x3
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Figure 2: A Learning Classi�er System is an agent 
hara
terized by a list of 
lassi�ers. It per
eivesa situation as an aggregation of several attributes. In this example, the agent is situated in a mazeand per
eives the presen
e or absen
e of a blo
k in ea
h of the eight surrounding 
ells. It per
eivessymbol 1 when there is a blo
k in that 
ell and symbol 0 when there is not. The eight per
eivedattributes are 
onsidered 
lo
kwise, starting with the 
ell in front of the agent. The agent hasto de
ide whether to rotate right [r℄ or left [l℄, or to move forward [f℄. From the 
ell it is
urrently lo
ated in, and a

ording to its orientation, the agent per
eives [01010111℄. Amongthe 
lassi�ers learned during its past experien
e � ea
h 
hara
terized by a 
ondition � an a
tion anda payo� predi
tion, the LCS sele
ts those whose 
onditions mat
h the 
urrent situation. Amongthis mat
hing set, the LCS sele
ts sto
hasti
ally a 
lassi�er with a high predi
tion of the long termpayo� (here 0.7). The a
tion proposed by this 
lassi�er is 
hosen and a
tually performed in theenvironment. In this example, the agent rotates right.The problems ta
kled by LCSs are 
hara
terized by the fa
t that the so-
alled states in the MDPframework are de�ned by several attributes representing per
eivable properties of an environment.For instan
e, one 
an de�ne a grid world in whi
h the agent per
eives eight features, one for ea
hadja
ent 
ell (see �gure 2). Then, a situation is an ordered set of several dis
rete values, one forea
h of the per
eived attributes of the environment. A
tions are 
hara
terized by a single attributethat represents di�erent possible e�e
tors.In [Lan00℄, Lanzi shows how it is possible to shift from a tabular representation of a RL problemto a 
lassi�er-based representation. While tabular Q-learning 
onsiders triples (s; a; q) 2 S�A�<,LCSs like XCS 
onsider C-A-p rules (Condition-A
tion-payo� 
lassi�ers). During the learningpro
ess, the LCS learns appropriate general 
onditions and updates the payo� predi
tion.Within the LCS framework, the use of don't 
are symbols �#� in the 
ondition parts of the
lassi�ers permits generalization, sin
e don't 
are symbols make it possible to use a single des
rip-tion to des
ribe several situations. Indeed, a don't 
are symbol mat
hes any parti
ular value ofthe 
onsidered attribute. Therefore, 
hanging an attribute into a don't 
are symbol makes the
orresponding 
ondition more general (it mat
hes more situations). For instan
e, assuming thatthe attributes that 
hara
terize situations may only take values 0 or 1, the 
ondition [#01℄ isgeneral and mat
hes the spe
ialized situations [001℄ and [101℄. Likewise, the 
ondition [#0#℄mat
hes 4 situations: [000℄, [001℄, [100℄ and [101℄.Thanks to the don't 
are symbols, it is possible to build a model of the expe
ted payo� witha smaller number of 
lassi�ers than the number of possible triples in a tabular representation.Usually, the payo� predi
tions p of the 
lassi�ers are learned a

ording to di�erent propagation of4



delayed reward algorithms, like Bu
ket Brigade [Hol85℄ or Q-learning, as in XCS [Wil95℄.The main issue with generalization is to learn to organize C parts (
onditions) and A parts(a
tions) so that the don't 
are symbols are well pla
ed. To do so, LCSs usually 
all upon aGeneti
 Algorithm (GA) to evolve a population of 
lassi�ers. Ea
h 
lassi�er is an individual whi
his evaluated through the intera
tion of the agent with the environment all along its life time. Thesealgorithms use 
lassi
al geneti
 operators like 
rossover4 or mutation5. These operators serveto 
orre
tly position don't 
are symbols and spe
ialized values in the C parts of the 
lassi�ers.Classi
al LCSs use a sele
tion me
hanism relying on �tness values and 
lassi�ers with a low �tnesstend to be suppressed from the 
lassi�er list. Su
h GAs 
reate 
lassi�ers randomly and evaluatethem afterward. Alternatively, in se
tion 4, we propose devoted estimates and heuristi
s to drivethe 
reation of 
lassi�ers.3 Formalisms for transitions modeling in Learning Classi�erSystemsIn multi-step problems, the agent needs to a
t more than on
e so as to solve the problem. In su
h
onditions, in addition to a reward, the agent also re
eives a new situation as a result of its lasta
tion. Then, it makes sense to use LCSs to learn a 
ompa
t model of the dynami
s between theagent and its environment.3.1 Representing regularities with ACS and YACSEarly LCSs [Hol90℄ a
tions 
ould deposit internal messages on a so-
alled message list instead ofsuggesting an a
tual a
tion in the environment. With su
h internal messages, it was possible touse tags that spe
i�ed if a 
urrent �a
tion� posted to a message list dire
tly suggested an a
tionor parti
ipated in an internal reasoning pro
ess. Riolo [Rio91℄ implemented su
h 
apa
ities inCFSC2 and demonstrated how they 
an be used for latent learning.In 
ontrast with this approa
h, the ALP (Anti
ipatory Learning Pro
ess) used in ACS [Sto98,BGS00℄ is a development of the Anti
ipatory Behavioral Control theory introdu
ed in psy
hologyby Ho�mann [Hof93℄. YACS [GS01b, GSS02, GS01a℄ is a similar approa
h and both systems 
allupon expli
it 
ondition-a
tion-effe
t 
lassi�ers, noted C-A-E. This formalism is similar toSutton's DynaQ+ [Sut91℄ approa
h or to Dres
her's 
ontext-a
tion-result rules [Dre91℄, butit a�ords generalization 
apabilities.In su
h 
lassi�ers, the E part represents the e�e
ts of a
tion A in situations mat
hed by
ondition C. It re
ords the per
eived 
hanges in the environment. In both ACS and YACS, a Cpart is a situation whi
h may 
ontain don't 
are symbols �#� or spe
i�
 values (like 0 or 1), asin XCS (see se
tion 2). An E part is also divided into several attributes and may 
ontain eitherspe
i�
 values or don't 
hange symbols �=�. Su
h a don't 
hange symbol means that the attributeof the per
eived situation it refers to remains un
hanged when a
tion A is performed. A spe
i�
value in the E part means that the value of the 
orresponding attribute 
hanges to the valuespe
i�ed in that E part.For instan
e, let us 
onsider the 
lassi�er [#0#1℄ [0℄ [=10=℄. It anti
ipates the e�e
ts of thea
tion [0℄ in 4 possible situations ([0001℄, [0011℄, [1001℄ and [1011℄) thanks to the don't 
aresymbols in the C part. A

ording to the E part, and if the 
lassi�er is a

urate:� the �rst attribute remains un
hanged, whatever the initial value is (0 or 1 be
ause of thedon't 
hange symbol in the C part);� the se
ond attribute will 
hange from 0 to 1;� the third attribute will 
hange to 1, whatever the initial value is;4A new 
lassi�er is a 
ombination of di�erent segments of its parents.5Any attribute of a new 
reated 
lassi�er may be randomly 
hanged to any spe
i�
 value or to a don't 
aresymbol. 5



Classi�er[#0#1℄     [0℄ [=10=℄[0011℄         [0101℄[1011℄         [1101℄Situations         Anti
ipationsTable 1: Illustration of the anti
ipation me
hanism in YACS� the last value of the attribute remains 1.These 
ases are illustrated in table 1.This formalism permits the 
lassi�ers to represent regularities in the intera
tions with theenvironment, like for instan
e �In a grid world, when the agent per
eives a wall in front of it,whatever the other features of the 
urrent 
ell are, trying to move forward entails hitting the wall,and no 
hange will be per
eived in the 
ell's features�.The latent learning pro
ess is in 
harge of dis
overing C-A-E 
lassi�ers with maximally generalC parts that a

urately model the dynami
s of the environment. A 
lassi�er is said to bemaximallygeneral if it 
annot 
ontain any other don't 
are symbol without be
oming ina

urate. It is saidto be a

urate if, in every situation mat
hed by its 
ondition, e�e
ting the 
orresponding a
tionalways leads to the same 
hanges in the per
eived situations.Thus, generalization is not the same pro
ess in ACS or YACS than in XCS [Lan97℄. Indeed, inACS and YACS, generalization is a�orded by the joint use of don't 
are and don't 
hange symbolsand makes it possible to represent regularities in the transitions between su

essive situations.Moreover, it provides the system with:� a kind of sele
tive attention, when some situations 
an be identi�ed by paying attention tosome attributes only;� the ability of 
onsidering several situations de�ned by the same 
ondition, thus redu
ing thesize of the model that des
ribes the dynami
s of the environment.As YACS does not generalize with respe
t to a payo� predi
tion, it is able to generalize oversituations with di�erent expe
ted payo�s. As a result, it does not make sense to store informationabout the expe
ted payo� in the 
orresponding 
lassi�ers. Therefore, the list of 
lassi�ers onlyserves to model environmental 
hanges.3.2 Representing more regularitiesGeneralization makes it possible to represent regularities in the dynami
s of the intera
tions withthe environment. However, if ACS and YACS are able to dete
t if a parti
ular attribute is 
hangingor not, their formalism 
annot represent regularities a
ross di�erent attributes be
ause it 
onsidersea
h situation as an unse
able whole. To make this point 
lear, let us 
onsider an agent in a gridworld as in �gure 2. Turning right results in a two-positions left shift of the attributes. Forinstan
e, the agent may experien
e transitions like [11001100℄ [y℄ [00110011℄.In su
h a 
ase, every attribute is 
hanging. Thus, the formalism of ACS and YACS is notable to represent any regularity. Nevertheless, the shift in the per
eived situation is a
tually aregularity of the dynami
s of the intera
tions: whatever the situation is, when the agent turns
lo
kwise, the value of the 1st attribute 
omes to the last value of the 3rd, the value of the 2ndbe
omes the 4th one et
.The parti
ularity of su
h a regularity is that the new value of an attribute depends on theprevious value of another one. Expressing generalization with don't 
hange symbols only forbidsto represent su
h regularities. In the ACS/YACS formalism, the new value of an attribute mayonly depend upon the previous value of the same attribute, a situation whi
h is seldom en
ounteredin pra
ti
e. 6



[11001100℄  Situation[1#######℄ [y℄ [??????1?℄[#1######℄ [y℄ [???????1℄[##0#####℄ [y℄ [0???????℄[###0####℄ [y℄ [?0??????℄[####1###℄ [y℄ [??1?????℄[#####1##℄ [y℄ [???1????℄[######0#℄ [y℄ [????0???℄[#######0℄ [y℄ [?????0??℄[#######0℄ [y℄ [?????1??℄Anti
ipations ! [00110011℄[00110111℄Table 2: During the integration pro
ess, the LCS proposed in se
tion 3.2 s
ans the E parts andsele
ts those 
lassi�ers whose A parts mat
h the a
tion and whose C part mat
h the situation.The integration pro
ess builds all the possible anti
ipated situations with respe
t to the possiblevalues of every attribute. Here, the system anti
ipates that using [11001100℄ as a 
urrent situationshould lead to [00110011℄ or to [00110111℄. If all the 
lassi�ers were a

urate, this pro
ess wouldgenerate only one possible anti
ipation.To over
ome this problem, it is ne
essary to de
orrelate the attributes in the E parts, whereasACS and YACS 
lassi�ers anti
ipate all attributes at on
e. To this end, we propose to des
ribethe expe
ted situations E, not with don't 
hange symbols, but with new don't know symbols �?�.This way, the a

urate 
lassi�er [####1###℄ [y℄ [??1?????℄ means that �just after turningright, the agent always per
eives a wall at his left when it per
eived a wall behind, whatever theother attributes were�. This 
lassi�er does not provide information about the new values of otherattributes (as denoted by the �?� symbol). Thus, thanks to these new don't know symbols, a
lassi�er may anti
ipate a few attributes only and the overall system gains the opportunity todis
over new regularities.Again, this proposal for a new formalism leads to a new 
on
eption of generalization. As usual,a 
lassi�er is said to be maximally general if it 
ould not 
ontain any additional don't 
are symbolwithout be
oming ina

urate. But it is now said to be a

urate if, in every situation mat
hed byits 
ondition, taking the proposed a
tion always a
tually leads the attributes to take the valuesspe
i�ed in the e�e
t part, when su
h attributes are not don't know symbols.As a result, the anti
ipating unit is no more the single 
lassi�er but the whole LCS. Given asituation and an a
tion, a single 
lassi�er is not able to predi
t the next situation: it just des
ribesa partial view of it, whi
h is fo
used on a few attributes only. The system a

ordingly needsan additional  me
hanism whi
h integrates these partial views and builds a whole anti
ipatedsituation, without any don't know symbol in its des
ription, as shown in Table 2.4 Latent Learning in MACSAs de�ned in se
tion 3.2, an E part may 
ontain several don't know and several spe
i�
 attributevalues. In the present work, we adopted a simpli�ed point of view by allowing one and onlyone spe
i�
 value in an e�e
t part. Thus, every 
lassi�er is able to predi
t the value of a singleattribute only.In this se
tion we detail the latent learning me
hanisms of MACS, a new LCS designed to takeadvantage of the formalism just proposed.
7



4.1 Evaluation and sele
tion of the a

urate 
lassi�ersThis part of the system is in 
harge of evaluating the a

ura
y of ea
h 
lassi�er and of suppressingsome of them if ne
essary. Two integer values g and  b are asso
iated to ea
h 
lassi�er:� g for storing the number of good anti
ipations sin
e the 
reation of the 
lassi�er;� b for storing the number of bad anti
ipations sin
e its 
reation.MACS keeps a memory of the last per
eived situation and the last performed a
tion. Thus, itknows the 
urrent situation st resulting from the a
tion at�1 in the situation st�1 at ea
h timestep.With this information, YACS s
ans the 
lassi�er list and sele
ts the 
lassi�ers whose  C partmat
hes st�1 and whose A part mat
hes at�1. For ea
h su
h 
lassi�er:� if its E part mat
hes st6, then the 
lassi�er anti
ipated well and its g value is in
reased byone unit;� if its E part does not mat
h st, then the 
lassi�er anti
ipated badly and its b value isin
reased by one unit;A 
lassi�er whi
h always anti
ipates badly during a given number of evaluations is 
onsideredina

urate and is suppressed. This number of evaluations is a parameter of the system, noted er.A 
lassi�er is suppressed when g= 0 and b= er. Another parameter ea of the system monitorshow many evaluations are needed to assume that a 
lassi�er is a

urate.4.2 Spe
ialization of 
onditionsAs in YACS, a 
lassi�er whi
h anti
ipates sometimes well, and sometimes not, is said to os
illate.Be
ause its 
ondition part is too general and mat
hes too many situations, it must be spe
ialized.Here again, this pro
ess is not driven by a GA but by heuristi
s whi
h take advantage of spe
i�
estimates as des
ribed below.4.2.1 The estimates used by the spe
ialization pro
essAn expe
ted improvement by spe
ialization estimate is is asso
iated to ea
h general attribute ofthe C part of ea
h 
lassi�er � i.e to ea
h don't 
are symbol. This variable estimates how mu
hthe spe
ialization of the attribute would help splitting the situation set 
overed by the C part intoseveral subsets of equal 
ardinality.Let us 
onsider a 
lassi�er whi
h tries to anti
ipate the 
onsequen
es of an a
tion in severalsituations. If the value of a parti
ular attribute of the situation when the 
lassi�er anti
ipateswell is always di�erent from the value of that attribute when the 
lassi�er anti
ipates badly, thenthis attribute is very relevant for distinguishing the situations 
overed by the C part. Thus, theC part must be spe
ialized a

ording to this parti
ular attribute, and the 
orresponding estimateis should get a high value.In order to 
ompute the estimates is, ea
h 
lassi�er memorizes the situation sb pre
eding thelast anti
ipation mistake, together with the situation sg pre
eding the last anti
ipation su

ess.Ea
h time a 
lassi�er is su
h that its C part mat
hes st�1 and its A part mat
hes at�1, its a

ura
yis 
he
ked:� if the 
lassi�er anti
ipates well, for ea
h attribute:� if a parti
ular attribute of sb equals the 
orresponding attribute of st�1, then the
orresponding estimate is is de
reased;� if a parti
ular attribute of sb di�ers from the 
orresponding attribute of st�1, then the
orresponding estimate is is in
reased;6a don't know symbol mat
hes any value. 8



� if the 
lassi�er does not anti
ipate well, for ea
h attribute:� if a parti
ular attribute of sg equals the 
orresponding attribute of st�1, then the
orresponding estimate is is de
reased;� if a parti
ular attribute of sg di�ers from the 
orresponding attribute of st�1, then the
orresponding estimate is is in
reased.The is estimates are in
reased and de
reased a

ording to a Widrow-Ho� delta rule. The initialvalues are 0:5. A spe
ialized attribute is given the same default is value of 0:5.4.2.2 The spe
ialization pro
ess
Muspec

[###1] [0] [1???]

[#0#1] [0] [1???] [#1#1] [0] [1???]Figure 3: In this example, the mutspe
 operator spe
ializes the C part of a 
lassi�er a

ording tothe se
ond attribute. The original 
lassi�er is repla
ed by two new spe
ialized versions.A 
lassi�er is said to os
illate when g+b>eo and g�b> 0, where eo is a parameter of thesystem that represents the number of evaluations ne
essary to dete
t that a 
lassi�er os
illates.As soon as su
h a 
lassi�er is identi�ed, the mutspe
 operator [Dor94℄ is applied (see �gure 3).This operator repla
es the os
illating 
lassi�er by several more spe
ialized versions. Some of the
lassi�ers thus produ
ed by the mutspe
 operator will always anti
ipate badly, but they will beeliminated by the sele
tion of a

urate 
lassi�ers pro
ess. Some of the 
lassi�ers 
reated by themutspe
 operator will still os
illate and will be spe
ialized again. Finally, a new 
lassi�er whi
hdoes not mat
h any of the already per
eived situations is not added in the set. This property 
anbe 
he
ked thanks to the set P of every per
eived situation en
ountered during the lifetime of theagent. This set only 
ontains one single instan
e of ea
h already per
eived situation7.In 
ontrary to usual mutspe
 pra
ti
e [Dor94℄, the attribute to spe
ialize in MACS is not 
hosenrandomly, but thanks to the is estimates. The spe
ialized attribute is the one with the highest isvalue, assuming su
h 
hange is the most likely to improve the system.4.3 Generalization of 
onditionsThe spe
ialization pro
ess may produ
e 
lassi�ers with a C part at a sub-optimal level of gen-erality, espe
ially in the 
ase of lo
al exploration, when the agent only experien
ed a part of theenvironment. Thus, MACS needs a generalization pro
ess whi
h is in 
harge of re
onsideringearly sub-optimal spe
ializations. As it is the 
ase with the spe
ialization pro
ess, estimates igand dedi
ated heuristi
s are used in order to take advantage of experien
e for driving the pro
essof generalization.4.3.1 The estimates used by the generalization pro
essIn order to 
ompute the ig estimates, MACS sele
ts at ea
h time step ea
h 
lassi�er whose A partmat
hes at�1 and whose C part does not mat
h st�1.Considering su
h 
lassi�ers, for ea
h spe
ialized attribute in the C part, MACS 
he
ks if theC part of the 
lassi�er would mat
h st�1 if the 
onsidered attribute were general. In this 
ase,the 
onsidered ig estimate is updated:7The set P only 
ontains the a
tually per
eived situations, not all the virtually possible situations resultingfrom the number of attributes and the number of values they 
an take. In a problem like the multi-agent Sheepdogproblem des
ribed in [SG01℄ for instan
e, the number of a
tually en
ountered situations is 290 while the numberof virtually possible situations is 8192. 9



� if the E part of the 
lassi�er mat
hes st, then a 
lassi�er with a more general C part wouldhave an a

urate E part and the 
onsidered ig estimate is in
reased;� if the E part of the 
lassi�er does not mat
h st, then a 
lassi�er with a more general C partwould have an ina

urate E part and the 
orresponding ig estimate is de
reased.The ig estimates are in
reased and de
reased a

ording to a Widrow-Ho� delta rule. The initialvalues are 0:5. A general attribute is given a default ig value of 0:5.Up to that point, a

ording to su
h a me
hanism, MACS is able to 
he
k if an attribute of aC part should be generalized or not.4.3.2 The generalization pro
ess
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Figure 4: The generalization pro
ess in MACS. See text for explanations.Ea
h time step, a

ording to the way they are updated, the ig estimates only in
reased forthe 
lassi�ers whose A part mat
hes at�1 and whose E part mat
hes st. They are sele
ted byMACS in the list of all 
lassi�ers. In the example of �gure 4, these sele
ted mat
hing 
lassi�ersare identi�ed as Set A.The 
lassi�ers of Set A are grouped by similar e�e
ts in Set B. In our example, we only 
onsiderone of the resulting Set B, but the following pro
ess is repeated for ea
h Set B that 
orresponds tosimilar E parts and similar A parts. Set B is only pro
essed to build the Set C of general 
lassi�ersif all the 
lassi�ers of Set B are a

urate. This way, only a

urate 
lassi�ers are generalized.With Set B, MACS builds a new Set C of 
lassi�ers whi
h are either more general or mererepli
ates of the original ones. For ea
h 
lassi�er of Set B:� if every estimate ig of the 
lassi�er is lower than 0.5, then it is not a good 
andidate for thegeneralization and it is added without modi�
ations in Set C;� otherwise, a new 
lassi�er is added to Set C. The attribute of the C part with the highestestimate ig is generalized.In our example, unless the estimates do not appear on �gure 4, they are used to de
ide that theC parts of the se
ond and third 
lassi�ers should be generalized a

ording to the fourth attribute.Indeed, this attribute is not relevant sin
e both 
lassi�ers are a

urate and anti
ipate the samevalue 1 for the fourth attribute. The �rst 
lassi�er remains un
hanged and the two other ones aregeneralized a

ording to the fourth attribute.At this point, ea
h 
lassi�er of Set C is 
he
ked for 
on�i
ts with other 
lassi�ers of the globallist. Two 
lassi�ers are in 
on�i
t if they anti
ipate a di�erent value for the same attribute, given10



an initial mat
hing situation and a
tion. If a 
lassi�er of Set C is involved into a 
on�i
t, the
orresponding original 
lassi�er of set A is added to the new Set D. Otherwise, the 
lassi�er of SetC is added. Two 
lassi�ers are 
on�i
ting if their C and A parts are 
ompatible, but if their Eparts are not. Two E parts are in
ompatible if they do not mat
h � i.e if the values of the symbolsthat are not don't know are di�erent. Two C parts are 
ompatible if they mat
h and if at leastone possible situation is mat
hed by both C parts. MACS �nds the possible situations in the setP of every per
eived situation en
ountered during the lifetime of the agent (see se
tion 4.2.2).In order to only keep the most general 
lassi�ers in set D, MACS 
he
ks iteratively everypossible pair of 
lassi�ers in that set. When the C part of a 
lassi�er is more general that ofanother 
lassi�er, the former 
lassi�er is kept and the latter is suppressed. In our example, MACSonly keeps one of the two last 
lassi�ers.Up to that point, MACS has build a new Set D of 
lassi�ers whi
h are equal or more generalthan the original ones in Set A. The 
lassi�ers of Set A are repla
ed in the list of 
lassi�ers of thesystem by the 
lassi�ers of Set D.This pro
ess make it possible to repla
e several 
lassi�ers with a smaller or equal number of
lassi�ers. The C part of the new 
lassi�ers 
over the same situations. Thus they do not 
on�i
twith other 
lassi�ers in the system (
lassi�ers with in
ompatible E parts are not overlapping).4.4 Transition 
overingTo fully des
ribe a given environment, a model needs to 
over every en
ountered transition in thisenvironment. This may not be the 
ase in the following 
ir
umstan
es:� the system is initialized with an empty list of 
lassi�ers;� the sele
tion of a

urate 
lassi�ers may eliminate ina

urate or os
illating 
lassi�ers be
auseof lo
al exploration, when the agent experien
ed only a part of the environment.;� the 
ondition spe
ialization pro
ess 
reates a spe
ialized 
lassi�er only when su
h 
lassi�ermat
hes at least one already per
eived situation. As long as the agent does not experien
eevery possible situation, relevant 
lassi�ers may not be added to the 
lassi�er list.To summarize, ea
h time step, the system 
overs the transitions de�ned by st�1, at�1 and st.For ea
h attribute f of st, it 
onsiders an hypotheti
al part Ef of E su
h that its single spe
i�
attribute (whi
h is not a don't know symbol) is set to its value in st. Among the 
lassi�ers withan A part 
orresponding to at�1, the system 
he
ks whether there is at least one su
h 
lassi�erwhose C part mat
hes st�1 and whose E part equals to Ef . If it is not the 
ase, the system 
oversthe transition by adding a new 
lassi�er in the 
lassi�er list.The A part of this 
overing 
lassi�er is set to at�1, its E part is set to Ef , whereas its C partis set as general as possible with regards to the following 
onstraint: its C part does not mat
hea
h of the C parts of the 
lassi�ers with the same E and A parts, but its C part mat
hes st�1.5 Combining Latent Learning and Dynami
 ProgrammingIn se
tion 4, we des
ribed how MACS learns a model of the dynami
s of the environment withanti
ipating 
lassi�ers. In this se
tion, we show how this model is used in a Dyna ar
hite
ture[Sut91℄ to de�ne a poli
y. In su
h ar
hite
tures, as illustrated in �gure 5, the latent learning pro
esstakes pla
e independently from the reward, and permits to build a model of the environment.This model is then used to improve the learning speed of a poli
y, thanks to methods inspired byDynami
 Programming.In the �rst part of this se
tion, a des
ription of how MACS uses a partial and ina

uratemodel of the transitions to drive the exploration pro
ess is given. The se
ond part is devoted tothe pro
ess of learning a poli
y to maximize the 
umulative reward provided by the environment.We also show how MACS 
ombines a
tive exploration and exploitation.11
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Figure 5: MACS uses a Dyna ar
hite
ture [Sut91℄ to perform reinfor
ement learning. In thiskind of ar
hite
ture, the model of the environment is learned latently, i.e. independently from thereward. The informations about the rewards are stored apart, here in the list of per
eptions P,and a de
ision module takes advantage of both informations to build a poli
y.5.1 A
tive ExplorationThe aim of a
tive exploration is to provide the agent with a poli
y that maximizes the informationdrawn by the sensori-motor loop. This agent will a

ordingly sele
t a
tions that help improvingthe model.5.1.1 The internal immediate rewardIn order to be able to drive the behavior of the agent, we de�ne an internal reward fun
tioni : S�A! < whi
h estimates the immediate gain in information, given a situation and an a
tion.With this fun
tion, MACS is able to 
hoose the a
tion whi
h maximizes the information, in agiven situation.In a situation s0, when the system has to 
hoose an a
tion in order to maximize the immediateinformation gain, MACS sele
ts every 
lassi�er su
h that its 
ondition mat
hes s0. If the a
tionsuggested by any of su
h 
lassi�ers was 
hosen by the system, the 
lassi�er will be evaluated atthe next time step: either the number of good evaluations g, or the number of bad evaluations b,will in
rease (see se
tion 4.1).For ea
h of these 
lassi�ers that mat
h s0, MACS 
omputes an evaluation level l 2 [0; 1℄. Thislevel depends upon the number of good evaluations g, the number of bad evaluations b, and thenumber of evaluations needed to de
lare a 
lassi�er as ina

urate, a

urate or os
illating:� if b > 0 and g > 0, then the 
lassi�er needs to be evaluated further to gain informationabout the best way to spe
ialize it and l = min((b+ g)=eo; 1);� if b = 0 and g > 0, then the 
lassi�er 
 may be a

urate but further evaluations are neededto 
he
k that point and l = min(g=ea; 1);� if b > 0 and g = 0, then the 
lassi�er 
 never anti
ipated well but requires further evaluationsto be suppressed and l = min(b=er; 1);� if b = g = 0, then the 
lassi�er has never been evaluated and l = 0.Thus level l is equal to 1 if the 
lassi�er does not need to be evaluated anymore before being sup-pressed, spe
ialized or generalized. It is equal to 0 when the 
lassi�er needs additional evaluations.12



The 
lassi�ers that mat
h s0 are grouped by a
tion. For ea
h possible a
tion a, MACS 
omputesthe set Ss0;a of the possible anti
ipated situations as des
ribed in se
tion 3.28. Only the anti
ipatedsituations whi
h belong to the set P of already en
ountered situations (see se
tion 4.2.2) are
onsidered in Ss0;a. Ea
h triple (s0; a; s1), where s1 2 Ss0;a, is one of the possible transitions thatwould be experien
ed if a
tion a were performed in situation s0. We de�ne the evaluation levell(s0; a; s1) asso
iated to this transition as the produ
t of the evaluation levels l
 of all the 
lassi�ers
 involved in this anti
ipation: l(s0; a; s1) = Y
�(s0;a;s1) l
The 
lassi�ers 
 mat
hing (s0; a; s1) are su
h that their C part mat
hes s0, their A part mat
hesa, and their E part mat
hes s1. If the transition o

urs, the asso
iated immediate informationgain is: Ri(s0; a; s1) = 1� l(s0; a; s1)We de�ne the immediate information gain asso
iated to a situation and an a
tion as the maximuminformation gain over the possible asso
iated anti
ipations:Ri(s0; a) = maxs12Ss0;a Ri(s0; a; s1)If the model does not provide MACS with at least one anti
ipated situation s1, be
ause of in
om-pleteness, then i(s0; a) is given the default value 1, whi
h is the maximum immediate informationgain.This value Ri(s0; a) is used as an immediate reward in order to 
ompute a poli
y for a
tiveexploration. It is 
omputed by analyzing the model and does not rely on the environment. Thus,we 
all it an internal reward.5.1.2 Planning to maximize the information gain on the long runTo perform a
tive exploration, MACS has to maximize the 
umulative immediate informationgain on the long run. Therefore, the system must perform lookahead planning to be able to a
tin order to get information in the future, even if it 
urrently per
eives a situation su
h that noimmediate internal reward is available.The planning pro
ess relies on the immediate internal rewards and on the 
urrent model ofthe dynami
s of the intera
tions with the environment. But, during the learning pro
ess, thismodel of the transitions is not reliable and may be misleading. For instan
e, an agent may planon the bases of a transition whi
h 
annot be a
tually experien
ed. In that 
ase, it may happenthat the poli
y resulting from the model leads the agent into an in�nite loop, with no 
han
e ofre
onsidering the misleading transition. Thus, the planning pro
ess must be 
autious be
ause thede
ision relies on ina

urate information.During the learning pro
ess, the model of the transitions improves, and the immediate internalrewards are 
hanging a lot. Thus, the exploration poli
y of the agent is not stable at all oversu

essive time steps.Nevertheless, be
ause we want to keep the agent rea
tive, it is not suitable to 
ompute a wholeplan at ea
h time step. Therefore, we use an iterative planning approa
h similar to that of ValueIteration [SB98℄, and inspired from the Dynami
 Programming approa
h. Ea
h time step, MACSonly updates on
e the values asso
iated to situations and the poli
y improves over several timesteps and keeps near-optimal most of the time. However, sin
e the model is not a

urate anyway,�nding an optimal poli
y with respe
t to this model is not ne
essary. We only want that theresulting behavior makes the agent to learn a model more qui
kly than with a random poli
y.Ea
h situation of the set P of already en
ountered situation is valued by the dis
ounted in-formation gain whi
h 
an be expe
ted from this point. Thus, the valued per
eption set P servesto store the values of the situations while transitions are 
omputed a

ording to the 
lassi�er list(see se
tion 3.2), and immediate internal rewards are asso
iated to ea
h transition.8There may be several possible anti
ipated situations in the 
ase where the 
lassi�ers are not a

urate.13



Ea
h time step, MACS performs one simulated a
tion for ea
h situation s0 of the per
eptionset P . For ea
h a
tion a, the immediate reward asso
iated to s0 and a is Ri(s0; a) (see se
tion5.1.1). The expe
ted future reward asso
iated to a transition (s0; a; s1) is the dis
ounted valueVi(s1) asso
iated to s1 in the set P .Planning thanks to an ina

urate model 
an result in a sub-optimal poli
y and even to endless
y
les in the behavior of the agent. In order to avoid this kind of problems, MACS is 
autiouswith respe
t to the expe
ted dis
ounted reward Thus, given a situation s0 and an a
tion a, wede�ne the expe
ted information gain as : as:Ei(s0; a) = mins12Ss0;a Vi(s1)The min in this equation re�e
ts the 
autiousness of MACS. Indeed, for ea
h a
tion, the system
onsiders the minimum internal reward he should get, with respe
t to the model. With thisinformation, MACS 
omputes the quality asso
iated to situation s0 and a
tion a:Qi(s0; a) = Ri(s0; a) + 
Ei(s0; a)Then, MACS updates the new value of s0:Vi(s0) = maxa2A Qi(s0; a)The 
 fa
tor is the dis
ount fa
tor. It plays the same role as in equation 1. This way, at ea
htime step, MACS updates several values in the per
eption set and the poli
y improves. Duringthe a
tion sele
tion pro
ess, when the per
eived situation is st, MACS 
hooses the a
tion thatmaximizes Qi(st; a).5.2 Reinfor
ement Learning in MACSIn se
tion 5.1, we de�ned how MACS performs a
tive exploration thanks to iterative planningte
hniques. In this se
tion, we show how MACS uses the model of the transitions to build a poli
ythat maximizes the environmental payo� on the long run.5.2.1 Learning a poli
y for the environmental rewardEa
h time step, MACS re
eives a s
alar reward rt and a new situation st from the environment,as the result of taking a
tion at�1 in situation st�1. This immediate environmental reward isasso
iated to st in the per
eption set P . We note it Rp(st). This fun
tion Rp represents the goalsde�ned by the environmental rewards of the system. Here again, we design an iterative planningme
hanism whi
h permits MACS to take advantage of its model to rea
h the goals.As in se
tion 5.1.2, MACS simulates several su

essive a
tions ea
h time step. When MACSsimulates an a
tion with the situation s0 as a starting point, it uses the model of transitionsprovided by the list of 
lassi�ers and the integration me
hanism (see se
tion 3.2) to 
omputefor ea
h a
tion a the set of possible anti
ipations s1. A payo� value Vp(s) is asso
iated to ea
hsituation s in the per
eption set P . This value represents the desirability of the 
orrespondingsituation. The reinfor
ement learning pro
ess updates these values iteratively thanks to the modelof the transitions and to the immediate environmental rewards. Here again, the learning pro
essis 
autious be
ause along the latent learning pro
ess, the model may be ina

urate. First, givenall the possible transitions from s0, MACS 
omputes the qualities asso
iated to the a
tions:Qp(s0; a) = mins12Ss0;a [R(s1) + 
Vp(s1))℄The 
 fa
tor is the dis
ount fa
tor. It plays the same role as in equation 1. MACS 
omputes andupdates the new value of s0 with this information:Vp(s0) = maxa2A Qp(s0; a)14



During the a
tion sele
tion pro
ess, when the per
eived situation is st, MACS 
hooses the a
tionto maximize Qp(s0; a). This way, MACS builds an exploitation poli
y that enables it to de
idewhi
h a
tion to take in ea
h situation to rea
h the goals de�ned by its environmental reward.5.2.2 Combining the exploration and the exploitation poli
ySe
tion 5.1 and 5.2.1 respe
tively des
ribed how MACS 
omputes a poli
y devoted to a
tiveexploration and how it 
omputes a poli
y for rea
hing the goals de�ned by its environmentalreward. We now address the issue of 
ombining these poli
ies in order to generate a behavior
ombining exploration and exploitation.This 
ombination takes pla
e during the a
tion de
ision pro
ess. When MACS per
eives thesituation st, it 
omputes for ea
h a
tion a the qualities Qi(s0; a) and Qp(s0; a) respe
tively as-so
iated to the exploration and the exploitation, before aggregating them. In this 
ase, it doesnot make sense to aggregate these 
riteria by 
omputing a weighted sum be
ause none of the twoqualities are bounded. Indeed :� if there are many immediate gains of information, even if they all belong to [0; 1℄, thedis
ounted sums may be high;� the level of the environmental rewards 
annot be known by the system before the learningpro
ess is a
tuated sin
e the environment is unknown.Thus, we 
annot sele
t adequate weights in advan
e. However, we still 
an de�ne a hierar
hybetween the two 
riteria. As the optimality of the exploitation poli
y relies on the reliability ofthe model, seeking information that helps improving the poli
y is given the priority against thepayo� maximization. The sele
tion of an a
tion takes pla
e the following way (we note Anfa0g theset A, ex
luding a0) :� If 9a0 2 A tq. 9a 2 Anfa0g tq. Qi(st; a0) > Qi(st; a) then the 
hosen a
tion is a0� Otherwise, the 
hosen a
tion a1 is su
h that Qx(st; a1) = maxa2AQx(st; a)This way, if the a
tions are equivalent with respe
t to the information gain, then MACS 
hoosesthe a
tion a

ording to the exploitation poli
y.6 Experimental studyUp to that point, we des
ribed MACS, a new LCS that performs a new kind of generalizationwhen 
ompared with XCS, ACS or YACS. In [GS01a℄ and [GSS02℄, we 
ompared the ability ofYACS and ACS to build a model of the dynami
s of the intera
tions between the agent andits environment. We showed that YACS provides an improvement over Stolzmann and Butz'sACS, in terms of learning speed as in terms of number of dis
overed 
lassi�ers. In this se
tion,we provide experimental 
omparisons of YACS and MACS intera
ting with the environmentsMaze228, Maze252, Maze288 and Maze324, des
ribed in se
tion 6.1.We also provide experimental results about the use of MACS anti
ipation 
apabilities to providethis system with non-random poli
ies. The results given in se
tion 6.2 are dis
ussed in se
tion 6.3.6.1 The environments Maze228, Maze252, Maze288 and Maze324Like the Wilson woods problems that are usually used as ben
hmarks in the LCS framework,Maze228, Maze252, Maze288 and Maze324 are grid worlds.Ea
h 
ell in those grids may be empty or 
ontain either an obsta
le � or food F. The agent issituated in a 
ell and is oriented toward one of the four 
ardinal dire
tions. A per
eived situationis des
ribed by nine attributes : eight 
orresponding to the adja
ent 
ells and one to the 
ell theagent is situated in. An attribute may take three values: 0 (empty 
ell),  1 (�) or 2 (food)15



FFigure 6: The Maze228 environment FFigure 7: The Maze252 environment
FFigure 8: The Maze288 environment FFigure 9: The Maze324 environmentThe agent 
an 
hoose between three a
tions: turning 90o left, turning 90o right or moving one
ell ahead. In this 
ase, if the 
ell in front of it 
ontains an obsta
le, the agent remains in its
urrent 
ell.Grid worlds are usually used as understandable representations of �nite state automatons. Inthese automatons, a
tions imply transitions among states, represented as graph nodes. Su
h au-tomatons make it possible to represent any reinfor
ement learning problem with dis
rete statesand a
tions. Even if grid worlds 
an only represent a sub 
lass of reinfor
ement learning problems,they 
an help to apprehend 
omplex environments. In parti
ular, they provide an easy way torepresent attributes. Moreover, maze problems provide regularities whi
h may be used for gener-alization. In MACS as in YACS, we did not make any assumption 
on
erning the parti
ularitiesof grid worlds over general �nite state automatons.The topologies of Maze228, Maze252, Maze288 and Maze324 are respe
tively illustrated in�gures 6, 7, 8  and 9. Maze228 
ontains 19 non-terminal 
ells and 19�4�3=228 transitions maybe experien
ed in the environment. As maze 252 
ontains 21 non-terminal 
ells, it is possible forthe agent to experien
e 252 transitions in it. Likewise, Maze288 and Maze324 respe
tively 
ontain25 and 26 empty 
ells and thus, 288 and 324 possible transitions.From a qualitative point of view, the parti
ularity of Maze288 is that it is less �open� than theothers. Its left part a
tually 
ontains two dead ends be
ause the agent 
annot move diagonally,while in the other environments, nothing equivalent exists. This originality of Maze288 leads anagent a
ting randomly to visit less often all the possible situations.The experiments are divided into trials. The agent starts a trial in a free 
ell 
hosen randomly.A trial ends when the agent rea
hes the 
ell with food, regardless of its orientation. In that 
ase,the agent re
eives a reward of 1.0, it per
eives the new situation to learn about the last transition,and a new trial starts.6.2 Experimental resultsIn order to estimate the evolution of the a

ura
y and 
ompleteness of the model of the transitionsprovided by the 
lassi�er list and the integration me
hanism (see se
tion 3.2) over su

essive timesteps, we use a measure of the per
entage of knowledge provided by the model. For ea
h possibletransition in the environment, we 
he
k if the 
lassi�er system is able to model a

urately thetransition � i.e. if it anti
ipates a single situation only, and if this situation is the a
tual one. Theper
entage of knowledge is the ratio of transitions a

urately modeled by the system against the16



  Time to 
onverge Nb. Classi�ers  Average Std. Dev. AverageMaze228 - YACS (random) 9 295 1 787 199Maze228 - MACS (random) 4 960 1 737 184.8Maze228 - MACS (a
tive) 3 001 1 006 181.8Maze252 - YACS (random) 11 466 2 286 219Maze252 - MACS (random) 6 695 2 353 193.8Maze252 - MACS (a
tive) 3 716 1 306 190.2Maze288 - YACS (random) 20 983 7 114 249Maze288 - MACS (random) 8 473 3 078 205.3Maze288 - MACS (a
tive) 4 379 1 686 204.4Maze324 - YACS (random) 15 740 3 558 283Maze324 - MACS (random) 11 398 4 538 229.6Maze324 - MACS (a
tive) 5 518 2 084 227.2Table 3: Summary of the experimental results
 160

 180

 200

 220

 240

 260

 280

 300

 320

 220  240  260  280  300  320  340

av
er

ag
e 

nb
. c

la
ss

ifi
er

s

taille de l’environnement (en nb. de transitions)

Number of classifiers vs. size of the environment

with YACS (random)
with MACS (random)

with MACS (active)

Figure 10: Number of 
lassi�ers against the sizeof the environment  0
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Figure 11: Time to 
onverge against the size ofthe environmenttotal number of transitions to be modeled by the system. This per
entage 
annot be measuredin real world experiments sin
e it requires a perfe
t knowledge of the environment. However, itsevaluation is only possible in simulated environments.For YACS, as de�ned in [GSS02℄, the memory size m is set to 5 and the learning rates areset to 0:1. For MACS, we also used learning rates of 0:1 and eo, er and ea were all set to 5 (seese
tion 4). The dis
ount fa
tor 
 was set to 0:9.We tested YACS in random exploration and MACS both in random and a
tive explorationin ea
h of the four environments. Table 3 summarizes the results of the di�erent experien
es.It shows the average over 100 experien
es (and the asso
iated standard deviation) of the time torea
h a perfe
t knowledge of the environment. It also shows the average of the number of 
lassi�ersthe systems needed to model the dynami
s of the intera
tions with the environment.Unilateral statisti
al Wil
oxon tests permit to 
he
k, with a given 
on�den
e, the hypothesisof the equivalen
e of 
onvergen
e time distributions, against the the hypothesis stating that the
onvergen
e times for one set of experiments are lower than the times for another set. For ea
henvironment, 
onsidering one 100 valued sample per experiment, the Wil
oxon tests a

ept, withthresholds lower than 10�5, the hypothesis that MACS 
onverges more qui
kly than YACS inrandom walk, and that MACS 
onverges faster with a
tive exploration.  Figures 10 and 11 show the relationships between the size of the environment on the one side,and the average number of 
lassi�ers and the average time to 
onverge, on the other side.17
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Figure 12: Evolution of the per
entage ofknowledge in Maze228  0
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Figure 13: Evolution of the number of 
lassi-�ers in Maze228
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Figure 14: Evolution of the per
entage ofknowledge in Maze252  0
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Figure 15: Evolution of the number of 
lassi-�ers in Maze252Figures 12, 14, 16, and 18 show the evolution of the per
entage of knowledge when YACS andMACS intera
t with the di�erent environments. Figures 13, 15, 17, and 19 show the evolutionof the number of 
lassi�ers in the same experiments. All these results are averaged over 100experiments.Figures 20, 21, 22 and 23 show how the the average number (over 100 experiments) of timesteps required by MACS to rea
h the food evolves along  su

essive trials, when exploration andexploitation are jointly used.6.3 Experimental results analysis6.3.1 MACS vs. YACS in random explorationThe semanti
s of the 
lassi�ers are di�erent in YACS and in MACS. With the YACS formalism,
lassi�ers model transitions as a whole while, in the MACS formalism, ea
h 
lassi�er predi
ts thevalue of a single attribute only. In environments supplying few regularities a
ross attributes, thenumber of rules dis
overed by MACS should be higher.Moreover, there are no don't 
are symbols in the formalism of MACS. As a result, regularitieslike �moving toward a wall does not make the situation 
hange� are represented with more 
lassi�ersin MACS than in YACS � one 
lassi�er for ea
h value of ea
h attribute � by taking advantage ofits ability to represent regularities involving di�erent attributes of the situations. But the numberof su
h 
lassi�ers remains the same whatever the size of the grid world is.Despite this, in Maze228, like in Maze252, Maze288 and Maze324, MACS 
onverges toward18
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Figure 16: Evolution of the per
entage ofknowledge in Maze288  0
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Figure 17: Evolution of the number of 
lassi-�ers in Maze288
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Figure 18: Evolution of the per
entage ofknowledge in Maze324  0
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Figure 19: Evolution of the number of 
lassi-�ers in Maze324a smaller number of 
lassi�ers than YACS, thanks to the new regularities taken into a

ount inthe MACS formalism. Indeed, the larger the environment, the more MACS outperforms YACSwhen 
onsidering the ratio between the number of dis
overed 
lassi�ers and the number of a
tualtransitions. MACS exhibits an ability to represent many regularities whi
h are independent fromthe parti
ular topologies of the mazes, but that 
on
ern mazes in general:� In MACS, every transition involving a turning a
tion is modeled with the same number of
lassi�ers regardless of the number of 
ells in the grid world. As YACS is not able to representregularities a
ross attributes, more 
lassi�ers are required to model these transitions as thesize of the environment grows.� The only attributes whi
h are di�
ult to predi
t for MACS 
orrespond to the 
ells in frontof the agent, when it moves forward and when there is no wall in front of it. Whether su
hsituations o

ur frequently or not depend on the topology of ea
h parti
ular maze, not onthe general stru
ture of mazes. In that 
ase, the latent learning pro
ess has to take intoa

ount regularities whi
h o

ur less frequently. In order to redu
e the number of 
lassi�ersne
essary to predi
t su
h attributes, a solution 
ould be to provide MACS with a me
hanismmaking it possible to build E parts with several spe
i�
 symbols, as initially proposed in theformalism (see se
tion 3.2).Regularities of the �rst kind are qui
kly dis
overed by MACS. Indeed, in the �rst 1000 timesteps of the experiments (in any of the tested environments), the per
entage of knowledge grows19
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Figure 20: Evolution of the number of timesteps to a
hieve su

essive trials in Maze228  0
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Figure 21: Evolution of the number of timesteps to a
hieve su

essive trials in Maze252
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Figure 22: Evolution of the number of timesteps to a
hieve su

essive trials in Maze288  0
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Figure 23: Evolution of the number of timesteps to a
hieve su

essive trials in Maze324very fast before slowing down and the 
omplete model is learned more qui
kly in MACS than inYACS.Su
h learning speed of rotation a
tions is due to the fa
t that, despite the random exploration,there are many relevant examples to drive the learning pro
ess, sin
e the 
on
erned regularitiesare independent from the parti
ular topology of ea
h environment. This is very di�erent whenregularities that rely on the topology are 
on
erned. In that 
ase, the more the 
lassi�ers are spe-
ialized, the more the system experiments transitions that do not provide additional information,and the learning pro
ess a

ordingly slows down.Despite this random exploration, the learning speed of MACS is linear in the size of the testedenvironment while the parti
ular topology of Maze288 is problemati
 for YACS (see se
tion 6.1).6.3.2 MACS with a
tive exploration and payo� maximizationWhen MACS uses a
tive exploration, the average time to rea
h a 
omplete knowledge is improvedover the situation of random exploration. Moreover, as shown in �gure 11, the improvement getshigher as the size of the environment grows. The evolution of the 
onvergen
e speed is better thanlinear in the size of the environment. In addition, the number of 
lassi�ers stabilizes qui
klier.MACS also demonstrates its ability to use the model of the dynami
s of the environment inorder to learn a poli
y with respe
t to the payo�. In this respe
t, the learning pro
ess 
an bedivided into several parts.During the very �rst trials, MACS mostly learns the transitions that 
orrespond to the rota-20



tions. Be
ause the model is highly ina

urate, MACS 
annot propagate the internal reward verywell and the system does not take mu
h advantage of the Value Iteration algorithm. The resultingbehavior almost looks like a random behavior.On
e the �rst regularities have been learned, MACS be
omes able to plan one step ahead whenperforming rotation a
tions, and it is more likely to learn what is happening when moving ahead.Thus, the behavior mostly 
onsists of long straight lines and MACS experien
es many di�erentsituations. As a result, it rea
hes the goal more often : the number of time steps to a
hieve thesu

essive trials de
reases.As the knowledge of MACS about what leads to what when moving ahead improves, thesystem be
omes able to build more 
omplex exploration poli
ies and therefore stays longer withoutrea
hing the goal. Thus, the time to rea
h the goal in
reases until there is almost no informationto gain.At this point, thanks to the aggregation method of exploration and exploitation poli
ies, MACSstarts to maximize the payo�. The behavior be
omes optimal with respe
t to the payo�, althoughit may happen that MACS re
onsiders early suboptimal spe
ializations. In that 
ase, the new
lassi�ers must be validated and MACS swit
hes temporally ba
k to a
tive exploration. Thisphenomenon explains the peaks in the late trials.7 Dis
ussion7.1 Latent learning in MACS and the un
ertainIn [GSS02℄, we showed that the me
hanisms of YACS improve the learning speed over ACS. Inthis paper, we proposed a new formalism for the problem of anti
ipation in the LCS framework.We showed how MACS, whi
h uses this formalism, improves the learning speed over YACS, thenover ACS.Nevertheless, we pointed in [GSS02℄, that extensions have been added to ACS in order to dealwith the un
ertain9, while YACS only deals with markov and deterministi
 environments. Su
hextensions do not exist for MACS either.The out
omes of an a
tion in a parti
ular situation may be un
ertain be
ause:� the environment is sto
hasti
. In that 
ase, the per
eptions or the a
tions may be noisy, andthe out
omes of an a
tion in a given situation are not always the same. This 
ase may o

urwhen the sensors or the e�e
tors are not absolutely reliable;� some per
eptions are ambiguous. In that 
ase, the agent per
eives the same situation indi�erent states of the environment (see �gure 24). Then, the information provided by the
urrent per
eption is not su�
ient to de
ide the optimal a
tion, and the problem is told non-markov. The agent must deal with an internal state to disambiguate the aliased per
eption.The internal state is de�ned by an information about past situations and a
tions.In order to deal with sto
hasti
 environments, ACS [BGS01℄ uses multiple e�e
t parts per
lassi�er, ea
h valued by a probability measure. Some spe
i�
 heuristi
s have been added to ACSto deal with this new feature. In MACS, as in YACS, the heuristi
s presented in se
tion 4 shouldalso be modi�ed to ta
kle sto
hasti
 environments, but the estimates 
ould be kept. Indeed, MACSestimates are robust to noise, be
ause they use Widrow-Ho� equations. Rather than designingnew heuristi
s, the estimates 
ould also be used to bias usual geneti
 algorithms.In order to deal with ambiguous per
eptions, ACS uses a
tion sequen
es. In the LCS frame-work, several other ways have been explored. CXCS10 [TB00℄ builds sequen
es of 
lassi�ers andXCSM11 [Lan98℄ uses expli
it memory registers to de�ne internal states. In the general Rein-9The learning speed improvements of YACS over ACS have been shown by 
onsidering ACS without theseextensions.10CXCS stands for Corporate XCS11XCSM stands for XCS with Memory 21



F

A B C

Figure 24: In this environment, the agent always fa
es north and per
eives the eight surrounding
ells. The agent 
an move to any of the eight surrounding 
ells. Many of the 
ells are ambiguous.For instan
e, the agent per
eives the same situation in the 
ells marked a, b and 
. The 
onse-quen
es of an east movement in any of these 
ells are di�erent. Inside ea
h of the highlightedzones, there are no aliased situationsfor
ement Learning framework, Wiering [WS97℄ and Sun [SP00℄ propose to learn how to divide anon-markov problems into several markov ones (see �gure 24).These te
hniques all require that information about internal state 
hanges 
an be asso
iated totransitions. Unfortunately, MACS 
lassi�ers do not represent whole transitions, but provide onlypartial anti
ipations, thus a parti
ular 
lassi�er may be involved in several transitions. Therefore,the solutions mentioned above 
ould be adapted to YACS, but the partial anti
ipations of MACSforbid to use su
h te
hniques.7.2 Relations between Dyna and MACS
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Figure 25: YACS ar
hi-te
ture for latent learn-ing.
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IntegrationFigure 26: MACS ar
hite
ture for latent learning.In se
tion 5, we des
ribed MACS as a Dyna ar
hite
ture [Sut91℄. The main di�eren
e withMACS and DynaQ+ is the model of the environment whi
h is learned. In DynaQ+, this model
onsists of an exhaustive list of (st�1; at�1; st) triples, ea
h spe
ifying a whole transition, i.e. theexpe
ted value of every attribute. ACS and YACS improve the model by adding generalizationin the triples, but ea
h 
lassi�er still spe
ify 
omplete transitions. Conversely, in MACS, ea
h
lassi�er only provides a predi
tion 
on
erning one attribute.22



Due to 
onditions, ea
h 
lassi�er of YACS (or (st�1; at�1; st) triple of DynaQ+) is a subfun
tionof the global transition fun
tion T : s1�:::�sd�a1�:::�ae ! s1�:::�sd12. Conversely, in MACS,ea
h 
lassi�er is a subfun
tion of a partial transition fun
tion Ti : s1 � :::� sd � a1 � :::� ae !si. Then, it is possible to 
onsider groups of 
lassi�ers, ea
h group anti
ipating one parti
ularattribute. The global transition fun
tion 
an be obtained by integrating the partial anti
ipations.The MACS ar
hite
ture illustrated in �gure 26 shows how the latent learning part of MACS
an be 
onsidered as a modular system, ea
h module anti
ipating one attribute. By 
ontrast, �gure25 shows the monolithi
 ar
hite
ture of a DynaQ+ or ACS/YACS model. Ea
h of this moduleprovides an approximation of one partial transition fun
tion, ea
h predi
ting one single value.This ar
hite
ture suggests that one 
ould repla
e MACS modules by any fun
tion approximationsystem. This way, it should be possible to take advantage of usual LCSs (whi
h do not use spe
iale�e
t parts) to draw the bene�ts of anti
ipation in reinfor
ement learning problems.For symboli
 fun
tions, it is possible to use well known systems as XCS for these partial anti
-ipations. For numeri
al fun
tions, it should be possible to use numeri
al fun
tion approximatorsfrom the LCS �eld like XCSF [Wil01℄, Neural Networks, lo
ally-weighted fun
tion approximatorsor any other, provided that it is in
remental.8 Con
lusionIn this paper, we des
ribed several LCSs, ea
h of them 
asting a new light on the 
on
ept ofgeneralization in the LCS framework. In parti
ular, we enlighted how most LCSs � like XCS �
onsider generalization with respe
t to an expe
ted payo�, while other LCSs � like ACS or YACS� 
onsider it with respe
t to anti
ipated e�e
ts in terms of situations. We also enlighted somelimitations of the formalism of ACS and YACS. To over
ome these limitations, we proposed MACS,a new LCS whi
h uses a di�erent formalism. This formalism makes it possible to use additionalregularities for generalization, in the latent learning pro
ess of the model of the dynami
s in theintera
tions between the agent and its environment.Su
h a model is a prerequisite for the appli
ation of Dynami
 Programming iterative algorithmsfor planning. With MACS, we used a Dyna ar
hite
ture to separate the information about thetransitions, and the information about the reward. This kind of ar
hite
ture makes it possibleto use te
hniques from operational resear
h to speed up the reinfor
ement learning pro
ess. Thisway, MACS is able to 
ompute poli
ies for a
tive exploration and payo� maximization. Amongdi�erent methods for aggregating 
riterions, we have 
hosen a hierar
hi
al aggregation in order tota
kle the exploration/exploitation tradeo�.MACS formalism for latent learning does not 
onsider situations as an unse
able whole, but itde
orrelates the attributes, making it possible to represent regularities a
ross attributes. Experi-mental results demonstrated that the new formalism used by MACS a
tually a�ords more powerfulgeneralization 
apa
ities than the formalism of YACS, without any 
ost in terms of learning speed.In addition, we showed how de
orrelating attributes in the e�e
t part, leads to 
onsider an anti
-ipatory system as a modular system, 
omposed of several systems, ea
h of them predi
ting onesingle value. Then, it is possible to use regular and widely studied learning algorithms to learn amodel of the environment so that it be
omes possible to take advantage of Dynami
 Programmingte
hniques to speed up the reinfor
ement learning pro
ess.We now intend to design a general numeri
al fun
tion approximator with a learning 
lassi�ersystem whi
h makes use of estimates to drive the learning pro
ess. This new system will next beintegrated in a MACS ar
hite
ture. This way, we intend to build an anti
ipatory reinfor
ementlearning system, for sto
hasti
 and 
ontinuous environments.Referen
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tors, ans d is the number of per
eived attributes23
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