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Abstract
We consider the single machine scheduling problem with resource dependent release
times and processing times, in which both the release times and processing times are
strictly linear decreasing functions of the amount of resources consumed. The
objective is to minimize the makespan plus the total resource consumption costs. We
propose a heuristic algorithm for the general problem by utilizing some derived
optimal properties and analyze its performance bound. For some special cases, we

propose another heuristic algorithm that achieves a tighter performance bound.
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1. Introduction
The scheduling problem with resource dependent processing times has received

much research attention in recent years. Studies in this area were initiated by Vickson
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[15, 16] and Van Wassenhove and Baker [14]. A survey of this topic up to 1990 was
given by Nowicki and Zdrzalka [11]. During the last decade, some new results on
these problems have appeared in the literature. They can be found in Zdrzalka [17],
Panwalkar and Rajagopalan [13], Alidaee and Ahmadian [1], Nowicki and Zdrzalka
[12], Cheng et al. [3], Janiak and Kovalyov [9], Chen et al. [2], Cheng et al. [5] and
Zhang et al. [18], among others. The scheduling models cited above all assume that
each job is available at the beginning or its release time is constant.

The scheduling problem with resource dependent release times has also received
considerable attention of the scheduling research community in recent years. Some
research results can be found in the following papers: Janiak [7, 8], Cheng and Janiak
[4], Cheng and Kovalyov [6] and Li et al. [10], among others. In these scheduling
models, the jobs are each assumed to have a fixed processing time.

However, to the best of our knowledge, there seem to exist no papers studying the
scheduling problem in which both release times and processing times are resource
dependent. Such a scheduling problem commonly arises in the chemical processing
industry. Before chemical compounds (jobs) are ready for processing, they have to be
preheated to reach a temperature threshold below which chemical reactions will not
take place. This preheating process consumes resources such as fuel and so a chemical
compound is ready earlier for processing if more fuel is consumed to preheat it. On
the other hand, the processing time of a chemical compound varies according to the
speed of its chemical reaction, which is directly related to the amount of catalysts
consumed. Hence, both the job release times and processing times are variable and
depend on the amount of resources consumed. The objective of the scheduling
problem is to minimize the sum of resource consumption and the makespan, i.e., the
total elapsed time to complete all jobs. Such a situation can be modeled as our
scheduling problem with resource dependent release times and processing times on a
single machine.

This paper is organized as follows. In Section 2, we formulate the problem under
study. In Section 3, we derive some properties of an optimal solution. In Section 4, we

present a heuristic algorithm for the general problem and analyze its performance
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bound. In Section 5, we present a heuristic algorithm for some special cases that
yields a tighter performance bound. Section 6 concludes with a summary and

suggestions for further research.

2. Problem Formulation

In this section the single machine scheduling problem is considered under the
assumption that both release times and processing times are strictly linear decreasing
functions of the amount of resources consumed. Formally, the problem can be
formulated as follows.

We consider the problem of scheduling a set J = {Jy, ..., Jo} of n jobs on a single
machine. Let x denote a permutation of the jobs in set J and IT the set of all such
permutations. All jobs are initially available at time v, but each job may be made
available at an earlier time point by consuming extra resources (e.g. fuel) that will
incur additional costs. Associated with each job J; is a processing time p; and a release

time ri, i =1, 2, ..., n, where both p; and r; depend on the amount of resources
consumed. Specifically, p, =a, —X;, where a; is the normal processing time and x;
the amount of processing time compression, 0<x; <a,; r, =v—u,/w, where u; is
the amount of resource consumed to advance the availability of J; to rj and w the cost
per unit reduction of release time, 0<u, <wv. For the convenience of theoretically
analyzing the studied problem, it should be noted that the case p, =0 means that the
actual processing time of job J; is so small that it can be neglected in the objective
function. Let x=(x,, X,, -+, X,) denote a processing time compression vector and
r=(r,r,, -, r,) arelease time vector. Also, let X denote the set of all feasible x and

R the set of all feasible r.

For any job J;, since the amount of resources consumed for its release time

reduction u,,u; =w(v—r,), is a decreasing function of the release timer;,i=1, 2, ...,

n, we assume that all jobs start as early as possible after they are released. For given r,



x and r, assuming the job permutation 7= (Jy, ..., Jy), the objective function, or total

cost, K(x, r, n) is defined as

K(x,r,7) = max{r, +2 (@ = X)X+ wv—r,), @
<j<n i= i=1 i=1
where ¢, 1 =1, 2, ..., n, is the cost per unit processing time reduction. To simplify

notation, we assume that both ¢j, 0 <c;< 1, and w, 0 <w < 1, are appropriately scaled

so that their units are compatible with that of the makespan. It is clear that

n n
max{rj+Z(ai—xi)} is the makespan, Zcixi is the total processing time
i~

I<j<n =y

n
compressing cost, and Zw(v— r.)is the total release time compressing cost. Thus,
i=1

the optimal objective K*(x, r, 7z) is

K*(x,r,7) =min K(x,r,x). (2)

xeX, reR, rell

Under the constraint of a common deadline, the single machine scheduling

problem to minimize resource consumption, in which the job release times follow a
linear model, r, =v—u,/w, i=12,---,n, while the processing times are constant, is

NP-hard in the ordinary sense (Janiak [8]). In our problem the release times follow the
same linear model as that in Janiak [8], but the processing times are also linearly
dependent on the amount of resources the jobs have consumed. So the problem
studied here is more difficult to deal with, and is evidently NP-hard. Thus, we will

focus on developing heuristic algorithms for the problem under study.

3. Problem Analysis

In this section we establish some properties of an optimal solution to the
scheduling problem under consideration.

We first note that if there exists idle time between the first job and the last job in a
permutation 7, the total cost can be reduced by eliminating the idle time through
changing the actual processing times and release times of some jobs. So we have the

following lemma.



Lemma 1 Inan optimal schedule, there exists no idle time between the first and the

last processed jobs.

Proof In a given solution (x, r, z) with an objective function K(x, r, x), if there
exists an integer m (0 < m < n) such that the idle time between the mth job and
(m+1)st job is At (At >0), we can construct a new solution (x, »’, z) with an objective
function K(x, ', z) such that K(x, »", 7) < K(x, r, 7).

If v>r +(a,—x,)+At, we set r'=(r/, r,,---, r)=(r+At:---, r, +At,

r r.). Then K(x, r’, 7) is

o
K(x, r',z) = Enax{rj' +Z(ai - Xi)}+ZCiXi +ZW(V_ r)
=J=n i i1 i1

= max{r, +Zn:(ai — X )}+ Zn:cixi +anw(v—ri)—mAt

j<
1<j<n i1

=K(x, r, 7)—mAt < K(x, r, ).

If r,+(a,—x,)<v<r,+(a,—X,)+At, we set At = At; + At,, where
r,+@,— X,)+At,=v,and r'=(r/, r,,---, 1) =(r, +At,---, 1, +At,, 1., —At,,

-, r.—At,). Then K(x, 7', 7) is
K(x, r',z) = En_ax{rj’ + (3 =X} D CX + D w(v—r)
<J=n oy i1 i1

= Enax{rj + Z(ai —X;)}—At, + Zcixi + Zw(v— ) — mAt,
<J=n i i1 i1

= K(x, r, 7) — (MAt, + At,) < K(x, r, 7).

If V<rm+(am_xm),weset r,=(r1” rZI’.”lrn’)z(rll'”; rm!rm+l_At,"'l
r. —At). Then K(x, r’, 7) is
n n n
K(x, r',z) = max{r{ + > (& —X)}+ 2 ;% + 2 w(v—r)
<j<n = — -

= max{rj +Zn_:(ai —xi)}—At+Zn:cixi +Zn:w(v—ri)

1<j<n

=K(x, r, 7)—At < K(X, r, 7).



—

Summarizing the above discussion, the conclusion holds.

According to Lemma 1, the objective function K(x, r, z) can be re-written as
KX, rz) =1+ (& = %)+ ¢X +> W(v—r). (3)
i=1 i=1 i=1

Further, although an optimal solution is determined by the factors 7z, x and r, these
factors are interrelated in the process of searching for an optimal solution. So it is
necessary to analyze the relations among these factors in an optimal solution. In the
following, we derive some optimal properties to determine the release times for given
zand x. We also develop some optimal properties to sequence jobs and determine the
processing time compressions simultaneously.

In an optimal solution, let 7* denote its permutation and x* its processing time

compression vector. We have

Lemma 2 For 7* and x* in an optimal solution, r;, i= 2, ..., n, should satisfy the
following conditions:

i-1 i-1

)If r+> @ —x*)<v.thenr =r+> (@, -x*);
i1 =

i-1
i) If r,+> (@, —x*)>v,thenr, =v.
i1

i—1 i-1
Proof i) If r<r+) (a;—x*,), wesetAr, =r, +> (a, —x*,)—r, and
j=1 j=t

r=(r, -6, +Arn,r,

i i i1y

r,) . From (3), we have

K(x*,F, 7*) = K(x*,r,7%) =wv —(r; + Ar;)] - w(v—r;) = —wAr, <0.
i—1
If r,>r +Z(aj —X*,), it contradicts Lemma 1.
j=1
i) The conclusion holds trivially. i

We assume that the constant w is such that %< w < ﬁ where K is an integer

and k >2. We will notice in the sequel that, to minimize the objective function, the
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optimal determination of the release time vector is directly affected by the integer k.

For given permutation 7 and X=(X;, X,, -+, X,), in view of the optimal

properties of Lemmas 1 and 2, we can determine r=(r,r,,---, r,) using the

following algorithm.

Algorithm Al

Stepl. If p,+---+p,, >V holds, then set r; = 0; otherwise, set

rlzv_(p1+"'+pk_1)-
Step 2. If r; = 0, then determine the integer m, m < Kk, such that

P+ + Py SV P, +---+p, holds. Set r,=p, rb=p, +pP,, -, 1, =P+
+ Py My =Vyooe,  F,=Vv . Otherwise, set r,=r+p, L=r+p +p,,

a=nh+tpPpt+P, K=HL+P++P, =V, =V, =V.

According to Algorithm A1, for the case where p,+---+ p,_, >V, the objective
function Ki(x,r,7)is
Kai(x,r,7) = Z(ai -X) +Zcixi +> WV -r;)
i i i=1

=Z(aI —X )+Zc +wv+w[v—(al—xl)]+---+w[v—§(ai —x;)]

i=1

=}

Z(a,—x)+Zc,x,+W[Z(a —x;)+d_ ]+W[Z(a x)+d ]

i=1
+"'+W[(am—l - m—l)+dm]+de

=> (& —xi)+Zn:cixi +mwd,, +Ww[(a, —x,)+2(a, —X,)

i=1

Tt (m _l)(am—l - Xm—l)] J (4)
m-1
where d =v->(a,—-x) and 0<d, <a, —X,.

i=1

For the case where p, +---+ p,, <V, the objective function Ka(xr,7)is



Ka(x,r,7) =t Jrzn:(ai —xi)jtzr]:cixi +w(a, - x,) +2(a, — x,)
)
:V+Zn:(ai _Xi)+zn:cixi +W(a, — %) +2(a, —X,)

+o+ (k=D — %)l (5)
In Step 1 of Algorithm Al, we select the value of r; based on the following

consideration.

If p,+---+p,., >V, and if we set O0<r, <v, then r, may be denoted asr, =
At +---+ At ,+d! , where 0<At <p,, i=12,---,m-1, 0<d, <d_ . And
assume that if d, <d_, then At , =0 , and if At <p, (i=2,3,---,m-1), then
At, =0 forh=12,---,i—-1. According to Lemmas 1 and 2, r, =r, + p, —At,,
L=r+p, +p,— (At +AL), -, =+ p++ Py — (At +-+ AL, ), My =

v, ---, r, =V. Then the objective function K’ (x, r, 7) is
KOG z) =1+ @ —X)+ D X + > Wv—r)
i=1 i=1 i=1

=K, (X, 1, 7) + (1= W)At, + L — 2W)At, +---+ L — (M —DW)At,_,
+@-mw)d! > Ki(x,r,7). (6)
Ifp,+---+p,, <v, and if we set O<r, <v—(p,+---+ P,,), then r;y may be
denoted as r,=v—(p,+---+p,,)—At , where O<At<v—(p,+--+PpP,4) -

According to Lemmas 1 and 2, r,=r+p,, -,y =L+(P++P )=

vV—At, 1., =V, -, r, =Vv.Then the objective function K’ (x, r, 7) is

K'(x,r,z)=r, +_Zn:(ai —xi)+Zn:cixi +WwW(a;, — %) +2(a, — X,)
+ 7+ (k —1)(ak_17— X,_1) + KAt]
=V+Zn:(ai _Xi)+Zn:CiXi +wl(a, — %) +2(a, - ;)

o+ (k=D(a,; — % )]+ (kw—1)At
=Ka(X,1,7) + (kw—1)At > K2 (X, T, 7). )



If p,+---+p.,<v,and if we set v—(p,+---+ p,,) <1, <v, then r; may be
denoted as r,=v—(p,+---+pP,)+(At, +---+At, ,) , where O0<At _,<p,,,
O0<At <p,,i=12 -+, k—2. And assume that if At <p, (i=2,3,---,k-1), then
At, =0 for h=12,---,i—-1. According to Lemmas 1 and 2, r, =1, + p, —At,,
L=r+p, +p,—(At, +At,), -, =0+(p,+ -+ P,)— (At +--+AL,_,), 1, =

v, ---, r, =V. Then the objective function K’ (x, r, 7z) is
KOG z) =1+ @ —X)+ D cX + > Wv—r,)
i=1 i=1 i=1

=V+Zn:(ai =) +W(a, — %) +2(a, = %,) +-+ (K—=1)(a; — X 1)]

i=k

+ (1 -wW)At, + (1-2w)At, +---+ (1 — (kK —Dw)At, ,
=K, (X, I, ) + (L— W)At, + (L— 2W)At, +---+ (1 — (K —D)W)At,
> Ko (X1, 7). (8)
From (6), (7) and (8), it is evident that the search for an optimal solution can be
restricted to the space of the set (x, z) with r determined by Algorithm Al. According

to Lemma 1, Lemma 2 and the above discussion, we have the following result.

Theorem 1 In an optimal solution, r=(r,r,,---, r,)should be determined by

Algorithm Al.

In view of Theorem 1, we will denote Ki(x,r,z), Ka(xr,z) and
K*(x,r,7) by Ki(x,7), K2(x,7) and K*(x,7), respectively. Thus, the optimal
objective value K *(x,)is given by

K*(x,7) =min,_ . {Ki(x,7), K2 (x,7)}.

From the above discussion, we may focus our attention on analyzing the relation
between a permutation z and a processing time compression vector x in order to

search for an optimal schedule. In fact, the two factors 7 and x are interrelated in an



optimal solution. Next, we develop an optimal property to determine x under a given

TT.
For a given 7= (Jy, Jo, ..., Jn), say, to minimize the objective function Ki(x,7),

we can treat the processing time compressions x;, i =1, 2, ..., n, as decision variables
and formulate the problem as a linear programming problem P1:
(P1)

min K1 (X, )

subject to
X, <a, 1=12,---,n
Xp + X 4ot Xy = (@ +-+ay,)—(v—d,)
X, 20, i1=12,---,n.

Similarly, to minimize the objective function Rz(X,ﬂ'), we can treat the
processing time compressions x;, i = 1, 2, ..., n, as decision variables and formulate
the problem as a linear programming problem P2:

(P2)

min K2 (x, 7)

subject to
X, <a, 1=12,---,n
X +Xp 4+ Xy =@+ +ag)-(v-n)
X, 20,i=12,---,n.

For problem P1, to minimize Ki(x,7), it is obvious from (4) that if i > m, J;
must be fully compressed. Moreover, since the coefficient of x; , i =1, 2, ..., m-1, in

(4) is —(1 - c; + iw), and under the constraint thatx, +---+ X, =(a, +---+a, ) — (v

n

—d, ), ajob J; whose processing time compression x; has a larger negative coefficient

must be fully compressed to minimize Rl(x,ﬂ') . Specifically, the optimal solution is

a, If J,eAori=>m
X, =40 if J, € A, , 9)
a, if J,eA,
where & <a,, 1<s<m-1J €A, & =(v-d,)- > a, As either consists of
Jieh,
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only one job or is empty, ANA =@ (ie, the empty set),
AUAUA={,3,,-,J3,,} , and for any JeA,andJ, A
1-¢+iw<l-c +sw<l-c;+ jw holds. Index s can be uniquely determined by
sequencing the coefficients of x (i=12,---,m—-1) in descending order and
considering the constraints of x +---+x,,=(a+---+ a,,)—(v—d,_,) and
0 < x; <a,. The last condition helps to find the job Js and it indicates that to minimize

Ki(x,7), the jobs in A; are fully compressed while those in A, are not compressed.

Given such choices of decision variables, the optimal objective value K1 *(x, z) is

Ki*(x,7z)=v+ > ca +(mw-1d, +w ia +ca, +sw(a, —3,). (10)
3,e3\(A,UA) Jich,

For problem P2, by a similar argument, we see that the optimal solution is

a, if J, eByori>k
X, =40 if J, eB, : (11)
a, if J,eB,

where & <a,,1<s<k-1J,e€B,, & =v- Y a, Bs either consists of only one
JieB,

joborisempty, B,NB,=®, B,UB,UB, ={J,,J,,---,J,,} and forany J, € B,
and J; €B,, iw-¢; <sw-c, < jw-—c;holds. Index s can be uniquely determined
by sequencing the coefficients of x;(i=12,---,k—-1) in descending order and
considering the constraints of X, +---+x_,=(a +--+a,_)-(v-r) and
0 <x; <a;. Given such choices of decision variables, the optimal objective value

K2 *(x,7)is

Ko*(x,m)=v+ Y. ca +W Y ia; +C.8 +sw(a, —a,). (12)
3,;€3\(B,UB,) JieB,

Summarizing the above discussion, we have established the following theorem.

Theorem 2 In an optimal solution, the job processing time compression vector x

11



should be determined by (9) or (11).

Before sequencing jobs in set J, we can determine the compression of some jobs
according to their unit compression cost ¢;, i =1, 2, ..., n. In order to analyze such

properties for a given problem, we divide set J into k subsets:
N, ={J; |lw<c, <(I+Dw, J, € I},

where | =0, 1, ..., k = 1. For a given problem, some of these subsets may be empty.

From (4) and (5), we can easily obtain the following result.

Theorem 3 In an optimal solution, a job Ji belonging to No should be fully

compressed, i.e., if J; € N, thenx;, =a,.

Proof In a solution (X, r, z) with objective function (4) or (5), assume that c, < w,

ie.,J, eN,. If weset x, =a,, for the case p, +---+ p,, >V, denote the objective
function as K/(x, r, z), and for the case p,+---+ p,, <V, denote the objective
functionas K, (x,r, 7).

i) Pyt Py >V,

1) Ifh>m, set x, =a,, and we have

Ki(x 1, 7) =Ka(x, 1, 7) = (1= ¢, )(@, = X,) <Ki(x, 1, 7) .
K
2) If h<m, set x,=a,, and for the two cases » p,—p,>v and
i=1
Kk
Z p, — P, <V, we can derive the following formulation from (4) and (5).
i=1
K{(x, 1, ) <Ki(x, 1, 7) - (hw—c,)(@, - X,) - (L— (k-Dw)(a, - X,)
<Ki(x, r, 7).
) p,+-+ Py SV.

In this case, similar to i), we can also obtain

12



Ky(x, r, 7)< Rz(x, r,z).

Therefore, the conclusion holds. i

4. AHeuristic Algorithm
Making use of the optimal properties derived in Section 3, we develop the

following heuristic algorithm for the general problem.

Heuristic Algorithm HA1

Step 1. If No =, for all jobs Ji € Ng, set x;, = a,; otherwise, go to Step 2.

Step 2. Let T=®, h=0, and s be the largest index such that Ns #® and Ng; =
D.

For g = 1tos, repeat:

If N,U---UN, #®,thenleta, =max{a, | J; e N, U---UN}.

If > a +a, >v,gotoStep3.

JieT

Otherwise, if J, eN then let N, =N _\{J ,} and T=TU{J },

h<« h+1, and put Jy in the hth position of the sequence. If Ns = @, then let
s =s—1; otherwise, go to Step 3.
Step 3. For jobs in T, determine their release times by Algorithm Al, and start

processing each job at its release time. For all jobs J, e N, U---UN,, letx; = ai.

We now establish the running time of Algorithm HAL. In Step 1, the
determination of set N requires n operations to check all jobs. In Step 2, if Ng consists
of ng jobs, then the selection of each aq requires at most (n —no — g + 1) operations, so

(n—ny, +1)(n—n,)
2

Step 2 requires at most operations. Step 3 requires (n — ng)

operations to determine the release times for the jobs in set T and compress the other

jobs. Therefore, Algorithm HA1 has an overall running time of no more than

13



(n-ny)* 5

3 ) 2
n—-—n,, i.e., O(n9).
> SN 5 (n%)

In Algorithm HA1, Step 1 fully compresses all jobs in set Ny according to
Theorem 3. In Step 2, since the determination of the compression status of all jobs in
J\No is complicated, we only determine some jobs not to be compressed and make the
total release time compressing cost as small as possible by utilizing Theorem 2
simultaneously. Step 3 determines some release times by applying Theorem 1.

Using Algorithm HAL, we get the value of the objective function as follows:

K,=v+ > ca +wa; +--+ha], (13)

J,e\T

where J/,---,J; eTanda, >a, >--->a,.

Denote K* as the optimal objective value of the given problem, i.e.,

K*= min {Ki*(x7), K2*(x,7)}.

xeX,well

Algorithm HAL has the following performance bound.

Theorem4 K, /K*<2.

Proof For the case where p, +p,+--+p,, >V, let T denote the set A, U A,of
Rl*(x, ) , Wwhere f:{jljz,...,jt} . From Algorithm HA1, d, <a,, and

J_eT,wehave h<t.DenoteK as

K=v+ > ca +Way+2az + +tay), (14)

Jie\T

where we assume that the sequence (Ji1,J2,+-, J1) is in decreasing order of their
processing times. From (10), we have

K +(mw-1)d_ < Ki*(x, 7),
that is

K <Ki*(x, 7)+(1—-mw)d, .

From Algorithm HA1, we have a/ 25i, i=12---h LetRi, i=1, 2, ..., h, be

14



the objective function value of the schedule that is obtained by replacing J.in the ith

position of the schedule, which is generated by Algorithm HAL, by JiinsetT .

Without loss of generality, we assume that T NT = ®, and we have

Ki=K, +c/a/ —ciai +wa; —wa,
= K, +(c/ —c1)a1 + (c, —w)(a, —a1)
> K, —(k -1)wau.

Similarly, fori =2, ..., h, we also have
Ki>K, —(k—-Dwa,.
Therefore,
K>K, —(k-1)W(a: +az +--+an),
that is,
K, <K+(k —1)W(51 +a, +---+§h).
Because h <t, so

K, <K +(k—1)w(51 +a, +--~+§h)+[6h+1 —(h +1)w]5h+1 +"‘+(Et —tw)at

<Ki*(x, 7))+ (K-Dw(@i +az +---+ac) + (1—-mw)d .
From the constraints of problem P1, we have
A-mw)d_ +(k-Dw(ai +az +--+a)<d_ +(v—d_)=v<Ki*(x, ),
therefore,
K, <2K1i*(x, 7),
ie., K, /Ki*(x, 7)< 2.
For the case where p,+p,+--+p., <V, let T=B,U B,, and we can

similarly prove the result K, 1K *(x,r)<2.

Therefore, K, /K*<2. i

5. Special Cases

Assuming that ¢, =c, =---=c, = cand considering the relation between c and w,
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we examine the following special cases:

Case |:  Assume that i< wgﬁ, lw<c<(l+1)w, and that the sum of the

normal processing times of any | jobs in J is not larger than v. In fact, for different |,
=1, 2, ..., k=1, we have the same conclusions.
In order to reduce the scope to find the optimal schedule for the problem, it is

necessary to consider two cases.
) P4+ Py >V.
In this case, the objective function Ky(x, 7) in (4) becomes Rl(x,n) :
Ki(x,7) = Zn:(ai —x,)+ Zn:cxi +mwd  +w[(a, - x,) +2(a, — X,)
i=1 i=1
+-+(M-D)(@,; — Xp1)]
= iai +Zn:(ai -X;) +Zn:cxi +mwd_ +w[a, +---+(m-1)a, ]

i=1 i=m

i=m

—-[@-c+wW)x, +---+(@-c+(M-Dw)X, ,].
Thus, the optimal solution for problem P1 is

X =O!""Xt :0'Xt+l = A, Xpyp = Qg Xy =8, X, =4,

where 0<aa < a,,,. The optimal objective value K1 () of problem P1 is

_ t _ _ n
Ki(z) =D a +(a,,; —avi) +mwd, +c(aci + Y a;)
i=1 i=t+2

+wa, +---+ta, + (t+1)(a,,, —aw1)]
=v+(mw-1)d,, +claw + > a]
i=t+2

+w(a, +-+ta, + (t+1)(a., —aw)]. (15)

i) p,+--+p., <V.
In this case, the objective function Ka(x, 7) in (5) becomes K (x, 7):
Ka(x, 7) =V+ D@ —x)+ Y ex +wl(a — X))+ + (K=1)(@, — Xy)]
i=k i=1

=v+2n:cxi +wla, +--+(k-Day,]
EW— )%, 4t (KDWY, ]
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Thus, the optimal solution for problem P2 is

Xp =0, % =0, Xy =01, Xy = pips X =gy Xy =2,

where 0<a.. <a,,,. The optimal objective value K:(z) of problem P2 is
Ka(z) =v+c@ + . &) +wa, +-+ta, +(t+1)(a,, —aw)l.  (16)
i=t+2
For both cases i) and ii), when the status of all jobs belonging to set J is
determined to be fully compressed or not compressed, the permutation 7 that satisfies

a, >a, >--->a, has the smallest objective value.

On the basis of the above discussion, an optimal schedule must be included in all
different initial x € X in problems P1 and P2 with formulations (15) and (16). Next,

we develop a new heuristic algorithm for these special cases.

Heuristic Algorithm HA2

Step 1. Sequence the jobs in decreasing order of their normal processing times,

Step 2. The first | jobs J/, J;,---, 3] in the sequence of Step 1 should not be

compressed. Sequence them as follows: Let their release times be
n=v—(a,+a,+---a/), r,=r+a, -, rn=r+a +---+a/, , respectively.

Furthermore, each job should begin processing at its release time.

Step 3. The other (n — 1) jobs should be fully compressed.

The running time of Algorithm HA2 can be estimated as follows. Step 1 requires
nlogn operations to sequence n jobs. In Step 2, the determination of the release times
of the first | jobs requires | operations. Step 3 requires (n — I) operations to compress
(n = 1) jobs. So, Algorithm HA2 has an overall running time of no more than (n +
nlogn), i.e., O(nlogn).

For Algorithm HAZ2, it is natural to first sequence the jobs in decreasing order of

their normal processing times owing to the peculiarities of the optimal solutions to
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problems P1 and P2 for these special cases. Then, Step 2 selects the first | jobs not to
be compressed and sequences them by utilizing Theorems 1 and 2.
The objective function value generated by the Algorithm HAZ2 is

Ki=v+ Y ca+wa; +--+la]]. (17)

i=l+1
Let a,, =max{a, |a, € J}and denote K* as the optimal objective value of the

problem. In the following, we prove that the solution generated by Algorithm HA2

has the following performance bound.

Theorem 5 The solution generated by Algorithm HA2 has a performance bound of

K, -K*<(1-c)a

max *

Proof First, we prove the conclusion for case i):
Let aj+a,+:--+a, =a,+a,+---+a, =M. From (15), (17) and t>1, we

have

Ki(z) - K| =(mw-1)d, +c(ac + >.a,) +Wa, ++ta_, +({t+1)(a,, —aw)]

i=t+2

n
—[D cal +w(a; +---+la))]
i=l+1

=(mw-1)d_+c{M —[a, +---+a, +(a,, —awa)]}

+wa, +---+ta, + (t+1(a,,, —aw)]-c[M —(a,+---+a))]-w(a +---+la))
=(mw-1)d_ +[(c-w)a, +---+(c—Iw)a/]

—{(c-w)a, +---+(c—tw)a, +[c— (t +)w](a,,, —aw)}
=(mw-1)d, +(c—-w)(a —a,)+---+(c—Iw)(a —a,)

—[c=(+)w]a,, —-—(c—tw)a, —[c - (t +DW](a, — ara).

We note that for any integer s, if s > I, then ¢ — sw < 0; otherwise, ¢ — sw > 0.

Therefore,
Ki(r)—K! > (mw-1)d_,

and, because m > |, we have
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K/ —Ki(z)<(@-mw)d_ <(@-c)d_ <(@-c)a, <(l-c)a

max !

ie., K, -K,(r)<(1-c)a

max *
For case ii), similar to i), we can obtain the resultK; — K, (7) <0.

Therefore,

K/ -K*<(1-c)a f

max *

It is clear that the performance bound of Algorithm HA2 for the special cases is

tighter than that of Algorithm HA 1 for the general problem.

6. Conclusions

In this paper we have considered the single machine scheduling problem with
resource dependent release times and processing times, in which both release times
and processing times are strictly linear decreasing functions of the amount of
resources consumed. Based on an analysis of the optimal properties, we have

developed a heuristic algorithm and derived its performance bound. For the special
case where all unit processing time compression costs c,,c,,---,C, are equal, we
have presented a heuristic algorithm that yields a tighter performance bound.

Further research can be undertaken to develop efficient algorithms for the

problem under different parameter constraints suchas b, <x, <a,,i=1,2,...,n, and

other generalizations.
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