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Abstract 

We consider the single machine scheduling problem with resource dependent release 

times and processing times, in which both the release times and processing times are 

strictly linear decreasing functions of the amount of resources consumed. The 

objective is to minimize the makespan plus the total resource consumption costs. We 

propose a heuristic algorithm for the general problem by utilizing some derived 

optimal properties and analyze its performance bound. For some special cases, we 

propose another heuristic algorithm that achieves a tighter performance bound. 
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1. Introduction 

The scheduling problem with resource dependent processing times has received 

much research attention in recent years. Studies in this area were initiated by Vickson 
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[15, 16] and Van Wassenhove and Baker [14]. A survey of this topic up to 1990 was 

given by Nowicki and Zdrzalka [11]. During the last decade, some new results on 

these problems have appeared in the literature. They can be found in Zdrzalka [17], 

Panwalkar and Rajagopalan [13], Alidaee and Ahmadian [1], Nowicki and Zdrzalka 

[12], Cheng et al. [3], Janiak and Kovalyov [9], Chen et al. [2], Cheng et al. [5] and 

Zhang et al. [18], among others. The scheduling models cited above all assume that 

each job is available at the beginning or its release time is constant. 

The scheduling problem with resource dependent release times has also received 

considerable attention of the scheduling research community in recent years. Some 

research results can be found in the following papers: Janiak [7, 8], Cheng and Janiak 

[4], Cheng and Kovalyov [6] and Li et al. [10], among others. In these scheduling 

models, the jobs are each assumed to have a fixed processing time. 

However, to the best of our knowledge, there seem to exist no papers studying the 

scheduling problem in which both release times and processing times are resource 

dependent. Such a scheduling problem commonly arises in the chemical processing 

industry. Before chemical compounds (jobs) are ready for processing, they have to be 

preheated to reach a temperature threshold below which chemical reactions will not 

take place. This preheating process consumes resources such as fuel and so a chemical 

compound is ready earlier for processing if more fuel is consumed to preheat it. On 

the other hand, the processing time of a chemical compound varies according to the 

speed of its chemical reaction, which is directly related to the amount of catalysts 

consumed. Hence, both the job release times and processing times are variable and 

depend on the amount of resources consumed. The objective of the scheduling 

problem is to minimize the sum of resource consumption and the makespan, i.e., the 

total elapsed time to complete all jobs. Such a situation can be modeled as our 

scheduling problem with resource dependent release times and processing times on a 

single machine. 

This paper is organized as follows. In Section 2, we formulate the problem under 

study. In Section 3, we derive some properties of an optimal solution. In Section 4, we 

present a heuristic algorithm for the general problem and analyze its performance 
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bound. In Section 5, we present a heuristic algorithm for some special cases that 

yields a tighter performance bound. Section 6 concludes with a summary and 

suggestions for further research. 

 

2. Problem Formulation 

In this section the single machine scheduling problem is considered under the 

assumption that both release times and processing times are strictly linear decreasing 

functions of the amount of resources consumed. Formally, the problem can be 

formulated as follows. 

We consider the problem of scheduling a set J = {J1, …, Jn} of n jobs on a single 

machine. Let π denote a permutation of the jobs in set J and П the set of all such 

permutations. All jobs are initially available at time v, but each job may be made 

available at an earlier time point by consuming extra resources (e.g. fuel) that will 

incur additional costs. Associated with each job Ji is a processing time pi and a release 

time ri, i = 1, 2, …, n, where both pi and ri depend on the amount of resources 

consumed. Specifically, ,iii xap −= where ai is the normal processing time and xi 

the amount of processing time compression, ii ax ≤≤0 ; wuvr ii /−= , where ui is 

the amount of resource consumed to advance the availability of Ji to ri and w the cost 

per unit reduction of release time, wvui ≤≤0 . For the convenience of theoretically 

analyzing the studied problem, it should be noted that the case 0=ip means that the 

actual processing time of job Ji is so small that it can be neglected in the objective 

function. Let ),,,( 21 nxxxx =  denote a processing time compression vector and 

),,,( 21 nrrrr =  a release time vector. Also, let X denote the set of all feasible x and 

R the set of all feasible r. 

For any job Ji, since the amount of resources consumed for its release time 

reduction )(, iii rvwuu −= , is a decreasing function of the release time ri, i = 1, 2, …, 

n, we assume that all jobs start as early as possible after they are released. For given π, 
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x and r, assuming the job permutation π = (J1, …, Jn), the objective function, or total 

cost, K(x, r, π) is defined as 

∑∑∑
===≤≤

−++−+=
n

i
i

n

i
ii

n

ji
iijnj

rvwxcxarrxK
111
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where ci, i = 1, 2, …, n, is the cost per unit processing time reduction. To simplify 

notation, we assume that both ci , 0 < ci < 1, and w, 0 < w < 1, are appropriately scaled 

so that their units are compatible with that of the makespan. It is clear that 
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is the total processing time 

compressing cost, and ∑
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)( is the total release time compressing cost. Thus, 

the optimal objective K*(x, r, π) is 

(2)                                                     ).,,(min),,(* ,, ππ π rxKrxK RrXx Π∈∈∈=  

Under the constraint of a common deadline, the single machine scheduling 

problem to minimize resource consumption, in which the job release times follow a 

linear model, niwuvr ii ,,2,1,/ =−= , while the processing times are constant, is 

NP-hard in the ordinary sense (Janiak [8]). In our problem the release times follow the 

same linear model as that in Janiak [8], but the processing times are also linearly 

dependent on the amount of resources the jobs have consumed. So the problem 

studied here is more difficult to deal with, and is evidently NP-hard. Thus, we will 

focus on developing heuristic algorithms for the problem under study. 

 

3. Problem Analysis 

In this section we establish some properties of an optimal solution to the 

scheduling problem under consideration. 

We first note that if there exists idle time between the first job and the last job in a 

permutation π, the total cost can be reduced by eliminating the idle time through 

changing the actual processing times and release times of some jobs. So we have the 

following lemma. 
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Lemma 1  In an optimal schedule, there exists no idle time between the first and the 

last processed jobs. 

 

Proof  In a given solution (x, r, π) with an objective function K(x, r, π), if there 

exists an integer m (0 < m < n) such that the idle time between the mth job and 

(m+1)st job is Δt (Δt >0), we can construct a new solution (x, r΄, π) with an objective 

function K(x, r΄, π) such that K(x, r΄, π) < K(x, r, π). 

If txarv mmm ∆+−+≥ )( , we set ,,,(),,,( 121 trtrrrrr mn ∆+∆+=′′′=′   

),,1 nm rr + . Then K(x, r΄, π) is 
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Summarizing the above discussion, the conclusion holds.      ٱ 

According to Lemma 1, the objective function K(x, r, π) can be re-written as 

∑∑∑
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Further, although an optimal solution is determined by the factors π, x and r, these 

factors are interrelated in the process of searching for an optimal solution. So it is 

necessary to analyze the relations among these factors in an optimal solution. In the 

following, we derive some optimal properties to determine the release times for given 

π and x. We also develop some optimal properties to sequence jobs and determine the 

processing time compressions simultaneously. 

In an optimal solution, let π* denote its permutation and x* its processing time 

compression vector. We have 

 

Lemma 2  For π* and x* in an optimal solution, ri, i= 2, …, n, should satisfy the 

following conditions: 
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, it contradicts Lemma 1. 

   ii) The conclusion holds trivially.            ٱ 

We assume that the constant w is such that 
1

11
−

≤<
k

w
k

, where k is an integer 

and 2≥k . We will notice in the sequel that, to minimize the objective function, the 
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optimal determination of the release time vector is directly affected by the integer k.  

For given permutation π and ),,,,( 21 nxxxx = in view of the optimal 

properties of Lemmas 1 and 2, we can determine ),,,( 21 nrrrr =  using the 

following algorithm. 

 

Algorithm A1 

   Step 1.  If vpp k >++ −11   holds, then set r1 = 0; otherwise, set 

)( 111 −++−= kppvr  . 

   Step 2. If r1 = 0, then determine the integer m, m < k, such that 

mm ppvpp ++<≤++ −  111  holds. Set  +=+== 121312 ,,, prpprpr m  

,,, 11 vrp mm =+ +− vrn = . Otherwise, set ,,, 2113112 pprrprr ++=+=  

2111 −− +++= kk pprr  , vrvrvpprr nkkk ===+++= +− ,,, 1111  . 
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For the case where vpp k ≤++ −11  , the objective function ),,(2 πrxK is  
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In Step 1 of Algorithm A1, we select the value of r1 based on the following 

consideration. 

  If vpp k >++ −11  , and if we set vr ≤< 10 , then 1r  may be denoted as =1r   
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   If vpp k ≤++ −11  , and if we set vrppv k ≤<++− − 111 )(  , then r1 may be 

denoted as )()( 11111 −− ∆++∆+++−= kk ttppvr  , where 110 −− ≤∆< kk pt ,  

,2,1,0 =≤∆≤ ipt ii 2, −k . And assume that if )1,,3,2( −=<∆ kipt ii  , then 

0=∆ ht  for 1,,2,1 −= ih  . According to Lemmas 1 and 2, 1112 tprr ∆−+= , 

)( 212113 ttpprr ∆+∆−++= , =∆++∆−+++= −−− kkkk rttpprr ),()(, 212111   

vrv n =,, . Then the objective function K′ (x, r, π) is 
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From (6), (7) and (8), it is evident that the search for an optimal solution can be 

restricted to the space of the set (x, π) with r determined by Algorithm A1. According 

to Lemma 1, Lemma 2 and the above discussion, we have the following result. 

 

Theorem 1  In an optimal solution, ),,,( 21 nrrrr = should be determined by 

Algorithm A1. 

 

In view of Theorem 1, we will denote ),,(1 πrxK , ),,(2 πrxK  and 

),,(* πrxK  by ),(1 πxK , ),(2 πxK  and ),(* πxK , respectively. Thus, the optimal 

objective value ),(* πxK is given by 

)}.,(),,({min),(* 21, πππ π xKxKxK Xx Π∈∈=   

From the above discussion, we may focus our attention on analyzing the relation 

between a permutation π and a processing time compression vector x in order to 

search for an optimal schedule. In fact, the two factors π and x are interrelated in an 
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optimal solution. Next, we develop an optimal property to determine x under a given 

π.  

For a given π = (J1, J2, …, Jn), say, to minimize the objective function ),(1 πxK , 

we can treat the processing time compressions xi, i = 1, 2, …, n, as decision variables 

and formulate the problem as a linear programming problem P1: 

(P1)  
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Similarly, to minimize the objective function ),(2 πxK , we can treat the 

processing time compressions xi, i = 1, 2, …, n, as decision variables and formulate 

the problem as a linear programming problem P2: 

(P2)  
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For problem P1, to minimize ),(1 πxK , it is obvious from (4) that if i ≥ m, Ji 

must be fully compressed. Moreover, since the coefficient of xi , i = 1, 2, …, m-1, in 

(4) is –(1 – ci + iw), and under the constraint that vaaxx mn ()( 111 −++=++ −   

)md− , a job Ji whose processing time compression xi has a larger negative coefficient 

must be fully compressed to minimize ),(1 πxK . Specifically, the optimal solution is 
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only one job or is empty, Φ=21 AA  (i.e., the empty set), 

},,,{ 121321 −= mJJJAAA  , and for any 12  and  AJAJ ji ∈∈ , 

jwcswciwc jsi +−≤+−≤+− 111  holds. Index s can be uniquely determined by 

sequencing the coefficients of )1,,2,1( −= mixi   in descending order and 

considering the constraints of ++=++ −  111 (axx m )()1 mm dva −−−  and 

ii ax ≤≤0 . The last condition helps to find the job Js and it indicates that to minimize 

),(1 πxK , the jobs in A1 are fully compressed while those in A2 are not compressed. 

Given such choices of decision variables, the optimal objective value ),(*1 πxK is 
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For problem P2, by a similar argument, we see that the optimal solution is 
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job or is empty, ,21 Φ=BB  },,,{ 121321 −= kJJJBBB  , and for any 2BJ i ∈  

and ,1BJ j ∈ jsi cjwcswciw −≤−≤− holds. Index s can be uniquely determined 

by sequencing the coefficients of )1,,2,1( −= kixi   in descending order and 

considering the constraints of )()( 11111 rvaaxx kk −−++=++ −−   and 

ii ax ≤≤0 . Given such choices of decision variables, the optimal objective value 

),(*2 πxK is 
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 Summarizing the above discussion, we have established the following theorem. 

 

Theorem 2  In an optimal solution, the job processing time compression vector x 
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should be determined by (9) or (11). 

 

 Before sequencing jobs in set J, we can determine the compression of some jobs 

according to their unit compression cost ci, i = 1, 2, …, n. In order to analyze such 

properties for a given problem, we divide set J into k subsets:  

},,)1(|{ JJwlclwJN iiil ∈+<≤=  

where l = 0, 1, …, k – 1. For a given problem, some of these subsets may be empty. 

From (4) and (5), we can easily obtain the following result. 

 

Theorem 3  In an optimal solution, a job Ji belonging to N0 should be fully 

compressed, i.e., if iii axNJ =∈ then ,0 . 

 

Proof  In a solution (x, r, π) with objective function (4) or (5), assume that ch < w, 

i.e., 0NJ h ∈ . If we set hh ax = , for the case vpp k >++ −11  , denote the objective 

function as ),,(1 πrxK ′ , and for the case vpp k ≤++ −11  , denote the objective 

function as ),,(2 πrxK ′ . 

  i) vpp k >++ −11  . 

   1) If h > m, set hh ax = , and we have 

),,())(1(),,(),,( 111 πππ rxKxacrxKrxK hhh <−−−=′  . 

   2) If mh ≤ , set hh ax = , and for the two cases ∑
=

>−
k

i
hi vpp

1

 and  
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, we can derive the following formulation from (4) and (5). 
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ii) vpp k ≤++ −11  . 

In this case, similar to i), we can also obtain 
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),,(),,( 22 ππ rxKrxK <′ . 

  Therefore, the conclusion holds.            ٱ 

 

4. A Heuristic Algorithm 

Making use of the optimal properties derived in Section 3, we develop the 

following heuristic algorithm for the general problem. 

   

Heuristic Algorithm HA1 

   Step 1.  If N0 ≠Ф, for all jobs Ji ∈ N0, set ii ax = ; otherwise, go to Step 2. 

   Step 2.  Let T = Ф, h = 0, and s be the largest index such that Ns ≠Ф and Ns+1 = 

Ф.  

 For g = 1 to s, repeat: 

 If }|max{let then , sgiigsg NNJaaNN  ∈=Φ≠ . 

If vaa g
TJ

i
i

>+∑
∈

, go to Step 3.  

Otherwise, if mg NJ ∈ , then let }{\ gmm JNN =  and },{ gJTT =  

1+← hh , and put Jg in the hth position of the sequence. If Ns = Ф, then let 

1−= ss ; otherwise, go to Step 3. 

   Step 3.  For jobs in T, determine their release times by Algorithm A1, and start 

processing each job at its release time. For all jobs ,1 si NNJ ∈  let xi = ai. 

 

 We now establish the running time of Algorithm HA1. In Step 1, the 

determination of set N0 requires n operations to check all jobs. In Step 2, if N0 consists 

of n0 jobs, then the selection of each ag requires at most (n – n0 – g + 1) operations, so 

Step 2 requires at most 
2

))(1( 00 nnnn −+−  operations. Step 3 requires (n – n0) 

operations to determine the release times for the jobs in set T and compress the other 

jobs. Therefore, Algorithm HA1 has an overall running time of no more than 
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n
nn

2
5

2
)( 2

0 +
−

02
3 n− , i.e., O(n2). 

 In Algorithm HA1, Step 1 fully compresses all jobs in set N0 according to 

Theorem 3. In Step 2, since the determination of the compression status of all jobs in 

J\N0 is complicated, we only determine some jobs not to be compressed and make the 

total release time compressing cost as small as possible by utilizing Theorem 2 

simultaneously. Step 3 determines some release times by applying Theorem 1. 

   Using Algorithm HA1, we get the value of the objective function as follows: 

(13)                                       ],[ 1
\

h
TJJ

iih ahawacvK
i

′++′++= ∑
∈

  

where hh aaaTJJ ′≥≥′≥′∈′′  211  and ,, . 

 Denote K* as the optimal objective value of the given problem, i.e., 

)},(*),,(*{min* 21
,

ππ
π

xKxKK
Xx Π∈∈

= . 

 Algorithm HA1 has the following performance bound. 

 

Theorem 4  Kh / K* ≤ 2. 

 

Proof  For the case where vppp k >+++ −121  , let T denote the set 32 AA  of 

),(*1 πxK , where },,,{ 21 tJJJT = . From Algorithm HA1, ,mm ad ≤ and 

TJ m ∉ , we have th ≤ . Denote K as 

(14)                                       ),2( 21
\

t
TJJ

ii ataawacvK
i

+++++= ∑
∈

  

where we assume that the sequence ),,,( 21 tJJJ  is in decreasing order of their 

processing times. From (10), we have 

                    ),,(*)1( 1 πxKdmwK m ≤−+  

that is 

                    .)1(),(*1 mdmwxKK −+≤ π  

From Algorithm HA1, we have ,Let .,,2,1, iii Khiaa =≥′ i=1, 2, …, h, be 



 15 

the objective function value of the schedule that is obtained by replacing iJ ′ in the ith 

position of the schedule, which is generated by Algorithm HA1, by TJ i set in  . 

Without loss of generality, we assume that Φ=TT  , and we have 

.)1(      

))(()(      

1

111111

1111111

awkK

aawcaccK

awawacacKK

h

h

h

−−≥

−′−′+−′+=

′−+−′′+=

    

Similarly, for i = 2, …, h, we also have 

.)1( ihi awkKK −−≥  

Therefore, 

 )()1( 21 hh aaawkKK +++−−≥  , 

that is, 

 )()1( 21 hh aaawkKK +++−+≤  . 

Because h ≤ t, so 

.)1()()1(),(*      

)(])1([)()1(

211

1121

mt

tthhhh

dmwaaawkxK

atwcawhcaaawkKK

−++++−+≤

−+++−++++−+≤ ++





π

From the constraints of problem P1, we have          

),(*)()()1()1( 121 πxKvdvdaaawkdmw mmtm ≤=−+≤+++−+−  , 

therefore, 

           ),,(*2 1 πxKKh ≤  

i.e.,        .2),(*/ 1 ≤πxKKh  

 For the case where vppp k ≤+++ −121  , let 32 BBT = , and we can 

similarly prove the result 2),(*/ 2 ≤πxKK h . 

 Therefore, 2*/ ≤KK h  ٱ              .

 

5. Special Cases 

Assuming that cccc n ==== 21 and considering the relation between c and w, 
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we examine the following special cases: 

 Case l:  Assume that wlclw
k

w
k

)1(,
1

11
+<≤

−
≤< , and that the sum of the 

normal processing times of any l jobs in J is not larger than v . In fact, for different l, 

l =1, 2, …, k – 1, we have the same conclusions. 

 In order to reduce the scope to find the optimal schedule for the problem, it is 

necessary to consider two cases. 

 i)  vpp k >++ −11  . 

 In this case, the objective function K1(x, π) in (4) becomes ),(1 πxK : 

].))1(1()1[(                   

])1([)(               

)])(1(                   

)(2)[()(),(

11

11
1

11

2211
11

1

−

−
===

−−

==

−+−+++−−

−+++++−+=

−−++

−+−+++−=

∑∑∑

∑∑

m

mmi

n

mi
ii

n

mi

m

i
i

mm

mi

n

i
ii

n

i

xwmcxwc

amawmwdxcxaa

xam

xaxawmwdxcxaxK







π

 

Thus, the optimal solution for problem P1 is 

         nnmmttttt axaxaxaxxx ====== −−++++ ,,,,,,0,,0 1122111  , 

where 110 ++ <≤ tt aa . The optimal objective value )(1 πK of problem P1 is 

             )])(1([                

)()()(

111

2
111

1
1

++

+=
+++

=

−+++++

+++−+= ∑∑
ttt

n

ti
itmtt

t

i
i

aattaaw

aacmwdaaaK



π
 

(15)                                      . )])(1([(                 

][)1(           

111

2
1

++

+=
+

−+++++

++−+= ∑
ttt

n

ti
itm

aattaaw

aacdmwv



 

 ii)  vpp k ≤++ −11  . 

 In this case, the objective function K2(x, π) in (5) becomes ),(2 πxK : 

].))1(()[(                  

])1([               

)])(1()[()(),(

11

11

1111
1

2

−

−
=

−−
==

−−++−−

−++++=

−−++−++−+=

∑

∑∑

k

ki

n

ki

kki

n

i
ii

n

ki

xcwkxcw

akawxcv

xakxawxcxavxK





π

 



 17 

Thus, the optimal solution for problem P2 is 

         ,,,,,,,0,,0 1122111 nnkkttttt axaxaxaxxx ====== −−++++   

where 110 ++ <≤ tt aa . The optimal objective value )(2 πK  of problem P2 is 

(16)        )].)(1([  )()( 111
2

12 ++
+=

+ −+++++++= ∑ ttt

n

ti
it aattaawaacvK π  

 For both cases i) and ii), when the status of all jobs belonging to set J is 

determined to be fully compressed or not compressed, the permutation π that satisfies 

taaa ≥≥≥ 21  has the smallest objective value. 

 On the basis of the above discussion, an optimal schedule must be included in all 

different initial Xx∈ in problems P1 and P2 with formulations (15) and (16). Next, 

we develop a new heuristic algorithm for these special cases. 

 

Heuristic Algorithm HA2 

   Step 1.  Sequence the jobs in decreasing order of their normal processing times, 

i.e., naaa ′≥≥′≥′ 21 . 

   Step 2.  The first l jobs lJJJ ′′′ ,,, 21   in the sequence of Step 1 should not be 

compressed. Sequence them as follows: Let their release times be 

,,),( 112211  arraaavr l ′+=′+′+′−=  111 −′++′+= ll aarr  , respectively. 

Furthermore, each job should begin processing at its release time. 

   Step 3.  The other (n – l) jobs should be fully compressed. 

 

 The running time of Algorithm HA2 can be estimated as follows. Step 1 requires 

nlogn operations to sequence n jobs. In Step 2, the determination of the release times 

of the first l jobs requires l operations. Step 3 requires (n – l) operations to compress 

(n – l) jobs. So, Algorithm HA2 has an overall running time of no more than (n + 

nlogn), i.e., O(nlogn). 

 For Algorithm HA2, it is natural to first sequence the jobs in decreasing order of 

their normal processing times owing to the peculiarities of the optimal solutions to 
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problems P1 and P2 for these special cases. Then, Step 2 selects the first l jobs not to 

be compressed and sequences them by utilizing Theorems 1 and 2. 

 The objective function value generated by the Algorithm HA2 is 

(17)                                                      ].[ 1
1

li

n

li
h alawacvK ′++′+′+=′ ∑

+=

  

Let }|max{max Jaaa ii ∈= and denote K1* as the optimal objective value of the 

problem. In the following, we prove that the solution generated by Algorithm HA2 

has the following performance bound. 

 

Theorem 5  The solution generated by Algorithm HA2 has a performance bound of   

.)1(* max1 acKKh −≤−′  

 

Proof  First, we prove the conclusion for case i): 

 Let Maaaaaa nn =+++=′++′+′  2121 . From (15), (17) and lt ≥ , we 

have

).]()1([)(])1([                       

))(())(()1(                    
)}]()1([)(){(                       

])()[()1(                    
)()]([)])(1([                       

)]}([{)1(                    

)]([                        

)])(1([)()1()(

111

11

111

1

11111

111

1
1

1111
2

11

+++

++

++

++

+=

++−
+=

+

−+−−−−−+−−

−′−++−′−+−=
−+−+−++−−

′−++′−+−=

′++′−′++′−−−+++++

−+++−+−=

′++′+′−

−+++++++−=′−

∑

∑

tttl

llm

ttt

lm

llttt

tttm

l

n

li
i

ttt

n

ti
itmh

aawtcatwcawlc

aalwcaawcdmw
aawtcatwcawc

alwcawcdmw
alawaaMcaattaaw

aaaaMcdmw

alawac

aattaawaacdmwKK















π

 We note that for any integer s, if s > l, then c – sw < 0; otherwise, c – sw ≥ 0. 

Therefore, 

mh dmwKK )1()(1 −≥′−π , 

and, because m > l, we have 
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max1 )1()1()1()1()( acacdcdmwKK mmmh −≤−≤−≤−≤−′ π , 

i.e.,             max1 )1()( acKKh −≤−′ π . 

   For case ii), similar to i), we can obtain the result 0)(2 ≤−′ πKKh . 

Therefore, 

           max1 )1(* acKKh −≤−′  ٱ            .

 It is clear that the performance bound of Algorithm HA2 for the special cases is 

tighter than that of Algorithm HA 1 for the general problem. 

 

6. Conclusions 

 In this paper we have considered the single machine scheduling problem with 

resource dependent release times and processing times, in which both release times 

and processing times are strictly linear decreasing functions of the amount of 

resources consumed. Based on an analysis of the optimal properties, we have 

developed a heuristic algorithm and derived its performance bound. For the special 

case where all unit processing time compression costs nccc ,,, 21   are equal, we 

have presented a heuristic algorithm that yields a tighter performance bound. 

 Further research can be undertaken to develop efficient algorithms for the 

problem under different parameter constraints such as iii axb ≤≤ , i = 1, 2, …, n, and 

other generalizations. 
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