
 1

Single Machine Scheduling with Resource Dependent

Release Times and Processing Times

Xiuli Wanga T. C. E. Chengb#

E-mail:

aDepartment of Automation
Shanghai Jiaotong University

Shanghai, P. R. China

bDepartment of Logistics
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
LGTcheng@polyu.edu.hk

Abstract

We consider the single machine scheduling problem with resource dependent release

times and processing times, in which both the release times and processing times are

strictly linear decreasing functions of the amount of resources consumed. The

objective is to minimize the makespan plus the total resource consumption costs. We

propose a heuristic algorithm for the general problem by utilizing some derived

optimal properties and analyze its performance bound. For some special cases, we

propose another heuristic algorithm that achieves a tighter performance bound.

Keywords: Scheduling, resource dependent release times, resource dependent

processing times, heuristics, performance bound.

1. Introduction

The scheduling problem with resource dependent processing times has received

much research attention in recent years. Studies in this area were initiated by Vickson

Corresponding author.

This is the Pre-Published Version.

mailto:LGTcheng@polyu.edu.hk�

 2

[15, 16] and Van Wassenhove and Baker [14]. A survey of this topic up to 1990 was

given by Nowicki and Zdrzalka [11]. During the last decade, some new results on

these problems have appeared in the literature. They can be found in Zdrzalka [17],

Panwalkar and Rajagopalan [13], Alidaee and Ahmadian [1], Nowicki and Zdrzalka

[12], Cheng et al. [3], Janiak and Kovalyov [9], Chen et al. [2], Cheng et al. [5] and

Zhang et al. [18], among others. The scheduling models cited above all assume that

each job is available at the beginning or its release time is constant.

The scheduling problem with resource dependent release times has also received

considerable attention of the scheduling research community in recent years. Some

research results can be found in the following papers: Janiak [7, 8], Cheng and Janiak

[4], Cheng and Kovalyov [6] and Li et al. [10], among others. In these scheduling

models, the jobs are each assumed to have a fixed processing time.

However, to the best of our knowledge, there seem to exist no papers studying the

scheduling problem in which both release times and processing times are resource

dependent. Such a scheduling problem commonly arises in the chemical processing

industry. Before chemical compounds (jobs) are ready for processing, they have to be

preheated to reach a temperature threshold below which chemical reactions will not

take place. This preheating process consumes resources such as fuel and so a chemical

compound is ready earlier for processing if more fuel is consumed to preheat it. On

the other hand, the processing time of a chemical compound varies according to the

speed of its chemical reaction, which is directly related to the amount of catalysts

consumed. Hence, both the job release times and processing times are variable and

depend on the amount of resources consumed. The objective of the scheduling

problem is to minimize the sum of resource consumption and the makespan, i.e., the

total elapsed time to complete all jobs. Such a situation can be modeled as our

scheduling problem with resource dependent release times and processing times on a

single machine.

This paper is organized as follows. In Section 2, we formulate the problem under

study. In Section 3, we derive some properties of an optimal solution. In Section 4, we

present a heuristic algorithm for the general problem and analyze its performance

 3

bound. In Section 5, we present a heuristic algorithm for some special cases that

yields a tighter performance bound. Section 6 concludes with a summary and

suggestions for further research.

2. Problem Formulation

In this section the single machine scheduling problem is considered under the

assumption that both release times and processing times are strictly linear decreasing

functions of the amount of resources consumed. Formally, the problem can be

formulated as follows.

We consider the problem of scheduling a set J = {J1, …, Jn} of n jobs on a single

machine. Let π denote a permutation of the jobs in set J and П the set of all such

permutations. All jobs are initially available at time v, but each job may be made

available at an earlier time point by consuming extra resources (e.g. fuel) that will

incur additional costs. Associated with each job Ji is a processing time pi and a release

time ri, i = 1, 2, …, n, where both pi and ri depend on the amount of resources

consumed. Specifically, ,iii xap −= where ai is the normal processing time and xi

the amount of processing time compression, ii ax ≤≤0 ; wuvr ii /−= , where ui is

the amount of resource consumed to advance the availability of Ji to ri and w the cost

per unit reduction of release time, wvui ≤≤0 . For the convenience of theoretically

analyzing the studied problem, it should be noted that the case 0=ip means that the

actual processing time of job Ji is so small that it can be neglected in the objective

function. Let),,,(21 nxxxx = denote a processing time compression vector and

),,,(21 nrrrr = a release time vector. Also, let X denote the set of all feasible x and

R the set of all feasible r.

For any job Ji, since the amount of resources consumed for its release time

reduction)(, iii rvwuu −= , is a decreasing function of the release time ri, i = 1, 2, …,

n, we assume that all jobs start as early as possible after they are released. For given π,

 4

x and r, assuming the job permutation π = (J1, …, Jn), the objective function, or total

cost, K(x, r, π) is defined as

∑∑∑
===≤≤

−++−+=
n

i
i

n

i
ii

n

ji
iijnj

rvwxcxarrxK
111

(1) ,)()}({max),,(π

where ci, i = 1, 2, …, n, is the cost per unit processing time reduction. To simplify

notation, we assume that both ci , 0 < ci < 1, and w, 0 < w < 1, are appropriately scaled

so that their units are compatible with that of the makespan. It is clear that

)}({max
1 ii

n

ji
jnj

xar −+∑
=≤≤

is the makespan, ∑
=

n

i
ii xc

1

is the total processing time

compressing cost, and ∑
=

−
n

i
irvw

1
)(is the total release time compressing cost. Thus,

the optimal objective K*(x, r, π) is

(2)).,,(min),,(* ,, ππ π rxKrxK RrXx Π∈∈∈=

Under the constraint of a common deadline, the single machine scheduling

problem to minimize resource consumption, in which the job release times follow a

linear model, niwuvr ii ,,2,1,/ =−= , while the processing times are constant, is

NP-hard in the ordinary sense (Janiak [8]). In our problem the release times follow the

same linear model as that in Janiak [8], but the processing times are also linearly

dependent on the amount of resources the jobs have consumed. So the problem

studied here is more difficult to deal with, and is evidently NP-hard. Thus, we will

focus on developing heuristic algorithms for the problem under study.

3. Problem Analysis

In this section we establish some properties of an optimal solution to the

scheduling problem under consideration.

We first note that if there exists idle time between the first job and the last job in a

permutation π, the total cost can be reduced by eliminating the idle time through

changing the actual processing times and release times of some jobs. So we have the

following lemma.

 5

Lemma 1 In an optimal schedule, there exists no idle time between the first and the

last processed jobs.

Proof In a given solution (x, r, π) with an objective function K(x, r, π), if there

exists an integer m (0 < m < n) such that the idle time between the mth job and

(m+1)st job is Δt (Δt >0), we can construct a new solution (x, r΄, π) with an objective

function K(x, r΄, π) such that K(x, r΄, π) < K(x, r, π).

If txarv mmm ∆+−+≥)(, we set ,,,(),,,(121 trtrrrrr mn ∆+∆+=′′′=′ 

),,1 nm rr + . Then K(x, r΄, π) is

).,,(),,(

)(})({max

)(})({max),,(

111

111

ππ

π

rxKtmrxK

tmrvwxcxar

rvwxcxarrxK

n

i
i

n

i
ii

n

ji
iijnj

n

i
i

n

i
ii

n

ji
iijnj

<∆−=

∆−−++−+=

′−++−+′=′

∑∑∑

∑∑∑

===≤≤

===≤≤

 If txarvxar mmmmmm ∆+−+<<−+)()(, we set Δt = Δt1 + Δt2, where

−+ mm ar (vtxm =∆+ 1) , and ,,,,(),,,(2111121 trtrtrrrrr mmn ∆−∆+∆+=′′′=′ +

), 2trn ∆− . Then K(x, r΄, π) is

).,,()(),,(

)(})({max

)(})({max),,(

21

1
11

21

111

ππ

π

rxKttmrxK

tmrvwxctxar

rvwxcxarrxK

n

i
i

n

i
ii

n

ji
iijnj

n

i
i

n

i
ii

n

ji
iijnj

<∆+∆−=

∆−−++∆−−+=

′−++−+′=′

∑∑∑

∑∑∑

===≤≤

===≤≤

If)(mmm xarv −+< , we set ,,,,,(),,,(1121  trrrrrrr mmn ∆−=′′′=′ +

)trn ∆− . Then K(x, r΄, π) is

).,,(),,(

)(})({max

)(})({max),,(

111

111

ππ

π

rxKtrxK

rvwxctxar

rvwxcxarrxK

n

i
i

n

i
ii

n

ji
iijnj

n

i
i

n

i
ii

n

ji
iijnj

<∆−=

−++∆−−+=

′−++−+′=′

∑∑∑

∑∑∑

===≤≤

===≤≤

 6

Summarizing the above discussion, the conclusion holds. ٱ

According to Lemma 1, the objective function K(x, r, π) can be re-written as

∑∑∑
===

−++−+=
n

i
i

n

i
ii

n

i
ii rvwxcxarrxK

111
1 (3) .)()(),,(π

Further, although an optimal solution is determined by the factors π, x and r, these

factors are interrelated in the process of searching for an optimal solution. So it is

necessary to analyze the relations among these factors in an optimal solution. In the

following, we derive some optimal properties to determine the release times for given

π and x. We also develop some optimal properties to sequence jobs and determine the

processing time compressions simultaneously.

In an optimal solution, let π* denote its permutation and x* its processing time

compression vector. We have

Lemma 2 For π* and x* in an optimal solution, ri, i= 2, …, n, should satisfy the

following conditions:

i) If);*(then ,)*(
1

1
1

1

1
1 jj

i

j
ijj

i

j
xarrvxar −+=≤−+ ∑∑

−

=

−

=

ii) If . then ,)*(
1

1
1 vrvxar ijj

i

j
=>−+∑

−

=

Proof i) If ,)*(set we),*(
1

1
1

1

1
1 ijj

i

j
ijj

i

j
i rxarrxarr −−+=∆−+< ∑∑

−

=

−

=

and

=r),,,,,,(111 niiii rrrrrr  +− ∆+ . From (3), we have

0)()]([*),*,(*),*,(<∆−=−−∆+−=− iiii rwrvwrrvwrxKrxK ππ .

 If)*(
1

1
1 jj

i

j
i xarr −+> ∑

−

=

, it contradicts Lemma 1.

 ii) The conclusion holds trivially. ٱ

We assume that the constant w is such that
1

11
−

≤<
k

w
k

, where k is an integer

and 2≥k . We will notice in the sequel that, to minimize the objective function, the

 7

optimal determination of the release time vector is directly affected by the integer k.

For given permutation π and),,,,(21 nxxxx = in view of the optimal

properties of Lemmas 1 and 2, we can determine),,,(21 nrrrr = using the

following algorithm.

Algorithm A1

 Step 1. If vpp k >++ −11  holds, then set r1 = 0; otherwise, set

)(111 −++−= kppvr  .

 Step 2. If r1 = 0, then determine the integer m, m < k, such that

mm ppvpp ++<≤++ −  111 holds. Set  +=+== 121312 ,,, prpprpr m

,,, 11 vrp mm =+ +− vrn = . Otherwise, set ,,, 2113112 pprrprr ++=+=

2111 −− +++= kk pprr  , vrvrvpprr nkkk ===+++= +− ,,, 1111  .

According to Algorithm A1, for the case where vpp k >++ −11  , the objective

function),,(1 πrxK is

])[(

])([])([)(

)]([)]([)(

)()(),,(

11

1

2

1

111

1

1
11

11

111
1

mmmm

mii

m

i
mii

m

i
i

n

i
iii

n

i

ii

m

i
i

n

i
iii

n

i

i

n

i
i

n

i
iii

n

i

wddxaw

dxawdxawxcxa

xavwxavwwvxcxa

rvwxcxarxK

++−++

+−++−++−=

−−++−−+++−=

−++−=

−−

−

=

−

===

−

===

===

∑∑∑∑

∑∑∑

∑∑∑





π

(4) ,)])(1(

)(2)[()(

11

2211
11

−−

==

−−++

−+−+++−= ∑∑
mm

mi

n

i
iii

n

i

xam

xaxawmwdxcxa



where ∑
−

=

−−=
1

1
)(

m

i
iim xavd and mmm xad −<≤0 .

For the case where vpp k ≤++ −11  , the objective function),,(2 πrxK is

 8

(5) .)])(1(

)(2)[()(

)])(1(

)(2)[()(),,(

11

2211
1

11

2211
11

12

−−

==

−−

==

−−++

−+−++−+=

−−++

−+−++−+=

∑∑

∑∑

kk

i

n

i
iii

n

ki

kk

i

n

i
iii

n

i

xak

xaxawxcxav

xak

xaxawxcxarrxK





π

In Step 1 of Algorithm A1, we select the value of r1 based on the following

consideration.

 If vpp k >++ −11  , and if we set vr ≤< 10 , then 1r may be denoted as =1r

mm dtt ′+∆++∆ −11  , where ii pt ≤∆≤0 , 1,,2,1 −= mi  , mm dd ≤′<0 . And

assume that if mm dd <′ , then 01 =∆ −mt , and if)1,,3,2(−=<∆ mipt ii  , then

0=∆ ht for 1,,2,1 −= ih  . According to Lemmas 1 and 2, 1112 tprr ∆−+= ,

=∆+∆−++= mrttpprr ,),(212113  =∆++∆−+++ +−− 111111),(mmm rttppr 

vrv n =,, . Then the objective function K′ (x, r, π) is

∑∑∑
===

−++−+=′
n

i
ii

n

i
iii

n

i
rvwxcxarrxK

111
1)()(),,(π

(6)).,,()1(

))1(1()21()1(),,(

1

1211

π

π

rxKd-mw

twmtwtwrxK

m

m

≥′+

∆−−++∆−+∆−+= −

If vpp k ≤++ −11  , and if we set 0<)(111 −++−< kppvr  , then r1 may be

denoted as tppvr k ∆−++−= −)(111  , where)(0 11 −++−<∆< kppvt  .

According to Lemmas 1 and 2, ,112 prr += =+++= −− kkk rpprr),(, 2111 

vrvrtv nk ==∆− + ,,, 1  . Then the objective function K′ (x, r, π) is

(7) .),,()1(),,(

)1()])(1(

)(2)[()(

]))(1(

)(2)[()(),,(

22

11

2211
1

11

2211
11

1

ππ

π

rxKtkwrxK

tkwxak

xaxawxcxav

tkxak

xaxawxcxarrxK

kk

i

n

i
i

n

ki
ii

kk

i

n

i
iii

n

i

>∆−+=

∆−+−−++

−+−++−+=

∆+−−++

−+−++−+=′

−−

==

−−

==

∑∑

∑∑





 9

 If vpp k ≤++ −11  , and if we set vrppv k ≤<++− − 111)( , then r1 may be

denoted as)()(11111 −− ∆++∆+++−= kk ttppvr  , where 110 −− ≤∆< kk pt ,

,2,1,0 =≤∆≤ ipt ii 2, −k . And assume that if)1,,3,2(−=<∆ kipt ii  , then

0=∆ ht for 1,,2,1 −= ih  . According to Lemmas 1 and 2, 1112 tprr ∆−+= ,

)(212113 ttpprr ∆+∆−++= , =∆++∆−+++= −−− kkkk rttpprr),()(, 212111 

vrv n =,, . Then the objective function K′ (x, r, π) is

∑∑∑
===

−++−+=′
n

i
ii

n

i
iii

n

i
rvwxcxarrxK

111
1)()(),,(π

(8) .),,(

))1(1()21()1(),,(

))1(1()21()1(

)])(1()(2)[()(

2

1212

121

112211

π

π

rxK

twktwtwrxK

twktwtw

xakxaxawxav

k

k

kk

n

ki
ii

≥

∆−−++∆−+∆−+=

∆−−++∆−+∆−+

−−++−+−+−+=

−

−

−−
=
∑







From (6), (7) and (8), it is evident that the search for an optimal solution can be

restricted to the space of the set (x, π) with r determined by Algorithm A1. According

to Lemma 1, Lemma 2 and the above discussion, we have the following result.

Theorem 1 In an optimal solution,),,,(21 nrrrr = should be determined by

Algorithm A1.

In view of Theorem 1, we will denote),,(1 πrxK ,),,(2 πrxK and

),,(* πrxK by),(1 πxK ,),(2 πxK and),(* πxK , respectively. Thus, the optimal

objective value),(* πxK is given by

)}.,(),,({min),(* 21, πππ π xKxKxK Xx Π∈∈=

From the above discussion, we may focus our attention on analyzing the relation

between a permutation π and a processing time compression vector x in order to

search for an optimal schedule. In fact, the two factors π and x are interrelated in an

 10

optimal solution. Next, we develop an optimal property to determine x under a given

π.

For a given π = (J1, J2, …, Jn), say, to minimize the objective function),(1 πxK ,

we can treat the processing time compressions xi, i = 1, 2, …, n, as decision variables

and formulate the problem as a linear programming problem P1:

(P1)

.,,2,1,0
)()(

,,2,1 ,
subject to

),(min

11121

1

nix
dvaaxxx

niax

xK

i

mmm

ii







=≥
−−++=+++

=≤

−−

π

Similarly, to minimize the objective function),(2 πxK , we can treat the

processing time compressions xi, i = 1, 2, …, n, as decision variables and formulate

the problem as a linear programming problem P2:

(P2)

.,,2,1,0
)()(

,,2,1 ,
subject to

),(min

111121

2

nix
rvaaxxx

niax

xK

i

kk

ii







=≥
−−++=+++

=≤

−−

π

For problem P1, to minimize),(1 πxK , it is obvious from (4) that if i ≥ m, Ji

must be fully compressed. Moreover, since the coefficient of xi , i = 1, 2, …, m-1, in

(4) is –(1 – ci + iw), and under the constraint that vaaxx mn ()(111 −++=++ −

)md− , a job Ji whose processing time compression xi has a larger negative coefficient

must be fully compressed to minimize),(1 πxK . Specifically, the optimal solution is









∈
∈

≥∈
= ,

 if~
 if0

or if

3

2

1

AJa
AJ

miAJa
x

is

i

ii

i (9)

where ,)(~,,11,~
2

3 ∑
∈

−−=∈−≤≤≤
AJ

imssss
i

advaAJmsaa A3 either consists of

 11

only one job or is empty, Φ=21 AA  (i.e., the empty set),

},,,{ 121321 −= mJJJAAA  , and for any 12 and AJAJ ji ∈∈ ,

jwcswciwc jsi +−≤+−≤+− 111 holds. Index s can be uniquely determined by

sequencing the coefficients of)1,,2,1(−= mixi  in descending order and

considering the constraints of ++=++ −  111 (axx m)()1 mm dva −−− and

ii ax ≤≤0 . The last condition helps to find the job Js and it indicates that to minimize

),(1 πxK , the jobs in A1 are fully compressed while those in A2 are not compressed.

Given such choices of decision variables, the optimal objective value),(*1 πxK is

(10)).~(~)1(),(*
232)(\

1 ssss
AJ

im
AAJJ

ii aasw aciawdmwacvxK
ii

−+++−++= ∑∑
∈∈ 

π

For problem P2, by a similar argument, we see that the optimal solution is









∈
∈

≥∈
=

3

2

1

 if~
 if0

or if

BJa
BJ

kiBJa
x

is

i

ii

i , (11)

where ,~,,11,~
2

3 ∑
∈

−=∈−≤≤≤
BJ

issss
i

avaBJksaa B3 either consists of only one

job or is empty, ,21 Φ=BB  },,,{ 121321 −= kJJJBBB  , and for any 2BJ i ∈

and ,1BJ j ∈ jsi cjwcswciw −≤−≤− holds. Index s can be uniquely determined

by sequencing the coefficients of)1,,2,1(−= kixi  in descending order and

considering the constraints of)()(11111 rvaaxx kk −−++=++ −−  and

ii ax ≤≤0 . Given such choices of decision variables, the optimal objective value

),(*2 πxK is

(12) .)~(~),(*
232)(\

2 ssss
BJ

i
BBJJ

ii aaswaciawacvxK
ii

−++++= ∑∑
∈∈ 

π

 Summarizing the above discussion, we have established the following theorem.

Theorem 2 In an optimal solution, the job processing time compression vector x

 12

should be determined by (9) or (11).

 Before sequencing jobs in set J, we can determine the compression of some jobs

according to their unit compression cost ci, i = 1, 2, …, n. In order to analyze such

properties for a given problem, we divide set J into k subsets:

},,)1(|{ JJwlclwJN iiil ∈+<≤=

where l = 0, 1, …, k – 1. For a given problem, some of these subsets may be empty.

From (4) and (5), we can easily obtain the following result.

Theorem 3 In an optimal solution, a job Ji belonging to N0 should be fully

compressed, i.e., if iii axNJ =∈ then ,0 .

Proof In a solution (x, r, π) with objective function (4) or (5), assume that ch < w,

i.e., 0NJ h ∈ . If we set hh ax = , for the case vpp k >++ −11  , denote the objective

function as),,(1 πrxK ′ , and for the case vpp k ≤++ −11  , denote the objective

function as),,(2 πrxK ′ .

 i) vpp k >++ −11  .

 1) If h > m, set hh ax = , and we have

),,())(1(),,(),,(111 πππ rxKxacrxKrxK hhh <−−−=′ .

 2) If mh ≤ , set hh ax = , and for the two cases ∑
=

>−
k

i
hi vpp

1

 and

∑
=

≤−
k

i
hi vpp

1

, we can derive the following formulation from (4) and (5).

).,,(

))()1(1())((),,(),,(

1

11

π

ππ

rxK

xawkxachwrxKrxK hhhhh

<

−−−−−−−≤′

ii) vpp k ≤++ −11  .

In this case, similar to i), we can also obtain

 13

),,(),,(22 ππ rxKrxK <′ .

 Therefore, the conclusion holds. ٱ

4. A Heuristic Algorithm

Making use of the optimal properties derived in Section 3, we develop the

following heuristic algorithm for the general problem.

Heuristic Algorithm HA1

 Step 1. If N0 ≠Ф, for all jobs Ji ∈ N0, set ii ax = ; otherwise, go to Step 2.

 Step 2. Let T = Ф, h = 0, and s be the largest index such that Ns ≠Ф and Ns+1 =

Ф.

 For g = 1 to s, repeat:

 If }|max{let then , sgiigsg NNJaaNN  ∈=Φ≠ .

If vaa g
TJ

i
i

>+∑
∈

, go to Step 3.

Otherwise, if mg NJ ∈ , then let }{\ gmm JNN = and },{ gJTT =

1+← hh , and put Jg in the hth position of the sequence. If Ns = Ф, then let

1−= ss ; otherwise, go to Step 3.

 Step 3. For jobs in T, determine their release times by Algorithm A1, and start

processing each job at its release time. For all jobs ,1 si NNJ ∈ let xi = ai.

 We now establish the running time of Algorithm HA1. In Step 1, the

determination of set N0 requires n operations to check all jobs. In Step 2, if N0 consists

of n0 jobs, then the selection of each ag requires at most (n – n0 – g + 1) operations, so

Step 2 requires at most
2

))(1(00 nnnn −+− operations. Step 3 requires (n – n0)

operations to determine the release times for the jobs in set T and compress the other

jobs. Therefore, Algorithm HA1 has an overall running time of no more than

 14

n
nn

2
5

2
)(2

0 +
−

02
3 n− , i.e., O(n2).

 In Algorithm HA1, Step 1 fully compresses all jobs in set N0 according to

Theorem 3. In Step 2, since the determination of the compression status of all jobs in

J\N0 is complicated, we only determine some jobs not to be compressed and make the

total release time compressing cost as small as possible by utilizing Theorem 2

simultaneously. Step 3 determines some release times by applying Theorem 1.

 Using Algorithm HA1, we get the value of the objective function as follows:

(13)],[1
\

h
TJJ

iih ahawacvK
i

′++′++= ∑
∈



where hh aaaTJJ ′≥≥′≥′∈′′  211 and ,, .

 Denote K* as the optimal objective value of the given problem, i.e.,

)},(*),,(*{min* 21
,

ππ
π

xKxKK
Xx Π∈∈

= .

 Algorithm HA1 has the following performance bound.

Theorem 4 Kh / K* ≤ 2.

Proof For the case where vppp k >+++ −121  , let T denote the set 32 AA  of

),(*1 πxK , where },,,{ 21 tJJJT = . From Algorithm HA1, ,mm ad ≤ and

TJ m ∉ , we have th ≤ . Denote K as

(14)),2(21
\

t
TJJ

ii ataawacvK
i

+++++= ∑
∈



where we assume that the sequence),,,(21 tJJJ  is in decreasing order of their

processing times. From (10), we have

),,(*)1(1 πxKdmwK m ≤−+

that is

 .)1(),(*1 mdmwxKK −+≤ π

From Algorithm HA1, we have ,Let .,,2,1, iii Khiaa =≥′ i=1, 2, …, h, be

 15

the objective function value of the schedule that is obtained by replacing iJ ′ in the ith

position of the schedule, which is generated by Algorithm HA1, by TJ i set in .

Without loss of generality, we assume that Φ=TT  , and we have

.)1(

))(()(

1

111111

1111111

awkK

aawcaccK

awawacacKK

h

h

h

−−≥

−′−′+−′+=

′−+−′′+=

Similarly, for i = 2, …, h, we also have

.)1(ihi awkKK −−≥

Therefore,

)()1(21 hh aaawkKK +++−−≥  ,

that is,

)()1(21 hh aaawkKK +++−+≤  .

Because h ≤ t, so

.)1()()1(),(*

)(])1([)()1(

211

1121

mt

tthhhh

dmwaaawkxK

atwcawhcaaawkKK

−++++−+≤

−+++−++++−+≤ ++





π

From the constraints of problem P1, we have

),(*)()()1()1(121 πxKvdvdaaawkdmw mmtm ≤=−+≤+++−+−  ,

therefore,

),,(*2 1 πxKKh ≤

i.e., .2),(*/ 1 ≤πxKKh

 For the case where vppp k ≤+++ −121  , let 32 BBT = , and we can

similarly prove the result 2),(*/ 2 ≤πxKK h .

 Therefore, 2*/ ≤KK h ٱ .

5. Special Cases

Assuming that cccc n ==== 21 and considering the relation between c and w,

 16

we examine the following special cases:

 Case l: Assume that wlclw
k

w
k

)1(,
1

11
+<≤

−
≤< , and that the sum of the

normal processing times of any l jobs in J is not larger than v . In fact, for different l,

l =1, 2, …, k – 1, we have the same conclusions.

 In order to reduce the scope to find the optimal schedule for the problem, it is

necessary to consider two cases.

 i) vpp k >++ −11  .

 In this case, the objective function K1(x, π) in (4) becomes),(1 πxK :

].))1(1()1[(

])1([)(

)])(1(

)(2)[()(),(

11

11
1

11

2211
11

1

−

−
===

−−

==

−+−+++−−

−+++++−+=

−−++

−+−+++−=

∑∑∑

∑∑

m

mmi

n

mi
ii

n

mi

m

i
i

mm

mi

n

i
ii

n

i

xwmcxwc

amawmwdxcxaa

xam

xaxawmwdxcxaxK







π

Thus, the optimal solution for problem P1 is

 nnmmttttt axaxaxaxxx ====== −−++++ ,,,,,,0,,0 1122111  ,

where 110 ++ <≤ tt aa . The optimal objective value)(1 πK of problem P1 is

)])(1([

)()()(

111

2
111

1
1

++

+=
+++

=

−+++++

+++−+= ∑∑
ttt

n

ti
itmtt

t

i
i

aattaaw

aacmwdaaaK



π

(15) .)])(1([(

][)1(

111

2
1

++

+=
+

−+++++

++−+= ∑
ttt

n

ti
itm

aattaaw

aacdmwv



 ii) vpp k ≤++ −11  .

 In this case, the objective function K2(x, π) in (5) becomes),(2 πxK :

].))1(()[(

])1([

)])(1()[()(),(

11

11

1111
1

2

−

−
=

−−
==

−−++−−

−++++=

−−++−++−+=

∑

∑∑

k

ki

n

ki

kki

n

i
ii

n

ki

xcwkxcw

akawxcv

xakxawxcxavxK





π

 17

Thus, the optimal solution for problem P2 is

 ,,,,,,,0,,0 1122111 nnkkttttt axaxaxaxxx ====== −−++++ 

where 110 ++ <≤ tt aa . The optimal objective value)(2 πK of problem P2 is

(16))].)(1([)()(111
2

12 ++
+=

+ −+++++++= ∑ ttt

n

ti
it aattaawaacvK π

 For both cases i) and ii), when the status of all jobs belonging to set J is

determined to be fully compressed or not compressed, the permutation π that satisfies

taaa ≥≥≥ 21 has the smallest objective value.

 On the basis of the above discussion, an optimal schedule must be included in all

different initial Xx∈ in problems P1 and P2 with formulations (15) and (16). Next,

we develop a new heuristic algorithm for these special cases.

Heuristic Algorithm HA2

 Step 1. Sequence the jobs in decreasing order of their normal processing times,

i.e., naaa ′≥≥′≥′ 21 .

 Step 2. The first l jobs lJJJ ′′′ ,,, 21  in the sequence of Step 1 should not be

compressed. Sequence them as follows: Let their release times be

,,),(112211  arraaavr l ′+=′+′+′−= 111 −′++′+= ll aarr  , respectively.

Furthermore, each job should begin processing at its release time.

 Step 3. The other (n – l) jobs should be fully compressed.

 The running time of Algorithm HA2 can be estimated as follows. Step 1 requires

nlogn operations to sequence n jobs. In Step 2, the determination of the release times

of the first l jobs requires l operations. Step 3 requires (n – l) operations to compress

(n – l) jobs. So, Algorithm HA2 has an overall running time of no more than (n +

nlogn), i.e., O(nlogn).

 For Algorithm HA2, it is natural to first sequence the jobs in decreasing order of

their normal processing times owing to the peculiarities of the optimal solutions to

 18

problems P1 and P2 for these special cases. Then, Step 2 selects the first l jobs not to

be compressed and sequences them by utilizing Theorems 1 and 2.

 The objective function value generated by the Algorithm HA2 is

(17)].[1
1

li

n

li
h alawacvK ′++′+′+=′ ∑

+=



Let }|max{max Jaaa ii ∈= and denote K1* as the optimal objective value of the

problem. In the following, we prove that the solution generated by Algorithm HA2

has the following performance bound.

Theorem 5 The solution generated by Algorithm HA2 has a performance bound of

.)1(* max1 acKKh −≤−′

Proof First, we prove the conclusion for case i):

 Let Maaaaaa nn =+++=′++′+′  2121 . From (15), (17) and lt ≥ , we

have

).]()1([)(])1([

))(())(()1(
)}]()1([)(){(

])()[()1(
)()]([)])(1([

)]}([{)1(

)]([

)])(1([)()1()(

111

11

111

1

11111

111

1
1

1111
2

11

+++

++

++

++

+=

++−
+=

+

−+−−−−−+−−

−′−++−′−+−=
−+−+−++−−

′−++′−+−=

′++′−′++′−−−+++++

−+++−+−=

′++′+′−

−+++++++−=′−

∑

∑

tttl

llm

ttt

lm

llttt

tttm

l

n

li
i

ttt

n

ti
itmh

aawtcatwcawlc

aalwcaawcdmw
aawtcatwcawc

alwcawcdmw
alawaaMcaattaaw

aaaaMcdmw

alawac

aattaawaacdmwKK















π

 We note that for any integer s, if s > l, then c – sw < 0; otherwise, c – sw ≥ 0.

Therefore,

mh dmwKK)1()(1 −≥′−π ,

and, because m > l, we have

 19

max1)1()1()1()1()(acacdcdmwKK mmmh −≤−≤−≤−≤−′ π ,

i.e., max1)1()(acKKh −≤−′ π .

 For case ii), similar to i), we can obtain the result 0)(2 ≤−′ πKKh .

Therefore,

 max1)1(* acKKh −≤−′ ٱ .

 It is clear that the performance bound of Algorithm HA2 for the special cases is

tighter than that of Algorithm HA 1 for the general problem.

6. Conclusions

 In this paper we have considered the single machine scheduling problem with

resource dependent release times and processing times, in which both release times

and processing times are strictly linear decreasing functions of the amount of

resources consumed. Based on an analysis of the optimal properties, we have

developed a heuristic algorithm and derived its performance bound. For the special

case where all unit processing time compression costs nccc ,,, 21  are equal, we

have presented a heuristic algorithm that yields a tighter performance bound.

 Further research can be undertaken to develop efficient algorithms for the

problem under different parameter constraints such as iii axb ≤≤ , i = 1, 2, …, n, and

other generalizations.

Acknowledgement

This research was supported in part by the Research Grants Council of Hong Kong

under grant number PolyU5245/99H.

References

[1] B. Alidaee and A. Ahmadian, Two parallel machine sequencing problems

involving controllable job processing times, European Journal of Operational

 20

Research 70 (1993) 335-341.

[2] Z.L. Chen, Q. Lu and G. Tang, Single machine scheduling with discretely

controllable processing times, Operations Research Letters 21 (1997) 69-76.

[3] T.C.E. Cheng, Z.L. Chen and C.-L. Li, Parallel-machine scheduling with

controllable processing times, IIE Transactions 28 (1996) 177-180.

[4] T.C.E. Cheng and A. Janiak, Resource optimal control in some single-machine

scheduling problems, IEEE Transactions on Automatic Control 39 (1994)

1243-1246.

[5] T.C.E. Cheng, A. Janiak and M.Y. Kovalyov, Single machine batch scheduling

with resource dependent setup and processing times, European Journal of

Operational Research 135 (2001) 177-183.

[6] T.C.E. Cheng and M. Y. Kovalyov, Single machine batch scheduling with

deadlines and resource dependent processing times, Operations Research Letters

17 (1995) 243-249.

[7] A. Janiak, Time-optimal control in a single machine problem with resource

constraints, Automatica 22 (1986) 745-747.

[8] A. Janiak, Single machine scheduling problem with a common deadline and

resource dependent release dates, European Journal of Operational Research 53

(1991)317-325.

[9] A. Janiak and M.Y. Kovalyov, Single machine scheduling subject to deadlines

and resource dependent processing times, European Journal of Operational

Research 94 (1996) 284-291.

[10] C.-L. Li, E.C. Sewell and T.C.E. Cheng, Scheduling to minimize release-time

resource consumption and tardiness penalties, Naval Research Logistics 42 (1995)

949-966.

[11] E. Nowicki and S. Zdrzalka, A survey of results for sequencing problems with

controllable processing times, Discrete Applied Mathematics 26 (1990) 271-287.

[12] E. Nowicki and S. Zdrzalka, A bicriterion approach to preemptive scheduling of

parallel machines with controllable job processing times, Discrete Applied

Mathematics 63 (1995) 237-256.

 21

[13] S. S. Panwalkar and R. Rajagopalan, Single-machine sequencing with

controllable processing times, European Journal of Operational Research 59

(1992) 298-302.

[14] L. N. Van Wassenhove and K. R. Baker, A bicriterion approach to time/cost

trade-offs in sequence, European Journal of Operational Research 11 (1982)

48-54.

[15] R.G. Vickson, Choosing the job sequence and processing times to minimize total

processing plus flow cost on a single machine, Operations Research 28 (1980)

1155-1167.

[16] R. G. Vickson, Two single machine sequencing problems involving controllable

job processing times, AIIE Transactions 12 (1980) 258-262.

[17] S. Zdrzalka, Scheduling jobs on a single machine with release dates, delivery

times and controllable processing times: worst-case analysis, Operations

Research Letters 10 (1991) 519-523.

[18] F. Zhang, G. Tang and Z. L. Chen, A 3/2-approximation algorithm for parallel

machine scheduling with controllable processing times, Operations Research

Letters 29 (2001) 41-47.

	Single Machine Scheduling with Resource Dependent
	Release Times and Processing Times
	Abstract
	References

