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Abstract

We propose an approximate static hedging procedure for multivariate derivatives. The hedging portfolio is com-

posed of statically held simple univariate options, optimally weighted minimizing the variance of the difference between

the target claim and the approximate replicating portfolio. The method uses simulated paths to estimate the weights of

the hedging portfolio and is related to Monte Carlo control variates techniques. We report numerical results showing

the performance of this static hedging procedure on bivariate options on the maximum of two assets and on 2- and 7-

dimensional portfolio options. It is shown that, in the presence of transaction costs, Value at Risk and Expected

Shortfall of the dynamically hedged positions can be higher than the ones obtained by a static hedge.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Arbitrage pricing theory can be used to obtain

the market value of complex derivatives. If arbit-

rages are ruled out and a replicating portfolio ex-
ists then its cost must be equal to that of the

contingent claim. The famous Black–Scholes (BS)

pricing formula is based on arbitrage arguments

and explicitly provide a delta-based hedging

strategy to replicate a plain put/call option.

However the success is not guaranteed as contin-

uous time rebalancing of the hedging portfolio is

in order. On one side this is practically infeasible
forcing the hedger to discretize the strategy and on
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the other the situation is worsened if transaction

costs are taken into account. A substantial re-

search effort has tried to solve some of the prob-

lematic aspects of practical derivatives hedging.

Boyle and Emanuel (1980) is an early paper that
deals with discretization error in implementing the

Black–Scholes strategy. Leland (1985) proposes a

discrete modified BS-type strategy that allows in

the limit (but see also Kabanov and Safarian,

1997) to replicate the claim allowing for transac-

tion costs. This is obtained by inflating the vola-

tility of the stock that in turn forces to charge a

bigger price to the buyer and to reduce the weight
of the required rebalacings. Leland’s paper shows

that quite often the hedger need 10–20% of the BS

claim price to be able to fulfill his obligations.

Another impressive illustration of the difficulties

arising in concrete option hedging is in (Green and
ed.
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Figlewsky, 1999), that shifts the attention on
model risk. It is argued that BS model might be

inappropriate for a variety of reasons, the most

investigated being probably the estimation and

modelization of the volatility of the underlying

stock. The paper shows that huge risk is involved

in practical option hedging. This is true also when

extreme care is used to estimate volatilities or

when realized ex post volatility is (unfairly) plug-
ged into the strategy. Moreover, inflating the vol-

atility up to 50% of the calculated estimate,

reduces the mean loss but is less useful to reduce

extreme shortfalls.

Other papers (Derman et al., 1995; Carr et al.,

1998) describe a different paradigm, named static

hedging. If the claim is statically redundant, then it

exists a portfolio of traded assets that replicates
the target payoff without the need to rebalance in

continuous time. A very simple example is given

by the put/call parity equation, that can be trivially

employed to hedge a call (put) option by a port-

folio in the stock and in a put (call) option. It is of

course not always possible to find such a simple

solution, but Derman et al. (1995) shows how to

approximately hedge a barrier claim using plain
options with different strikes and maturities. This

approximation is exact solely on the nodes of a

binomial tree that models the underlying dynamics

but nevertheless the static hedging that is obtained

has no extra cost besides the initial purchase.

Recent work by Ben Ameur et al. describes a

partial hedging technique, that actually hedges a

‘portion’ of the claim. This can be done when the
amount needed for a perfect hedge is not available

or the agent prefers to use only a fraction of the

price for hedging purposes (Ben Ameur et al.,

2001). Of course some default risk is introduced and

it is understood that, should the hedging portfolio

fail to provide the required sum, the agent is

resorting to other resources to fill the gap. An

example, in the case of a European call option, is
given by a knock out option with the same strike

that will hedge the claim only if the terminal stock

price is below the knockout barrier. Needless to

say, this is a cheap but risky way to hedge against

risk and it turns out that this behavior is coherent

with a risk-seeking agent (Follmer and Leukert,

1999). In a more recent paper (Follmer and Leuk-
ert, 2000) it is shown how to optimally hedge a
contingent claim minimizing, under a budget con-

straint, the expected shortfall weighted by a loss

function that depends on the risk attitude of the

agent. It is shown that the optimal solution is to

hedge a modified claim, that in the case of a

European call smoothly varies from the knockout

option in the risk-seeking case to a call with a bigger

strike for the most risk averse agent. Note that the
idea of hedging a modified claim is also exploited

for the apparently different purpose of reducing the

effects of misspecified models (Ahn et al., 1997).

While the previous mentioned works all deal

with univariate options, it is obvious that properly

hedging is difficult to obtain for multivariate op-

tions as well. Indeed, there are reason to believe

that, as each rebalancing requires the adjustment
of multiple assets in the hedging portfolio, the ef-

fect of transaction costs and discretization might

be amplified. As far as we know, this multivariate

hedging problem has received much less attention

than the univariate one, probably for the difficult

analytical treatment that is required.

In this paper we describe a way to approxi-

mately hedge a multivariate derivative by the
minimization of the variance of the discrepancy

between the payoffs and the revenues of a static

portfolio. This static hedging procedure is very

simple but generally underperforms dynamic

hedging if transaction costs are low.

We show that this method is related to a recent

variance reduction method for Monte Carlo op-

tion pricing, known as mean Monte Carlo (MMC)
(Pellizzari, 2001). The paper (Avellaneda et al.,

2000) describes a very interesting way to calibrate

a Monte Carlo simulation to obtain exact pricing

of some benchmark instruments and contains

ideas similar to ours. However, the setting is dif-

ferent in that Avellaneda and coauthors still focus

mainly on pricing of univariate claims.

In detail, Section 2 presents an example of a
portfolio option on two assets clarifying the dif-

ferences among various hedging methods. It is

apparent that, if perfect hedging is practically

unattainable or too costly, then approximate static

hedging can be useful. In Section 3, the MMC

method is briefly covered in order to show that it

can be fruitfully interpreted in terms of static
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hedging and the extension is discussed. We then
present a pricing numerical comparison on bivar-

iate options analyzed in (Boyle, 1988) where an

extension of the binomial approach of Cox–Ross–

Rubinstein to the case of two risk sources is

developed. Some 2- and 7-dimensional portfolio

options are also analyzed with emphasis on

downside risk using Value at Risk and Expected

Shortfall. Finally, Section 5 contains some con-
cluding remarks.
2. A worked example

Suppose you are asked to write an European

option on a basket of two risky lognormal stocks

whose dynamics is described by

dSi ¼ rSi dt þ rSi dZi; i ¼ 1; 2;

where r; r1; r2 are constants and Z1; Z2 are stan-

dard Brownian motions. We denote the values of

the assets at time t by S1t; S2t for 06 t6 T . The

payoff at expiration is

f ðS1T ; S2T Þ ¼ maxðS1T þ S2T � k; 0Þ: ð1Þ
Assume we set the initial prices S10 ¼ S20 ¼ 100,

volatilities r1 ¼ 0:3; r2 ¼ 0:2, correlation between

returns is q ¼ 0:5, maturity T ¼ 1 year, strike price

k ¼ 190 and riskless rate r ¼ 0:1 (continuously

compounded).
As there is no analytic valuation formula for

such asset, a preliminary Monte Carlo simulation

is performed using 100 replications obtaining the

price ĈMC ¼ 33:89 equipped with sample standard

deviation r̂MC ¼ 3:26. Note that 100 simulations

are clearly too few to obtain reasonable precision

but our main point is totally independent of the

number of replicates.
Next, in order to lower the huge standard

deviation just quoted, another more refined

method (see Pellizzari, 2001, or the review in the

following section) is used to get more accurate

mean Monte Carlo (MMC) price ĈMMC ¼ 33:34
with standard deviation r̂MMC ¼ 0:40 (again 100

simulations are used). The standard deviation is

reduced by 88%, which is per se an important
achievement. However, this encouraging picture

still does not take into account other useful fea-
tures. In particular the method also reports that
the following portfolio of simple call options can

be used to (partially) hedge the basket option

payoff: consider at t ¼ 0 a long position in 0.96 call

options on the first asset and 1.01 call options on

the second, being respectively 94:88 and 89:71 the

strike prices. In order to get this portfolio an

additional 5.59 must be borrowed in t ¼ 0 and

paid back with interest at maturity.
This compound portfolio allows to have at

maturity a random sum that can be used to ‘hedge’

the random payoff of basket option (1). In fact the

net difference between the payoff of the basket

option and the value of the ‘hedging’ portfolio is

on average null with standard deviation

expðrT Þr̂MMC

ffiffiffiffiffiffiffiffi
100

p
¼ 4:4. Note that the standard

deviation of the option payoff is about 36, hence
using the previously mentioned ‘hedging’ portfolio

has reduced the risk by a factor of about 8.

Let us rephrase the whole experiment as fol-

lows: once you write an option you get the price

and commit to the subsequent liability. The two

extreme choices are no hedging at all and delta-

hedging. On one side we envision huge final risk as

the average final net payment is null, but the
standard deviation, computed with the risk neutral

density, is 36. On the other side it is well known

that delta-hedging is imprecise and, more impor-

tantly, expensive in a realistic situation. There is a

third possible solution, based on the previously

described portfolio, that partially hedges the op-

tion payoff leaving a risk (measured as standard

deviation of the net cashflow) of 4.4. Table 1 sums
up the situation.

This example (together with many others we

could select) shows that the lower variance ob-

tained using MMC comes together with informa-

tion that can be used to build a static portfolio that

partially hedges the liability leaving a residual risk

whose standard deviation is, up to a constant, the

same of the sample price. Hence, if low variance is
obtained in the enhanced Monte Carlo simulation,

then low risk is associated to the static hedging

portfolio. As far as we know, there is no other

example of variance reduction technique that has a

financial interpretation in terms of static hedging.

In the following section we briefly review MMC

and describe this static interpretation.



Table 1

The hedging performance of different methods are shown

Method Hedge Risk (r) Risk reduction (%) Cost Hedging portfolio

MC None 36.0 0 None None

Static Partial 4.4 88 Low Static, 2 calls

Dynamic Perfect 0 100 High Dynamic, Delta-based

The ‘Risk’ column provides the standard deviation of the net cashflows (whose mean is approximately null) at maturity. In the ‘Risk

Reduction’ column we report the reduction in standard deviation with respect to the no hedging (MC) situation. The final two columns

contain a rough description of the cost of the hedging strategy and of the hedging portfolio.
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3. Mean Monte Carlo and approximate static
hedging

In this section we describe the mean Monte

Carlo method extending its capabilities by opti-

mally selecting some parameters that affect the

variance. This procedure is equivalent to (par-

tially) hedge the claim using a portfolio of simple

assets. If the residual risk is deemed appropriate or
can be reduced to a suitable level, the static port-

folio can be employed in place of complex dy-

namic hedging procedures.

Referring the reader to Pellizzari (2001) for a

detailed treatment, we describe the main ideas

behind MMC. Assume we want to price at time

t ¼ 0 an European option on n stocks that pays the
sum

f ðS1T ; . . . ; SnT Þ; ð2Þ
at maturity T , where Sit; 06 t6 T ; 16 i6 n, de-

notes the value of ith asset at time t and the dy-

namic of each asset is described by

dSi ¼ rSi dt þ riSi dZi;

where r is the instantaneous riskless rate, ri is the

volatility and Zi is a standard Brownian motion

such that CorðZi; ZjÞ ¼ qij. The MMC method

exploits a set of control variates (see Rubinstein,

1981; Bratley et al., 1987) obtained by plugging

into (2) the known means E½SiT � to replace the

random SiT for all i’s but one. The jth control
variate (16 j6 n) is given by

MT ðjÞ ¼ f ðE S1T½ �; . . . ;E Sj�1;T

� �
;

SjT ;E Sjþ1;T

� �
; . . . ;E SnT½ �Þ: ð3Þ

The above definition matches the two require-

ments of a control variate, namely non-null cor-
relation with (2) and easy analytical valuation of
the mean of (3). Technically, the replacement of
n� 1 expectations in the payoff is used to reduce

the dependence of (2) to one risk source alone,

allowing most often to apply standard pricing

methods to the resulting univariate payoff. Ob-

serve that there is no guarantee that E½MT ðjÞ� will
be known in close form for every conceivable

payoff profile f . However, even if numerical

approximations should be used to solve the uni-
variate integral for E½MT ðjÞ, there are extremely

accurate methods (e.g., Gaussian quadrature) for

univariate problems, see Krommer and Ueber-

huber (1998) for a comprehensive account and

Schmeiser et al. (forthcoming) for an application

to control variates.

The estimate of the price is then obtained by

taking the discounted average of many random
payoffs

f ðS1T ; . . . ; SnT Þ �
Xn

i¼1

b̂iðMT ðiÞ � E½MT ðiÞ�Þ; ð4Þ

where b̂ ¼ ðb̂1; . . . ; b̂nÞ is a vector of estimated

coefficients chosen to minimize the variance.

A moment of reflection shows that variance

reduction is achieved using a combination of assets
whose final payoff is given by the MT ðjÞ’s. Recall

the example of Section 2, where we have

MT ð1Þ ¼ maxðS1T þ E½S2T � � k; 0Þ;

MT ð2Þ ¼ maxðE½S1T � þ S2T � k; 0Þ;

noting that the basket payoff is mimicked by a

portfolio made of one call option on asset S1
(having strike price k1 ¼ E½S2T � � k) and one call

option on asset S2 (having strike k2 ¼ E½S1T � � k).
Thus, if the variance reduction is effective, i.e. the

standard deviation of (4) is small, then the payoff

of the portfolio of the two calls is close to that of
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the basket option. This is tantamount to say that

an approximate static hedging portfolio has been

obtained selecting a combination of plain call op-

tions. This optimal selection of control variates

can directly be interpreted in terms of approximate

static hedging as discussed in the sequel.

The previous description of the MMC method

can be used to propose a straightforward gener-
alization based on the search of a hedging port-

folio by minimization of the variance of the net

difference of the option payoff and the value of the

hedging portfolio. Assume we can build a hedge

choosing among the assets in the set

H ¼ fH1; . . . ;Hpg; ð5Þ
where each Hi; i ¼ 1; . . . ; p, is a payoff function (at

maturity T ), typically depending on some under-
lying stock Sj; j ¼ 1; . . . ; n. The set H should

contain liquid assets (for low trading costs) that

span a wide payoff space. Some reasonable

examples of such set H will be described soon.

Then we can approximately hedge the option (2)

by solving the minimization problem

min
b0;b1;...;bp

Var f ðS1T ; . . . ; SnT Þ
�

� b1H1 � b2H2

� � � � � bpHp � b0
�

ð6Þ

in the cash amount (at maturity) b0 and in the
quantities b1; . . . ; bp that are held in each Hi. We

typically expect p to be much smaller than N , as

the former is about of the same size as n, the

number of risk sources, while the latter is at least

in the thousands. This also ensures that few con-

trol variates are used with respect to the number of

simulations, as suggested in Nelson (1990) or

Lavenberg and Welch (1981).
If the payoff and the assets in H are ðp þ 1Þ-dim

multivariate normal, then the b̂i’s are obtained by

regressing f ðS1T ; . . . ; Sn;T Þ on the vectorial sub-

space LðH1; . . . ;HpÞ, to get the theoretical mini-

mizers ðb�0; b�1; . . . ; b�pÞ. The normality assumption

can be grossly violated in a pricing framework as

the payoff density is likely to have positive mass at

0 (especially in the case of out-of-the-money op-
tions). However, Theorem 3 in Nelson (1990)

points out that, if the sample size N ! 1, then

b̂i ! b�i , hence justifying the use of least squares

estimation in the case of large sample size. This
approach, consistently used in Pellizzari (2001),
provides good results for a variety of payoffs of

different type and dimensionality.

Some examples of the set H are described be-

low, together with the specification of the mini-

mization problem to solve. For simplicity, we omit

the constant term b0 in the minimization problem,

we assume n ¼ 2 and still refer to the problem to

approximately hedge the payoff of the example in
Section 2.

1. H ¼ fmaxðS1T þ E½S2T � � k; 0Þ;
maxðS2T þ E½S1T � � k; 0Þg:

This is a restrictive situation, corresponding to

MMC, where we hedge using solely two call

options with given strike prices. The minimiza-

tion problem is

min
b1;b2

Var f ðS1T ; S2T Þ½ � b1 maxðS1T þ E½S2T � � k; 0Þ

� b2 maxðS2T þ E½S1T � � k; 0Þ�: ð7Þ

2. Assume we can hedge selecting the strike prices

a’s: then we have that

H ¼ fmaxðS1T � a1; 0Þ;maxðS2T � a2; 0Þg:
It is obvious that more flexibility in the hedging

strategy is allowed and the corresponding
minimization problem is

min
b1;b2;a1;a2

Var f ðS1T ; S2T Þ½ � b1 maxðS1T � a1; 0Þ

� b2 maxðS2T � a2; 0Þ�:

3. Why should we hedge using options alone? If

we set

H ¼ fmaxðS1T � a1; 0Þ;
maxðS2T � a2; 0Þ; S1T ; S2Tg

then better approximate replication can be ob-

tained as stocks themselves can be used. The

minimization problem becomes

min
b1;b2;b3;b4;a1;a2

Var f ðS1T ; S2T Þ½ � b1S1T � b2S2T

� b3 maxðS1T � a1; 0Þ � b4 maxðS2T � a2; 0Þ�:

4. In realistic situations it might be that only some

strikes are available in the option market.

Assume for example that only calls written

at strikes 90, 100, 110 on S1 and S2 can be
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purchased, in such a way that just specific out,

at and in-the-money options are eligible. Then

the set H is

H ¼ fmaxðS1i � 90; 0Þ;maxðS1i � 100; 0Þ;
maxðS1i � 110; 0Þ; SiTg;

where i ¼ 1; 2 and the variance is minimized

with appropriate choice of the eight variables

bð90Þi ; bð100Þi ; bð110Þi ; bi; i ¼ 1; 2, denoting the

quantities held in the call 90, call 100, call 110

(written on each assets) and in the two stocks S1
and S2, respectively. Formally, the optimization
problem is

minVar f ðS1T ; S2T Þ
h

� b1S1T � b2S2T

� bð90Þ1 maxðS1T � 90; 0Þ
� bð90Þ2 maxðS2T � 90; 0Þ
� bð100Þ1 maxðS1T � 100; 0Þ
� bð100Þ2 maxðS2T � 100; 0Þ
� bð110Þ1 maxðS1T � 110; 0Þ

� bð110Þ2 maxðS2T � 110; 0Þ
i
;

where minimization is performed on the afore-

mentioned eight variables.

These examples are of course not exhaustive (for
example, an exchange option on the two assets is

indeed useful to further reduce risk) but show how

approximate hedging can be built in different

frameworks.

It is obvious that functionals other than the

variance could be minimized. There are however

some reasons to prefer the simple quadratic ap-

proach of the variance. On one side this choice
allows to interpret the procedure as a Monte Carlo

method with control variates. On the other hand,

the estimation of the parameters is done in the

quadratic framework by least squares and, if b

alone is to be estimated, only OLS is required to

build the static portfolio. Note also that the vari-

ance minimization problem is in full generality

non-differentiable, due to the possible lack of
smoothness of the payoff function f .

Finally, though not used in the following, we

note that problem (6) can be generalized as follows:
min
b0;b1;...;bp

Var½f ðS1T ; . . . ; SnT Þ � b1H1 � b2H2

� � � � � bpHp � b0�
subject to: giðb1; . . . bpÞP 0; i ¼ 1; . . . ;m: ð8Þ

Constrained Monte Carlo is a recent research area:

both Szechtman and Glynn (2001) and Avellaneda

et al. (2000) are recent papers that deal with similar

frameworks, though their ideas are somewhat

different. In the simplest case (normal random

variables and linear constraints), the optimal bi’s
can be estimated by constrained least squares but
more theoretical and applied research is needed to

clarify the potential of the generalization.

The m constraints could take into account some

important financial features: no borrowing and no

short selling, for example, can be enforced by

setting m ¼ p þ 1 and

giðb1; . . . bpÞ ¼ bi; i ¼ 0; . . . ; p:

Another interesting possibility is to require the

static hedging to be self-financing: assume that the

p assets in H can be priced by Black–Scholes for-

mulas, like in all the cases shown previously, or by

numerical methods. Let now C ¼ ðC1; . . . ;CpÞ be

the vector of the prices of the simple assets in H
and let Ĉ0 be a pilot estimate of the price of the

complex derivative, for example computed by a
preliminary simulation. Then the constraint

giðb1; . . . bpÞ ¼ Ĉ0 �
Xp

i¼1

biCi; ð9Þ

together with b0 ¼ 0, will produce a hedge that

costs at t ¼ 0 approximately the same amount that

is cashed to write the derivative. Notice that is a

very strong requirement as borrowing is totally

banned. Indeed, this should make unviable the
usual Black–Scholes strategy, which is almost al-

ways based on dynamic borrowing of variable

amounts of cash. This point will be further clari-

fied below.
4. Some static hedges

In the following section we present some prac-

tical applications of the method by pricing and
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hedging options on the maximum of two stocks
and portfolio options written on multiple assets.

We first price some European call and put op-

tions on the maximum of two stocks and compare

against the results obtained in (Boyle, 1988) using

a bivariate lattice approach with 50 steps. This is

an indirect way to assess the quality of the repli-

cation of the static hedge at maturity: if in fact the

static portfolio closely matches the derivative final
payoff, then its price should be extremely close to

the theoretical one to avoid arbitrage opportuni-

ties. See Rebonato and Cooper (1998) for another

application of the same idea. More importantly,

this pricing exercise shows that the estimation of

the static portfolio by simulated paths is accurate

and no extra cash is on average needed to build a

static hedge.
The parameters are the following: S01 ¼ S02 ¼

40, r1 ¼ 0:2, r2 ¼ 0:3, q12 ¼ 0:5, r ¼ 0:04879 con-

tinuously compounded, T ¼ 0:58333 and exercise

prices of 35, 40 and 45.

Table 2 reports the result of the lattice method,

analytical evaluation formulas (Stulz, 1982), the

cost of the static hedging, namely
P

i biCi, com-

posed of plain options on each of the assets (two
call options for the maximum and two put options
Table 2

Comparison of max/min option prices

Exercise

price

Boyle

(1988)

Stulz

(1982)

Static SD½f �
P

i b̂iHi�

European call on the maximum of two assets

35 9.419 9.420 9.414

(0.063)

2.033

40 5.483 5.488 5.484

(0.051)

1.615

45 2.792 2.795 2.792

(0.034)

1.072

European put on the minimum of two assets

35 1.392 1.387 1.383

(0.016)

0.525

40 3.795 3.798 3.792

(0.035)

1.119

45 7.499 7.500 7.491

(0.050)

1.657

The results of a lattice method (Boyle, 1988), analytical evalu-

ation formula (Stulz, 1982) and cost of static hedging are

shown. The last column shows the average standard deviation

of the replication error.
for the minimum) and of cash, as exemplified in
the example of Section 2. We report the mean and

the standard deviation (in brackets) of the cost on

100 tries. The hedging parameters are estimated

using 1000 simulated samples. The average value

of the static portfolio is close to both the theo-

retical price and the lattice approximation, always

showing pricing errors smaller than 1 cent. Ob-

serve, in the rightmost column, that the replication
error has still a sizeable standard deviation thus

pointing to residual non-hedged risk. Hence, the

price of a static hedge is close to the fair price of

the derivative but the risk is only reduced and not

eliminated.

The following examples will compare the well

known dynamic delta-hedging with the perfor-

mance of a static hedging approach on portfolio
options written on 2 and 7 assets. As we are mainly

interested in quantifying the risk exposure, we re-

port two popular risk measures, the Value at Risk

(VaR) and the Expected Shortfall (ES). The VaR

at confidence level a is such that

PrðX 6VaRaÞ ¼ a;

where X is the replication error at maturity. We

estimate VaRa by the empirical 100a percentile.

The ES is defined as

ESa ¼ E½X jX 6VaRa�:
We empirically obtain ESa by sorting the realiza-
tions of X and taking the mean of the smallest a
percent of the sample. It is standard practice to

compute VaR’s and ES’s at confidence levels

a ¼ 0:01 and a ¼ 0:05 and we do not depart from

this custom.

Consider first an European portfolio option

written on two risky stocks S1, S2 with final payoff

maxðS1T þ S2T � k; 0Þ and select the parameters as
in the example of Section 2. We simulate 1 1000
1 In the following, all simulated paths are obtained using the

risk neutral probability densities. It is true that hedging errors

depend on the drift of the assets, but we do not provide a full set

of simulations for different drift values, that are left to future

research. Some experimentation performed by us shows that

while the risk figures are obviously changing with drifts, the

comparative picture of dynamic and static hedging is not and

the final considerations apply to a broad range of drifts.



Table 3

Parameters of the static hedging portfolio, with standard

deviations in brackets

Quantity Strike

Call on S1 1.00 98.06

(0.010) (0.38)

Call on S2 1.01 89.17

(0.006) (0.36)

Cash )3.87 –

(0.27) –

Table 4

Sample statistics of the replication error of different hedging

strategies, based on 1000 simulations. In detail, we provide

sample VaRa and ESa for a ¼ 0:01 and 0:05

Dynamic

(monthly)

Dynamic

(weekly)

Dynamic

(semi-

Static
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stock paths, and approximatively monthly, weekly
and semiweekly rebalancings of the delta-based

hedging portfolios (hence 12, 60 and 120 revisions

were allowed, respectively). Of course no rebal-

ancing is performed for the static hedging strategy.

There is no close formula to compute the deltas for

a portfolio option and they were accurately 2

evaluated by Monte Carlo simulation. The

parameters of the static hedge (again composed by
call options in each asset and cash) are calculated

as in the above example making use of 1000 sim-

ulations and are shown in Table 3. We can see in

the table that the optimal static hedging portfolio

is made of 1.00 call option on S1, with strike 98.06,

and 1.01 call options on S2, with strike 89.17. Both

options have maturity 1 year and borrowing 3.87

is necessary at t ¼ 0. This amount, as described in
Avellaneda et al. (2000), is the constant term b0 in
the regression used to compute the weights, dis-

counted back at time t ¼ 0.

First, notice that this amount is a small fraction

(about 10%) of the price, which is about 33.34.

Second, the greeks of the portfolio option

(D1 � 0:8;D2 � 0:77) show that that the initial

borrowing required for starting a dynamic hedging
strategy is huge (more than 120, to be compared

with the above 3.27). This is typical of all delta-

based hedges, almost irrespective of payoff profile

and number of risk sources: you must borrow a

considerable amount or use other cash at inception
2 In detail, central differences and correlated Monte Carlo

(common variables) are used, see Rubinstein (1981) for an

introduction. This means that we evaluate the greeks using the

same sequence of random numbers, thus limiting the sample

noise that can deteriorate numerical derivative calculations. The

resulting deltas appear to be accurate and stable.
of a dynamic hedge. A most practical interesting
fact of static hedging might lie exactly in this small

borrowing requirement.

Assuming a perfect market with no transaction

costs, Table 4 compares the replication error of

static and dynamic hedging portfolios. A look at

the last rows shows that approximate null mean is

achieved as expected, though standard deviation

of the replication error is still sizeable. This is true
in particular for dynamic hedging, that should (in

continuous time) offer perfect risk coverage.

However, due to discrete rebalancings (and possi-

bly numerical deltas calculation) the residual risk

is far from being negligible.

It is interesting to note that the maximum loss

cannot exceed 4.28 because in the worst possible

scenario (when both call options in the static port-
folio expire out-of-the-money) 4:28 ¼ 3:87 expðrT Þ
must be paid for the initial borrowing. This boun-

ded loss might be an additional nice feature of the

static hedging for portfolio options, though the

same property does not hold in the previous

example for maximum/minimum options. Fig. 1

shows the distribution of the hedging errors in the

monthly case: the peak corresponding to )4.28 is
clearly visible as it is the heavy left tail for the dy-

namic hedge. The amount of residual risk inherent

to the different kinds of hedging is largely depen-

dent on the chosen risk measure: the risk of a dy-

namic hedging strategy is very low if revisions are

performed semiweekly, but there are cases in which

the static hedge outperforms the dynamical coun-

terpart.
weekly)

VaR0:01 )18.92 )5.30 )4.26 )4.28
VaR0:05 )8.21 )4.01 )2.65 )4.28
ES0:01 )26.79 )6.34 )5.46 )4.28
ES0:05 )14.39 )4.83 )3.69 )4.28

Mean )0.26 0.36 )0.02 )0.05
SD 5.60 3.20 1.59 4.58



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
en

si
ty

Hedging Error

Static
Dynamic (monthly)

Fig. 1. Hedging error density (kernel estimated) for static and

monthly revised delta-based portfolio.
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We finally examine a 7-dimensional portfolio

option, first presented in Milevsky and Posner
(1998a), and priced by MMC in Pellizzari (2001).

Transaction costs are accounted for, assuming

different percentage fees. This option, embedded in

a an Index-Linked Guaranteed Investment Cer-
Table 5

Replication error risk measures for a 1 year maturity ILGIC, with es

Transaction

cost

Maturity: T ¼ 1, price: 0.0590 (Rebalancing frequen

VaR0:01

2M M W W/2

m ¼ 0 )0.0460 )0.0295 )0.0122 )0.0085
(0.0041) (0.0029) (0.0008) (0.0006)

m ¼ 0:001 )0.0474 )0.0316 )0.0172 )0.0155
(0.0042) (0.0027) (0.0010) (0.0007)

m ¼ 0:002 )0.0489 )0.0338 )0.0223 )0.0225
(0.0044) (0.0031) (0.0010) (0.0008)

m ¼ 0:004 )0.0518 )0.0382 )0.0311 )0.0366
(0.0044) (0.0033) (0.0013) (0.0009)

Static )0.0366 (0.0019)

ES0:01

m ¼ 0 )0.0596 )0.0380 )0.0172 )0.0109
(0.0053) (0.0028) (0.0023) (0.0012)

m ¼ 0:001 )0.0613 )0.0404 )0.0218 )0.0178
(0.0049) (0.0030) (0.0019) (0.0011)

m ¼ 0:002 )0.0630 )0.0429 )0.0267 )0.0248
(0.0051) (0.0028) (0.0023) (0.0010)

m ¼ 0:004 )0.0663 )0.0479 )0.0366 )0.0392
(0.0054) (0.0026) (0.0020) (0.0011)

Static )0.0410 (0.0019)

The rebalancing frequencies reported are two months (2M), one mont

are shown in brackets.
tificate (ILGIC), is written on a weighted sum of
several major stock indices, namely TSE100

(Canada), CAC40 (France), DAX (Germany),

MIB30 (Italy), Nikkei225 (Japan), FTSE100 (UK)

and S&P500 (USA). An ILGIC is sold with vari-

ous maturities (1, 3, 5 and 10 years) and we refer

the reader to the above mentioned papers and to

Milevsky and Posner (1998b) for more details and

full parameter list. We feel that this example is well
suited to explore the practical problems in hedging

long-lived derivatives and to explore if static

methods can be useful for hedging purposes.

In order to estimate the replication error of a

hedging strategy we simulate one thousand 7-

dimensional paths and look at VaR and ES at

confidence level 1% and 5%. We consider 6, 12, 60

and 120 rebalancings per year, roughly equivalent
to one revision every two months (2M), every

month (M), every week (W) and twice aweek (W/2).

We also take into account proportional transaction

costs: in order to rebalance at time t þ 1 the port-

folio quotas from bt to btþ1, the transaction costs
timated standard deviations in brackets

cy)

VaR0:05

2M M W W/2

)0.0247 )0.0189 )0.0079 )0.0045
(0.0022) (0.0010) (0.0004) (0.0002)

)0.0261 )0.0209 )0.0120 )0.0104
(0.0020) (0.0009) (0.0006) (0.0003)

)0.0276 )0.0227 )0.0165 )0.0165
(0.0020) (0.0009) (0.0007) (0.0004)

)0.0312 )0.0268 )0.0253 )0.0293
(0.0020) (0.0009) (0.0008) (0.0008)

)0.0287 (0.0008)

ES0:05

)0.0382 )0.0259 )0.0112 )0.0070
(0.0022) (0.0015) (0.0008) (0.0005)

)0.0399 )0.0282 )0.0157 )0.0133
(0.0028) (0.0014) (0.0008) (0.0006)

)0.0415 )0.0304 )0.0204 )0.0200
(0.0027) (0.0014) (0.0008) (0.0006)

)0.0448 )0.0350 )0.0299 )0.0335
(0.0026) (0.0015) (0.0009) (0.0007)

)0.0329 (0.0009)

h (M), one week (W) and half-week (W/2). Standard deviations
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m
X7

i¼1

jbit � biðtþ1ÞjSiðtþ1Þ

must be paid. We assume there are no costs to
manage the riskfree account and the commission

rates m ¼ 0, 0.001, 0.002, 0.004 to be somehow

representative of typical costs (many online bro-

kers, for example, offer m ¼ 0:2%). The deltas for

the dynamic hedging portfolios are calculated

using 1024 correlated simulations, as in the previ-

ous example. The static hedging portfolio is build

at t ¼ 0 and is composed of 7 at-the-money call
options.

To save space we focus only on the two extreme

maturities, 1 and 10 years: the results relative to 3

and 5 years maturities are available on request and

do not alter in any substantial way the following

considerations. Tables 5 and 6 show the Values at

Risk (VaR) and the Expected Shortfalls (ES) of 1

and 10 years maturity ILGICs if dynamic or static
Table 6

Replication error risk measures for a 10 years maturity ILGIC, with

Transaction

cost

Maturity: T ¼ 10, price: 0.3113 (Rebalancing freque

VaR0:01

2M M W W/2

m ¼ 0 )0.0246 )0.0226 )0.0135 )0.0145
(0.0013) (0.0021) (0.0005) (0.0008)

m ¼ 0:001 )0.0288 )0.0295 )0.0295 )0.0471
(0.0013) (0.0028) (0.0008) (0.0011)

m ¼ 0:002 )0.0339 )0.0355 )0.0469 )0.0830
(0.0017) (0.0028) (0.0009) (0.0018)

m ¼ 0:004 )0.0439 )0.0486 )0.0851 )0.1560
(0.0019) (0.0039) (0.0014) (0.0025)

Static )0.0859 (0.0031)

ES0:01

m ¼ 0 )0.0299 )0.0331 )0.0153 )0.0170
(0.0017) (0.0056) (0.0008) (0.0010)

m ¼ 0:00 )0.0342 )0.0404 )0.0319 )0.0505
(0.0018) (0.0062) (0.0008) (0.0013)

m ¼ 0:002 )0.0386 )0.0478 )0.0501 )0.0868
(0.0017) (0.0069) (0.0012) (0.0014)

m ¼ 0:004 )0.0480 )0.0626 )0.0892 )0.1632
(0.0016) (0.0070) (0.0014) (0.0024)

Static )0.0935 (0.0012)

The rebalancing frequencies reported are two months (2M), one mont

are shown in brackets.
hedges are used (with various rebalancing fre-
quencies and commission rates). For example, the

lower left part of Table 5 shows that if m ¼ 0:2%
then the expected shortfalls (at 1% level) of the

dynamic hedging strategies are respectively

)0.0630, )0.0429, )0.0267, and )0.0248 for dif-

ferent rebalancing intervals. We also see that the

static hedging produces an ES of )0.041. The

standard deviations are reported in brackets and
have been computed using 100 bootstrap repli-

cates. In the vast majority of cases, the standard

deviations are quite low and rarely exceed 10% of

the risk measures.

Observe preliminarily that many of the entries

in the tables are a sizeable fraction of the price of

the derivatives and sometimes even exceed them,

thus pointing to massive residual risk even if
hedging was carefully performed. This is in sub-

stantial agreement, for example, to figures re-

ported in Green and Figlewsky (1999) for the

univariate case.
estimated standard deviations in brackets

ncy)

VaR0:05

2M M W W/2

)0.0198 )0.0146 )0.0093 )0.0099
(0.0003) (0.0003) (0.0003) (0.0003)

)0.0232 )0.0191 )0.0253 )0.0403
(0.0002) (0.0002) (0.0002) (0.0002)

)0.0265 )0.0238 )0.0417 )0.0725
(0.0003) (0.0003) (0.0003) (0.0003)

)0.0338 )0.0341 )0.0763 )0.1383
(0.0003) (0.0002) (0.0002) (0.0004)

)0.0709 (0.0015)

ES0:05

)0.0238 )0.0201 )0.0121 )0.0128
(0.0008) (0.0018) (0.0005) (0.0005)

)0.0277 )0.0257 )0.0280 )0.0445
(0.0008) (0.0018) (0.0005) (0.0007)

)0.0316 )0.0315 )0.0452 )0.0784
(0.0009) (0.0019) (0.0006) (0.0010)

)0.0397 )0.0434 )0.0821 )0.1487
(0.0011) (0.0021) (0.0010) (0.0019)

)0.0802 (0.0015)

h (M), one week (W) and half-week (W/2). Standard deviations
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Fig. 2. VaR and ES measures for a 1 year maturity ILGIC. The

panels show VaR0:05 and ES0:01 for dynamic and static hedging

corresponding to various transaction rates.
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The analysis of Table 5 is eased looking at Fig.

2 that depicts the upper right and lower left parts

of the table. A visual comparison is justified by the

relatively small standard deviations of the esti-

mates and is useful to understand at a glance the

many entries of Tables 5 and 6.

It can be seen in the first exhibit of Fig. 2 that

an increment of the rebalancing frequency is gen-
erally beneficial, with the exception of the

m ¼ 0:004 case that shows that it is not convenient

to revise too often the hedge in the presence of

relatively high transaction costs. A visible flatten-

ing occurs for m ¼ 0:002 too and there is not much

difference between weekly and semiweekly revi-

sions with this commission rate. The static hedging

is represented by the horizontal line in the graph
and we observe that it is roughly equivalent to
dynamic hedging (no matter of m) for 2M revisions,
while it is generally riskier for other frequencies

(but again this does not hold when m ¼ 0:004).
The previous consideration are strengthened

observing the second exhibit of Fig. 2, depicting

expected shortfall at 1% confidence level. The

static hedging portfolio achieves roughly the same

performances of the dynamic hedges with monthly

revisions and, in particular, it is at least as good as
the dynamic strategy when m ¼ 0:004.

As pointed out by a referee, it is interesting and

of practical importance to compare the sensitivity

of the performance of dynamic and static hedges if

volatilities move. There are countless ways to

perturb the volatility structure of a multivariate

claim (think, for example, to one-time shocks or

changes in the level of some r’s). Hence, with no
hope to be exhaustive, the upper (lower) panel of

Fig. 3 shows the VaR0:05 and ES0:01 of static and

dynamic hedges for the shortest maturity ILGIC if

all the volatilities r1; . . . ; r7 increase linearly by

25% over the lifespan of the claim (1 year). We feel

that this resembles a typical situation where the

overall volatility of the market starts moving just

after the option has been written, altering the ex-
ante expectations of the issuer that is neverthelees

binded to the contract. The comparison of Figs. 2

and 3 shows that the risk of the static hedging

strategy is remarkably insensitive to moving vol-

atilities (indeed, the VaRs in the two figures differ

by 10�3 while ES moves from )0.0410 to )0.0444).
On the contrary, a smooth increase in volatilities

inflates considerably the risk of a dynamic hedging
strategy, that is to be preferred only if frequent

revisions are performed with very low transaction

costs.

Fig. 4 shows the VaR0:01 and ES0:05 for the long

maturity (10 years) ILGIC, depicting the upper left

and lower right parts of Table 6. The plots are

quite similar and illustrate that dynamic hedging

reduces risk much more than static hedging if low
revision frequencies are selected and very low cost

are charged. However, there is no real advantage

to rebalance more often than every two months,

perhaps with the exception of the case of no

transaction costs. This can be understood in view

of the fact that the long maturity comes together

with many revisions that might be imprecise due to
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Fig. 3. VaR and ES of a 1 year maturity ILGIC, for static and

dynamic hedgings corresponding to different transaction rates.

We assume that the volatilities of the assets is linearly increasing

by 25% during the lifespan of the option.
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hedging corresponding to various transaction rates.
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discretization and/or numeric greeks calculation.

Hence the replication error at maturity is adversely
influenced by revision frequency. As far as the

weak results of static hedging are concerned, note

that this is an extreme case in which one portfolio

is held for 10 years with no modification. It can be

conjectured (and the examples in this paper sup-

port this point) that static portfolios can better

cope with short to medium maturities, say less

than a year.
5. Conclusion

This paper presents an alternative hedging

method, based on an approximate replication of a

multivariate derivative using a portfolio of simple
options. The risk resulting from writing an option
is not totally removed, but the same can be said for

standard BS dynamic hedging, that is perfect only

in the limit of continuous rebalancings and no

friction. Many papers have shown that practical

implementations of BS hedging strategy can ex-

pose the writer to substantial residual risk. Among

the advantages of the static hedging procedure

there are conceptual simplicity and easy imple-
mentation, negligible transaction costs and flexi-

bility: the method can for example be tailored to

the assets available in the market and provides

different approximate hedging portfolio depending

on various situations (like budget constraints, or

no short selling requirements).

At a higher level of abstraction, the method

generalizes and casts further light on a variance
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reduction MC scheme recently proposed and
known as mean Monte Carlo. This interpretation

ensures that increasing the number of ‘simulations’

produces more accurate pricing results (though the

residual risk obviously remains bounded away

from zero).

The potential of the proposed technique is as-

sessed pricing some bivariate max options studied

in Boyle (1988): the results are fairly accurate using
only 1000 simulations and each price is supported

by a viable static hedging strategy, that reduces

but does not fully eliminate risk. Analysis of

portfolio options written on 2 and 7 assets shows

that the residual risk of static hedging is in general

bigger than the one obtained by a dynamic hedg-

ing. However, if transaction costs are relevant or

rebalacing frequency unappropriate, the risk fig-
ures produced by the two methods are compara-

ble.
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