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Abstract

In recent years, there has been a great deal of interest in metaheuristics in the opti-
mization community. Tabu Search (TS) represents a popular class of metaheuristics.
However, compared with other metaheuristics like genetic algorithm and simulated
annealing, contributions of TS that deals with continuous problems are still very
limited. In this paper, we introduce a continuous TS called Directed Tabu Search
(DTS) method. In the DTS method, direct-search-based strategies are used to direct
a tabu search. These strategies are based on the well-known Nelder-Mead method
and a new pattern search procedure called adaptive pattern search. Moreover, we
introduce a new tabu list conception with anti-cycling rules called Tabu Regions and
Semi-Tabu Regions. In addition, Diversification and Intensification search schemes
are employed. Numerical results show that the proposed method is promising and
produces high quality solutions.

Key words: Global optimization, Metaheuristics, Tabu search, Nelder-Mead
method, Adaptive pattern direction

1 Introduction

Tabu Search (TS) is one of the recent metaheuristics originally developed for
combinatorial optimization problems [10,11]. TS has shown an appropriate
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performance when applied to these problems [10,26]. However, contributions of
TS to solving continuous optimization problems are still very limited compared
with other metaheuristics like Simulated Annealing and Genetic Algorithms.
In this paper, we introduce a TS approach that deals with continuous global
optimization problems. Specifically, we consider the unconstrained nonlinear
minimization problem

min
xǫRn

f(x),

where f is a real-valued function defined on Rn. Recently, there has been a
growing interest in solving this problem using metaheuristics [25,26]. However,
metaheuristics may suffer from costly computations due to their slow conver-
gence. So combining metaheuristics with local search methods is a practical
remedy to overcome the slow convergence of metaheuristics. In particular, a
number of attempts have been made to develop such combined search methods
especially for Simulated Annealing and Genetic Algorithms [12–14]. In this pa-
per, we present continuous versions of TS called Directed Tabu Search (DTS)
by hybridizing TS with direct search methods. The role of direct search meth-
ods is to stabilize the search especially in the vicinity of a local minimum.
Specifically, instead of using completely blind random search in generating
neighborhood trial moves, appropriate direct search strategies are responsible
to generate these neighborhood moves. Moreover, new implementations of TS
elements are employed in the proposed method.

Since the first presentation of Glover [8,9], a lot of studies have emerged in
the area of TS. The majority of these studies are related to combinatorial op-
timization problems and relatively few attempts have been made to deal with
continuous optimization problems [1–5,7,15]. One of the earliest TS methods
was presented by Hu [15] for constrained optimization problems. Cvijovic and
Klinowski [4,5] extented and generalized the TS to functions with variables
that may be continuous or, if discrete, need not take integer values. Bat-
titi and Tecchiolli [2] introduced an interesting continuous TS method called
the Continuous Reactive Tabu Search. Their method tries to locate the most
promising boxes, and then starting points for the local search are generated
within those boxes. Al-Sultan and Al-Fawzan [1] gave a hybrid method that
combines TS with the local search method of Hooke and Jeeves.

Recently, intensive studies on continuous TS have been conducted in [3,7].
In [3], the authors introduced a new algorithm called Enhanced Continuous
Tabu Search (ECTS), which aims to follow Glover’s basic approach as closely
as possible. In order to cover a wide domain of possible solutions, the ECTS
algorithm first performs a diversification search to locate the most promising
areas. When the most promising areas are located, the algorithm proceeds to
an intensification search within one promising area of the solution space. In
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[7], the authors presented a novel TS algorithm that explores a grid of points
with a distance dynamically adjusted. When it collapses to a local minimum, it
continues the local search from that point while accepting some non-improving
points to allow the exploration of new regions in the search space.

The DTS method proposed in this paper differs from the previous continuous
TS methods in many aspects. In the DTS method, three search procedures are
employed; Exploration, Diversification and Intensification. In the Exploration
Search, a new local search procedure is introduced to generate trial moves,
based on the well-known Nelder-Mead method [24] and the recently proposed
pattern search method [14]. Moreover, novel concepts of TS memory elements
called Tabu Regions (TRs), Semi-TRs and a multi-ranked Tabu List (TL)
are introduced to provide anti-cycling rules. Another memory element called
Visited Regions List (VRL) is also introduced as a tool for the Diversification
Search to diversify the search to unvisited areas of the solution space. Finally,
assuming that one of the best points obtained by the Exploration and Di-
versification Searches is close to a global minimum, the Intensification Search
is applied again at the final stage to refine the elite solutions visited so far.
Actually, the proposed Diversification and Intensification Searches try to fol-
low some known strategies from the high level TS with a long term memory.
Moreover, the DTS can be classified as a multi-start method. The multi-start
methods aim to construct powerful search procedures by guidance of global
exploration and local searches; as surveys for multi-start methods the reader
is referred to [21,22,27]. Multi-start methods have been successfully applied
to both nonlinear global optimization and combinatorial problems, see [22]
and references therein. Finally, the numerical results reported below show the
promise of the proposed method especially in producing high quality solutions.

The rest of the paper is organized as follows. The next section gives a detailed
description of the proposed TS memory elements. In Section 3, we introduce
neighborhood and local search strategies used to generate the trial moves.
The main DTS method is presented elaborately in Section 4. Section 5 dis-
cusses the implementation of the proposed method and reports comprehensive
experimental results. The conclusion makes up Section 6.

2 TS Memory Elements

The concept of memory plays a major role in TS, especially when it is used in
a kind of learning process as in high level TS with a long term memory. Using
an effective memory conception in intensification and diversification schemes
makes TS behave as an intelligent search technique [10]. The optimization
search methods can be classified in two categories; point-to-point methods
and population-based methods. TS belongs to the first category. Keeping the
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diversity is one of the main problems that face the point-to-point methods
compared with the population-based methods. However, the long term mem-
ory in TS makes it competitive with the population-based methods in keeping
the diversity. In TS with long term memory, the search can be restarted from
new diverse solutions whenever the diversification is needed, or can be inten-
sified to improve the elite solutions whenever the intensification is needed.
These TS concepts of diversification and intensification have turned out to be
effective in many combinatorial optimization problems, see [10,20] for exam-
ple. In this section, we introduce some new conceptions and implementations
of the TS memory elements to continuous optimization problems. First, we
let the multi-ranked Tabu List (TL) be a set of some visited solutions. The
points in the TL are ranked and saved according to their recency and their
objective function values. Therefore, some positions in the TL are kept for
the best visited solutions, which helps an intensification scheme to refine the
search from these best solutions at the final stage. Around each solution saved
in the TL, two types of regions are specified in the search space. The first one
is a Tabu Region (TR) in which no new trial point is allowed to be generated.
The other is a Semi-Tabu Region (Semi-TR) that comprises a surrounding
region around TR. The main role of the Semi-TRs is to generate neighboring
trial points in a special way so that returning back to a visited TR is avoided
when the trial solution lies inside a Semi-TR. Another memory element in-
troduced in this section is the Visited Region List (VRL). The centers of the
visited regions and the frequency of visiting these regions are saved in the
VRL in order to direct a diversification scheme to explore the space outside
these visited regions.

2.1 Multi-Ranked Tabu List (TL)

Some of the previously visited solutions are stored in the TL. Let TL = {ti}L
i=1 .

The elements in TL are ranked in ascending order according to their recency
using the rank indices Ir

i , i = 1, . . . , L, i.e., if the most recent element in TL
is tk, then Ir

k = 1, while if the most ancient element is tk′ , then Ir
k′ = L. Also,

the elements in TL are ranked in ascending order according to their objective
function values using another set of rank indices Ifv

i , i = 1, . . . , L, i.e., if the
best element in TL is tj, then Ifv

j = 1, and if the worst element is tj′ , then

Ifv
j′ = L. In the ordering, ties are broken arbitrarily. We consider the TL to

be a fuzzy set and associate its elements {ti}L
i=1 the membership values:

mi = max
{
mr

i ,m
fv
i

}
, i = 1, . . . , L, (1)
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where mr
i ,m

fv
i ∈ [0, 1] are the recency and the function-value ranked values,

respectively, for element ti and they are computed as follows:

• The recency ranked value mr. We use a linear ranking procedure that gives
the most recent element the maximum ranked value ηmax and the most
ancient element the minimum ranked value ηmin, where 0 ≤ ηmin < ηmax ≤ 1.
Specifically, the recency ranked value for each element of TL is given by

mr
i = ηmin + (ηmax − ηmin)

(
L − Ir

i

L − 1

)
, i = 1, . . . , L. (2)

• The function-value ranked value mfv. To avoid reserving excessively many
positions in the TL for the best elements and to give the recency some
priority, this procedure ranks only L best elements so that the best element
is given the ranked value µmax, and the worst L−L+1 elements are given the
ranked value µmin, where 1 ≤ L ≤ L and 0 ≤ µmin < µmax ≤ 1. Specifically,
the function-value ranked value for each element of TL is given by

mfv
i =





µmin + (µmax − µmin)
(

L−Ifv
i

L−1

)
, if Ifv

i = 1, . . . , L,

µmin, if Ifv
i = L + 1, . . . , L.

(3)

The Tabu Regions (TRs) are defined to be spheres with radius rTR and their
centers being the points of TL, where rTR > 0 . For each TR, we define
Semi-TR to be the surrounding region around this TR with outer radius rSTR

from its center, where rSTR > rTR. If a trial solution lies in Semi-TRs, then
a specific procedure is applied to create special neighborhood trial points to
avoid returning back to a vicinity of a previously visited solution. We suggest
the following procedure for this purpose.

Procedure 2.1.
1. Let a trial point x lie in ν Semi-TRs with centers t1, . . . , tν . Compute

the centroid t of the Semi-TRs ’ centers and the maximum distance dmax

between x and these centers, i.e.,

t =
1

ν

ν∑

i=1

ti, (4)

dmax = max
i=1,...,ν

{‖x − ti‖} . (5)

2. Construct neighborhood search directions that are parallel to the co-
ordinate axes but point towards the direction x − t, i.e., the neighborhood
search directions are determined as sign ((x)i − (t)i) ei, i = 1, . . . , n, where
ei ∈ Rn is the ith unit vector in Rn. Neighborhood trial points are generated
along these search directions with a suitable step size β > 0. In the case of
ν > 1, the step size β should be chosen greater than dmax + rTR in order to
avoid generating trial points inside a TR.
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Fig. 1. Neighborhood search from a point in Semi-TRs.

Fig. 1 illustrates how Procedure 2.1 works when a solution x lies in Semi-
TRs in two dimensions. In this example, the solution x lies in two Semi-TRs
with center t1 and t2. According to Procedure 2.1, the neighborhood search
directions d1 and d2 are constructed to follow the vector (x − t) , where t is the
centroid of the Semi-TRs ’ centers. It is noteworthy that the step size used to
generate a trial point along search directions d1 and d2 is chosen to be greater
than rTR + max {‖x − t1‖ , ‖x − t2‖} , to make sure that the close TRs with
centers t1 and t2 will not be hit.

2.2 Visited Region List (VRL)

Some historical information about the previously visited regions is stored in
the VRL. More specifically, the center ζi of a visited region, which is a sphere
with radius ρi, and the frequency ϕi of visiting this region comprise the in-
formation stored in the VRL, i.e., VRL = {(ζi, ρi, ϕi)}M

i=1 , where M is the
number of all listed visited regions. The information in VRL will be used to
direct the search towards new regions whenever the current TS procedure fails
to get improvement or whenever a diversification scheme is needed. As a di-
versification scheme, we try to generate new trial points outside the visited
regions. However, generating trial points near to more frequently visited re-
gions is discouraged. To this end, a function Φ(ϕ) is introduced to distinguish
between more and less frequently visited regions. Specifically, we define the
function Φ as

Φ(ϕ) = γ
(
1 − e−γ(ϕ−1)

)
, (6)

6



where γ ∈ (0, 1] is a given constant. Note that the function Φ is strictly
increasing and bounded above by the value γ. We will describe the role of γ
in the diversification scheme after we state Procedure 2.2. below.

In the following, we suggest a procedure that uses the VRL information to
generate a new solution. The procedure allows accepting a trial point outside
the visited regions, especially the more frequently visited ones.

Procedure 2.2.
1. Generate a trial point x randomly in the search domain of f.
2. Compute the quantities di = ‖x − ζi‖/(1 + Φ(ϕi)), i = 1, . . . ,M,

where Φ(ϕ) is defined by (6). If min1≤i≤M di/ρi ≥ 1, then accept x. Other-
wise, return to Step 1.

A point x is accepted by Procedure 2.2 if it satisfies ‖x − ζi‖/ρi ≥ 1 + Φ(ϕi)
for all i = 1, . . . ,M. This means that no point can be accepted inside a
previously visited region. Moreover, a point close to more frequently visited
regions is hardly accepted. Therefore, the higher the value of γ is, the lower
the possibility of accepting a point close to more frequently visited regions is.
To avoid infinitely cycling in Procedure 2.2, we may also terminate it after a
predetermined number of iterations and return with x corresponding to the
maximum of the values of min1≤i≤M di/ρi over all iterations.

3 Neighborhood-Local Search Strategies

To explore the region around a solution and to generate the next move, we
use neighborhood and local search strategies in which direct search meth-
ods are employed. Specifically, two search strategies are introduced to handle
that job; Nelder-Mead Search (NMS) strategy and Adaptive Pattern Search
(APS) strategy, which are based on the well-known Nelder-Mead method [24]
and the recently proposed pattern search method [14], respectively. These
neighborhood-local search strategies are invoked to generate trial points in
the Exploration Search of the DTS method. More specifically, two types of
trial points are generated by the neighborhood-local search strategy; neigh-
borhood trial points and local trial points, which are needed in the Neighbor-
hood Search and Local Search Steps, respectively, in Algorithm 4.1 stated in
the next section. First, p trial points {yi}p

i=1 are generated in a neighborhood
of the current solution x. This procedure is called a neighborhood search, and
the trial points {yi}p

i=1 are called neighborhood trial points. Then, we try to
improve the neighborhood trial points {yi}p

i=1 by executing another search
procedure, which is called a local search, to generate q trial points {yp+i}q

i=1 ,
which are called local trial points. The details of the neighborhood-local search
strategies, NMS and APS, are given below.
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3.1 Nelder-Mead Search (NMS) Strategy

In the NMS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1 ,

and q(= 1 or 0) local trial point. The neighborhood trial points are gener-
ated along search directions parallel to the coordinates axes starting from the
current solution x with suitable step sizes. If the current solution x lies in a
Semi-TR or in Semi-TRs, we apply Procedure 2.1 to construct the search di-
rections and the step sizes. Otherwise, we construct search directions parallel
to the coordinate axes in a random way, i.e., each of them is parallel to a
positive or a negative coordinate direction. To generate a local trial point, we
construct a simplex S that consists of the current solution x and the current
n neighborhood trial points {yi}n

i=1, i.e., S = {x, y1, . . . , yn} . Some iterations
of the NM method are applied starting from S. If an improvement point is
obtained from these NM iterations, then we set the local trial point yn+1 equal
to this improvement point, i.e., q = 1. Otherwise, there is no trial point, i.e.,
q = 0.

For more explanation of the NMS strategy, we show an example in two dimen-
sions in Fig. 2. Given the current solution x, two neighborhood trial points y1

and y2 are generated in a neighborhood of x as in Fig. 2(a). To find a local
trial point, we construct a simplex whose vertices are S = {x, y1, y2} , as in
Fig. 2(b). Assuming that the worst point in S is y2, we apply the Nelder-Mead
method operations described in Fig. 2(c) to find a better movement. If one
exists, we refer to this better movement as a local trial point.

3.2 Adaptive Pattern Search (APS) Strategy

The main idea behind the APS strategy is based on the approximate descent
direction (ADD) method proposed in [14]. The ADD method is a derivative-
free procedure with high ability of producing a descent direction. In the ADD
method, several points around a given point x ∈ Rn are used to generate an
approximate descent direction of function f at x. We implement the same pro-
cedure as in [14] to produce a new adaptive direction from standard pattern
directions. Specifically, we construct n pattern directions parallel to the coor-
dinate axes emanating from the point x and generate n trial points {yi}n

i=1

along these directions with a suitable step size. The adaptive direction v, along
which we may expect to decrease the function value, is computed using these
trial points as follows:

v =
n∑

i=1

ωiui, (7)
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Fig. 2. NMS strategy in two dimensions.

where

ωi =
∆fi∑n

j=1 |∆fj|
, i = 1, 2, . . . , n,

ui =− (yi − x)

‖yi − x‖ , i = 1, 2, . . . , n,

∆fi = f(yi) − f(x), i = 1, 2, . . . , n.

In the APS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1

using the standard pattern directions, and q(= 2) local trial points using an
adaptive pattern direction. More specifically, we construct n pattern directions
parallel to the coordinate axes emanating from the current solution x and
generate n neighborhood trial points {yi}n

i=1 along these directions with some
step size. The adaptive pattern direction v at x is computed using (7). Two
local trial points yn+1 and yn+2 are generated along the vector v with two
different step sizes.

An example in two dimensions is illustrated in Fig. 3 to describe the APS
strategy. Two neighborhood trial points y1 and y2 are generated in a neigh-
borhood of the current solution x as in Fig. 3(a). An approximate descent
direction v is computed at x using the points y1 and y2, as in (7). If we as-
sume that x is better than y1 and y2, then, by means of (7), the vector v is
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Fig. 3. APS strategy in two dimensions.

composed toward the vectors x− y1 and x− y2 with weights inversely propor-
tional to |f(x)−f(y1)| and |f(x)−f(y2)|, see Fig. 3(b). Finally, two local trial
points y3 and y4 are generated along the vector v with two different step sizes
in order to explore the area along the promising direction v as in Fig. 3(c).

4 Directed Tabu Search (DTS)

In this section, we describe some details about how a TS method is modified
with the memory elements and neighborhood-local search strategies intro-
duced in Sections 2 and 3 to compose the DTS method.

In the DTS method, three basic search procedure are used; Exploration, Di-
versification and Intensification search procedures. In the Exploration Search,
we use the neighborhood-local search strategies, which are described in Sec-
tion 3, to explore the solution space. Moreover, the multi-ranked TL, TR and
Semi-TR restriction rules are applied to avoid revisiting recently visited so-
lutions or being entrapped in local minima. Then, the Diversification Search
is needed in order to diversify the search to other areas of the solution space
that may have been overlooked in the Exploration Search. We use the VRL
and Procedure 2.2 to manage the Diversification Search. Finally, in order to
explore the close regions around the best points visited so far, the Intensifi-
cation Search is applied to refine these best points. These search procedures
are applied in such a way that they give the DTS method a better chance to
explore the search space efficiently. Actually, the Exploration and Diversifica-
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Fig. 4. Main structure of the DTS method.

tion search procedures are assembled to compose the DTS main loop and are
repeated until the termination conditions are satisfied. Moreover, the Explo-
ration Search procedure is included as an inner loop within the diversification
loop. We will use the superscript j = 0, 1, . . . , to represent the main loop iter-
ation counter, the subscript k = 0, 1, . . . , to represent the inner loop iteration
counter, and x

(j)
k to denote a general iterate. In other words, the Exploration

and Diversification search procedures compose a multi-start procedure with
a long term memory. At the final stage, the Intensification Search procedure
based on elite TS is needed to complete the DTS method. The main structure
of the DTS method is shown in Fig. 4. More detailed description of the search
procedures is given below.

4.1 Exploration-Diversification Loop

The main loop of the DTS method, which consists of Exploration and Di-
versification Searches, starts with an initial solution x

(0)
0 . In each main loop

iteration j, the Exploration Search procedure is repeatedly applied to obtain
improvement by means of neighborhood-local search strategies, and then the
Diversification Search procedure is applied to locate a new initial trial point
x

(j+1)
0 , from which the Exploration Search is restarted again. This main loop is

repeated at most ℓmain times, where ℓmain is a predetermined positive integer.
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Exploration Search. The Exploration Search starts with an initial solution
x

(j)
0 at each main loop iteration j. In each iteration of the Exploration Search,

a neighborhood-local search (NMS or APS) strategy is used to generate n
neighborhood trial points {yi}n

i=1 in a neighborhood of the current iterate

x
(j)
k . If a better movement is found among these trial points, we update the

current iterate and proceed to the next inner loop iteration. Otherwise, i.e.,
x

(j)
k is still better than all neighborhood trial points, the neighborhood-local

search strategy continues to generate q local trial points {yn+i}q
i=1 , where

q = 0 or 1 in the NMS strategy and q = 2 in the APS strategy. Then, the
current iterate x

(j)
k is updated to be the best of neighborhood and local trial

points, i.e., x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} . TL is also updated by letting

x
(j)
k replace the element with the smallest membership value. If a new region

is reached, then VRL should be updated by adding the information on this
region. This Exploration Search loop is repeated at most ℓinner times, where
ℓinner is a predetermined positive integer.

Diversification Search. The Diversification Search is carried out when the
Exploration Search either spends the inner iterations ℓinner times or fails to
obtain an improvement in some consecutive iterations. With the current VRL,
Procedure 2.2 is applied to generate a trial point x

(j+1)
0 in some new region.

Then the Exploration Search is repeated again starting from x
(j+1)
0 .

4.2 Intensification Search

According to the principle of the multi-ranked TL, it reserves the best points
visited so far. In order to improve these points, we complete the DTS method
by applying another local search method starting from some of these points,
which we call Intensification Search. We use Kelley’s modification [16,17] of
the Nelder-Mead (NM) method as a local search method for this task.

4.3 Main Algorithm

We have two versions of the DTS method; DTSNMS and DTSAPS that use
the NMS strategy and the APS strategy, respectively, as neighborhood-local
search strategies. First, a specific and formal description of DTSNMS is given
in the following Algorithms 4.1.

Algorithm 4.1. DTSNMS(f, x
(0)
0 )

1. Initialization. Choose positive integers ℓmain, ℓ′main, ℓinner and ℓ′inner.

Choose an initial solution x
(0)
0 , and set TL and VRL to be empty.

2. Exploration-Diversification Search (Main Loop). Let j := 0 and
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repeat this main loop until ℓ′main consecutive main iterations fail to obtain
improvement or the main loop iteration counter j exceeds ℓmain.

2.1. Exploration Search(NMS) (Inner Loop). Let k := 0 and re-
peat this inner loop until ℓ′inner consecutive inner iterations fail to obtain
improvement or the inner loop iteration counter k exceeds ℓinner.

2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use

Procedure 2.1 to construct search directions {di}n
i=1 and to choose step sizes

{∆i}n
i=1 . Otherwise, construct search directions di := (−1)τi ei, i = 1, . . . , n,

where ei ∈ Rn is the ith unit vector in Rn and τi is a random integer number,
and choose suitable step sizes {∆i}n

i=1 .
2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=

x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this

process, stop generating points, set x
(j)
k+1 equal to this better movement, and

go to Step 2.1.4.
2.1.3. Local Search. Apply n iterations of the NM method starting from

the simplex S :=
{
x

(j)
k , y1, . . . , yn

}
. If an improvement point is obtained

from these NM iterations, set local trial point yn+1 equal to this improve-

ment point, and set q := 1. Otherwise, set q := 0. Set x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} .

2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest

membership value in TL and re-rank the TL elements using (1). Update the
VRT and set k := k + 1.

2.2. Diversification Search. Generate a trial point x
(j+1)
0 using Proce-

dure 2.2. Update the TL and VRT, and set j := j + 1.
3. Intensification Search. Apply the Kelley’s modification [16] of the

NM method starting from some elite solutions in the TL.

The DTSAPS algorithm is the same as Algorithm 4.1 except Step 2.1, which
should be changed as follows:

2.1. Exploration Search(APS) (Inner Loop). Let k := 0, initialize a
vector v to be a random vector in Rn, and repeat this inner loop until ℓ′inner

consecutive inner iterations fail to obtain improvement or the inner loop
iteration counter k exceeds ℓinner.

2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use

Procedure 2.1 to construct search directions {di}n
i=1 and to choose step

sizes {∆i}n
i=1 . Otherwise, construct search directions di := sign(vi)ei, i =

1, . . . , n, where ei ∈ Rn is the ith unit vector in Rn and vi is the ith
component of v, and choose suitable step sizes {∆i}n

i=1 .
2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=

x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this

process, stop generating points, set x
(j)
k+1 equal to this better movement, and

go to Step 2.1.4.
2.1.3. Local Search. Compute the direction v at x

(j)
k using {yi}n

i=1 as in
(7). Choose two suitable step sizes α1 and α2 to generate local trial points
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yn+i = x
(j)
k + αiv/ ‖v‖ , i = 1, 2. Set x

(j)
k+1 := arg mini=1,...,n+2 {f (yi)} .

2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest

membership value in TL and re-rank the TL elements using (1). Update the
VRT and set k := k + 1.

5 Implementation and Experiments

In this section, we give more details about the implementation as well as the
experimental results of the DTS algorithms.

5.1 Setting Parameters

In this subsection, we discuss the suggested values of the parameters needed
in the implementation of the DTS algorithms and the sensitivity of these
parameters. First, the initial trial solution x

(0)
0 is chosen randomly from the

predetermined range [L,U] of the initial points for each test function, where
[L,U] := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} . The other parameters can be
classified into the following groups.

• TR and Semi-TR parameters: the radius rTR of each TR, and the outer
radius rSTR of the Semi-TR.

• TL parameters: the number L of elements in TL, the maximum and
minimum recency ranked values ηmax and ηmin, respectively, the number
L of the function-value ranked elements, and the maximum and minimum
function-value ranked values µmax and µmin, respectively.

• VRL parameters: the radii ρj, j = 1, . . . ,M, of the visited regions.
• Step sizes: the step sizes ∆i, i = 1, . . . , n, used in generating neighborhood

trial points in DTSNMS and DTSAPS, and α1 and α2 used to generate local
trial points in DTSAPS.

• Diversification trials: the parameter γ used in (6) and the maximum
number Itmax of iterations allowed in Procedure 2.2.

• Intensification trials: the number Nbest of best points that are used in
the Intensification Search.

• Termination conditions: the loop termination numbers ℓmain, ℓ′main, ℓinner

and ℓ′inner.

Proper values of these parameters have been studied through extensive numer-
ical experiments by using the functions Branin (RC), Goldstein&Price (GP ),
Rosenbrock (R2) and Zakhrov (Z2) and (Z5). In the tuning parameters experi-
ments, we have tried to find a standard setting of the DTS parameters which is
problem-independent as much as possible. Moreover, some relations between
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the parameters have been discussed to guide the user to set the DTS parame-
ters whenever new implementations of the DTS algorithm are invoked. Below,
we highlight the conclusion we got from the tuning parameters experiments.

First, the values of the parameter γ that we have studied are 0.10, 0.15, 0.2, . . . ,
0.4. Recall that the main role of this parameter is to avoid generating a new
diverse trial solution near to the more frequently visited regions. Since large
γ may lead to a big area surrounding the more frequently visited regions
left without exploration, we did not test a value of γ higher than 0.4. The
performance of the DTS algorithms is almost the same for all runs using
the above-mentioned values of γ. Moreover, at the end of running the DTS
algorithms on many test functions, the centers of the visited regions listed in
the VRL are distributed almost uniformly for all tested values of γ. However,
the value γ = 0.25 produces slightly more scattered distributions than the
other values. Therefore, we set γ equal to 0.25. The parameter Itmax is set
equal to 100n.

Most of the DTS parameters listed above are distance parameters. These dis-
tance parameters are rTR, rSTR, ρ, ∆i, i = 1, . . . , n, α1 and α2. Note that
the radii ρj, j = 1, . . . ,M, of all visited regions are set equal to ρ. For more
accurate setting of the values of these distance parameters, we consider the
following:

(1) Since Semi-TRs are surrounding TRs, we let rSTR > rTR. For easily
escaping from TRs and Semi-TRs, it is desirable to let ∆i > rSTR.
Moreover, to avoid producing too many small visited regions, we let
ρ > ∆i. This means that the desirable order of the distance parame-
ters is rTR < rSTR < ∆i < ρ. Since the step sizes α1 and α2, are used to
search the area along an approximate descent direction, it is appropriate
to let one of them be smaller than the usual step size ∆i and the other
be greater than ∆i.

(2) To keep the distance parameters in the above order, we let their values
relate to only one parameter δ which is the diameter of the range [L,U]
defined as δ := max1≤i≤n (ui − li) .

The performance of the DTS algorithms were tested using different values
for these parameters through many test functions. The suggested values of
these parameters are given in Table 1, and rSTR is set equal to 2rTR. The
performance of the DTS algorithms were almost insensitive with regard to all
tested values of the distance parameters. In Table 1, we also suggest the value
for each parameter which produces the best performance. For more efficient
search, the step sizes may be randomly chosen close to some fixed mean values,
rather than being set at fixed values. Specifically, we set the step sizes as
follows:
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Table 1
Distance parameters.

Parameter Tested values Suggested value

rTR 0.01δ, 0.02δ, 0.03δ, 0.04δ 0.01δ

∆i 0.08δ, 0.1δ, 0.12δ 0.1δ

ρ 0.15δ, 0.2δ, 0.25δ 0.15δ

∆i = (0.1 + 0.025ωi)δ, i = 1, . . . , n,

α1 = (0.1 − 0.05θ1)δ,

α2 = (0.1 + 0.05θ2)δ,

where ωi, i = 1, . . . , n, are random numbers from the interval (−1, 1), and θ1

and θ2 are random numbers from the interval (0, 1).

For the TL parameters, the values 5n, 6n, 7n and 8n and the values 2n, 3n
and 4n have been tested as possible choices for L and L, respectively. The
performance of the DTS algorithms using these values of L and L is almost
the same. So, to avoid storing unnecessary information, we set L and L equal
to the least possible values, i.e., L = 5n and L = 2n. The other TL parameters
are set as ηmax = µmax = 1 and ηmin = µmin = 1/L.

The parameter Nbest is set equal to 1 because the numerical results show that
the best point found in the Exploration-Diversification Search is close to global
minima for most of the test function.

The last group of parameters are related to the termination conditions. Actu-
ally, choosing sufficiently large values for the loop termination numbers ℓmain,
ℓ′main, ℓinner and ℓ′inner is highly needed to avoid premature termination of the
method. The numerical results have shown that the lowest values of these pa-
rameters that can give an acceptable performance of the DTS algorithms are
ℓmain = ℓinner = 5n, and ℓ′main = ℓ′inner = 2n. However, higher values for these
numbers can increase the ability of finding global minima for some difficult
test problems.

5.2 Numerical Results

In this subsection, we discuss the performance of the DTS algorithms through
two main experiments. The first experiment is to compare the results obtained
by the DTSNMS and DTSAPS and then compare the best version of them with
other continuous versions of TS. In the second experiment, the performance
of the best DTS algorithms is also compared with other metaheuristics.
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Table 2
Test functions (Set A).

No. f Function name n No. f Function name n

1 RC Branin RCOS 2 9 S4,5 Shekel 4

2 ES Easom 2 10 S4,7 Shekel 4

3 GP Goldstein&Price 2 11 S10,7 Shekel 4

4 SH Shubert 2 12 Z5 Zakharov 5

5 Z2 Zakharov 2 13 R5 Rosenbrock 5

6 R2 Rosenbrock 2 14 H6,4 Hartmann 6

7 DJ De Joung 3 15 Z10 Zakharov 10

8 H3,4 Hartmann 3 16 R10 Rosenbrock 10

5.2.1 Numerical Results of DTS and other TS methods

To examine the performance of the DTS algorithms DTSNMS and DTSAPS ,
we tested them on some well known functions [6,13] listed as Set A in Table
2. The characteristics of these test functions are diverse enough to cover many
kinds of difficulties that arise in global optimization problems. To complete
the evaluation of the DTS algorithms, they should be compared with other
continuous versions of TS. However, it is not easy to show complete and fair
comparisons due to the lack of some information especially on the quality of
solutions obtained by those continuous TS methods. Therefore, we try to com-
pare our algorithms with other continuous TS methods in terms of the ability
of obtaining global minima, the cost of function evaluations and the quality
of computed solutions. Three continuous TS methods chosen to compare with
the DTS algorithms are continuous reactive TS (CRTS) [2], Enhanced Contin-
uous Tabu Search (ECTS) [3], and TS-based algorithm called DOPE [7]. The
ECTS and DOPE methods are the most recent continuous TS methods and
the quality of computed solutions are stated clearly in their original papers.

For each function in Set A, we applied the DTS codes 100 times with different
starting points. For all these test functions, we used the same values of the
DTS parameters as those presented in Subsection 5.1. Moreover, we used the
same condition as that used by ECTS [3] to judge the success of a trial, which
is given by

∣∣∣f ∗ − f̃
∣∣∣ < ǫ1 |f ∗| + ǫ2, (8)

where f̃ refers to the best function value obtained by the algorithm, f ∗ refers
to the exact global minimum, and ǫ1 and ǫ2 are set equal to 10−4 and 10−6,
respectively. Note that the conditions for successful trials are not stated for
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Table 3
Results of DTS algorithms.

DTSNMS DTSAPS

f

RC

ES

GP

SH

Z2

R2

DJ

H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

f-evals.

Av.(min/max) Av. Er. Suc.

274(252/296) 4e–7 100%

271(202/285) 5e–9 30%

293(276/324) 5e–9 88%

298(282/319) 9e–6 44%

273(247/291) 6e–9 100%

358(272/489) 6e–9 100%

650(600/694) 5e–9 100%

670(613/789) 2e–6 97%

1426(1342/1473) 7e–7 39%

1425(1372/1487) 4e–5 29%

1438(1340/1493) 1e–5 22%

2458(2301/2597) 6e–9 100%

2895(2523/3473) 7e–9 75%

3978(3618/4308) 2e–6 68%

16392(14235/17821) 2e–8 100%

19139(16844/22416) 2e–8 78%

f-evals.

Av.(min/max) Av. Er. Suc.

212(181/243) 4e–7 100%

223(156/244) 4e–9 82%

230(207/282) 5e–9 100%

274(260/307) 9e–6 92%

201(183/225) 5e–9 100%

254(207/321) 5e–9 100%

446(393/516) 4e–9 100%

438(389/493) 2e–6 100%

819(669/989) 3e–7 75%

812(675/973) 4e–5 65%

828(706/963) 1e–5 52%

1003(903/1093) 7e–9 100%

1684(1326/2093) 6e–9 85%

1787(1489/2036) 2e–6 83%

4032(3689/4809) 2e–8 100%

9037(6701/12879) 2e–8 85%

CRTS and DOPE in the original papers [2,7].

The results of the two versions of DTS method, DTSNMS and DTSAPS, are
reported in Table 3. These results represent the average number of function
evaluations (Av. f -evals.) with minimum and maximum numbers in paren-
theses, the average errors (Av. Error) and the success rates (Suc.) for each
function. The average number of function evaluations and the average error
only relate to successful trials. The results shown in Table 3 reveal that the
performance of DTSAPS is consistently better than DTSNMS in terms of func-
tion evaluations and the ability of obtaining global minima. Moreover, it seems
that DTSNMS suffers from the curse of dimensionality as is seen from the Av.
f -evals. for higher dimensional problems.

Table 4 compares DTSAPS with the above-mentioned continuous TS methods
in terms of the average number of function evaluations. The results of CRTS,
ECTS and DOPE methods are taken from their original papers [2,3,7]. The
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percentages in parentheses represent the success rates of reaching global min-
ima. The quality of the computed solutions by those methods except the CRTS
method is shown in Table 5, where the errors are measured in terms of func-
tion values at the computed and exact solutions. The quality of the produced
solutions by the CRTS method is not stated clearly in [2], but it is only said
that the statistical error on the CRTS is about 3%. Before judging the com-
parison of these method, some remarks are made in regard to the reported
success rates of ECTS and the termination condition of DOPE.

• The ECTS method uses condition (9) to test the success of a trial [3].
However, the results marked by (⊛) in Tables 4 and 5 seem to contain some
inconsistencies. In fact, from condition (9), the average errors for functions
R2, R5 and Z5 must be less than 10−6 because f ∗ = 0 for all these functions.
However, in Table 5, they are reported to be greater than 10−6. For instance,
the average error for function R5 in Table 5 is 0.08, which means that
there are some trials that did not satisfy condition (9). Nevertheless, the
rate of success is reported to be 100%. Moreover, the results of ECTS for
functions RC,ES,GP,H3,4 and H6,4 in Tables 4 and 5 also contain similar
inconsistencies.

• According to [7], DOPE is terminated when either a maximum number
of function evaluations is reached or the global minimum (if it is a priori
known) is found. Since the information on global minima is not available in
practice, we did not use the latter termination condition in our numerical
experiments. This termination condition may explain the extremely small
number of function evaluations of DOPE for some test functions.

From these remarks, the comparisons of the DTS methods with the ECTS
and DOPE methods do not seem to yield a definitive fair answer. However,
in terms of the quality of computed solutions, the DTSAPS algorithm seems
to outperform ECTS and DOPE as shown in Table 5. Moreover, the DTSAPS

algorithm seems to outperform ECTS in terms of the number of function eval-
uations for functions in Set A. However, the drawback we have noticed on the
DTS algorithms is its deterioration in high dimensional problems (n > 30).
Actually, this can be expected since the search in the DTS algorithms is mainly
controlled by direct search methods and it has been shown, for instance, in
[18] that the latter methods deteriorate with the increase of the dimension,
i.e., suffer from the curse of dimensionality. To show the limit of deterioration
of the DTS performance with the dimensionality, we report some results for
high dimensional problems. The results have been obtained by running the
Matlab code of DTSAPS, with the parameter setting given in Subsection 5.1,
on Pentium 2.8-GHz machine. For Rosenbrock R50 function, the DTSAPS al-
gorithm converged to a point close to the global minimum with function value
4.46× 10−7 using 510, 505 function evaluations in 1085 CPU seconds. For Za-
kharov Z50 and Rosenbrock R100 functions, the DTSAPS algorithm obtained
points not so close to the global minimum at distances 1.404 and 4.1057 with
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Table 4
Average numbers of function evaluations for continuous TS methods.

DTSAPS ECTS DOPE CRTS

f

RC

ES

GP

SH

Z2

R2

DJ

H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

212

223(82%)

230

274(92%)

201

254

446

438

819(75%)

812(65%)

828(52%)

1003

1684(85%)

1787(83%)

4032

9037(85%)

245⊛

1284⊛

231⊛

370

195

480⊛

338

548⊛

825(75%)

910(80%)

898(75%)

2254⊛

2142⊛

1520⊛

4630

15720(85%)

31

290

248

466

81

692

131

135

–

–

–

424

2512

421

8695

5133

CRTSAve CRTSMin

38 41

– –

248 171

– –

– –

– –

– –

513 609

812 664

960 871

921 693

– –

– –

750 1245

– –

– –

function values 1.972 and 4.106 using 177, 125 and 3, 202, 879 function evalua-
tions in 1, 043 and 15, 270 CPU seconds, respectively. These results of Z50 and
R100 are the best among 5 runs. For Zakharov Z100, the DTSAPS algorithm
failed to obtain a point near the global minimum by 5 runs using the same
setting of parameters. As far as the results in Table 4 common to all methods
are concerned, CRTS may be considered the best among the continuous TS
methods in terms of the ability of obtaining global minima and the number
of function evaluations.

5.2.2 The performance of DTSAPS against other metaheuristics

The performance of DTSAPS is compared with other metaheuristics using the
test functions listed as Set B in Table 6 [19]. We choose two other metaheuris-
tics proposed for the continuous optimization problem; Genetic algorithm for
numerical optimization of constrained problems (Genocop III) [23], and Scat-
ter Search (SS) [19]. We define the optimality gap (GAP) [19] as the quantity
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Table 5
Average errors for continuous TS methods.

f DTSAPS ECTS DOPE f DTSAPS ECTS DOPE

RC

ES

GP

SH

Z2

R2

DJ

H3,4

4e–7

4e–9

5e–9

9e–6

5e–9

5e–9

5e–9

2e–6

5e–2⊛

1e–2⊛

2e–3⊛

1e–3

2e–7

2e–2⊛

3e–8

9e–2⊛

5e–2

1e–2

2e–3

1e–3

2e–7

2e–2

3e–8

9e–2

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

3e–7

4e–5

1e–5

7e–9

6e–9

2e–6

2e–8

2e–8

1e–2

1e–2

1e–2

4e–6⊛

8e–2⊛

5e–2⊛

2e–7

2e–2

–

–

–

4e–6

8e–2

5e–2

2e–2

2e–7

on the left-hand side of (8). Table 7 shows the average GAP for all 40 test
functions in Set B. In Table 7, the figures related to Genocop III and SS
are taken from [19] and represent the average GAP for all test functions in
Set B at intermediate stages during the search. Since the DTSAPS algorithm
consists of two complementary parts (Exploration-Diversification Search and
Intensification Search), its results in Table 7 are the average GAP for all test
functions in Set B obtained by running the DTSAPS code 7 times for each
test function with the termination condition that the number of function eval-
uations exceeds 100, 500, 1000, 5000, 10000, 20000 and 50000, respectively.
Since Genocop III has a bad performance on the test function No. 23 (SC6),
the results excluding this function are also included.

According to the results in Table 7, the performance of DTSAPS is generally
better than Genocop III and SS when the number of function evaluations is
greater than 1000. However, in the early stage of computations, SS performs
better than DTSAPS. This can be expected since DTSAPS is a point-to-point
search method while SS is a population-based search method. So, DTSAPS

may need more iterations, and therefore more function evaluations, to explore
the search space well especially for high dimensional functions (n ≥ 6).

Since the data related to Genocop III and SS in Fig. 5 are taken from [19],
we also made the successful trial test [19] for the DTSAPS results in our ex-
periments. We say that a method approximately finds an optimal solution
if

GAP ≤





0.001, if f ∗ 6= 0,

0.001f ∗, otherewise.

The graphs in Fig. 5 show the number of test functions from Set B that were
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Table 6
Test functions (Set B).

No. f Function name n No. f Function name n

1 RC Branin RCOS 2 21 PS8,18,44,114 Power Sum 4

2 B2 Bohachevsky 2 22 H6,4 Hartmann 6

3 ES Easom 2 23 SC6 Schwefel 6

4 GP Goldstein&Price 2 24 T6 Trid 6

5 SH Shubert 2 25 T10 Trid 10

6 BL Beale 2 26 RT10 Rastrigin 10

7 BO Booth 2 27 G10 Griewank 10

8 MT Matyas 2 28 SS10 Sum Squares 10

9 HM Hump 2 29 R10 Rosenbrock 10

10 SC2 Schwefel 2 30 Z10 Zakharov 10

11 R2 Rosenbrock 2 31 RT20 Rastrigin 20

12 Z2 Zakharov 2 32 G20 Griewank 20

13 DJ De Joung 3 33 SS20 Sum Squares 20

14 H3,4 Hartmann 3 34 R20 Rosenbrock 20

15 CV Colville 4 35 Z20 Zakharov 20

16 S4,5 Shekel 4 36 PW24 Powell 24

17 S4,7 Shekel 4 37 DP25 Dixon&Price 25

18 S4,10 Shekel 4 38 L30 Levy 30

19 P4,0.5 Perm 4 39 SR30 Sphere 30

20 P 0
4,0.5 Perm 4 40 AK30 Ackley 30

Table 7
Average optimality gap values.

f-evals. 100 500 1000 5000 10000 20000 50000

Genocop III1 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34

Genocop III2 1335.45 611.30 379.03 335.81 328.66 324.72 321.20

Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46

DTSAPS 5.04E+04 43.06 24.26 4.22 1.80 1.70 1.29
1 Average values for all test functions.
2 Average values for all test functions except function 23.
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Fig. 5. Number of solved problems.

approximately solved by each method. Fig. 5 shows that DTSAPS could ap-
proximately find global minima for 14 test functions within only 100 function
evaluations. Actually, the dimensions of these 14 test functions are less than
or equal to 6. Fig. 5 also show that DTSAPS generally outperforms the other
two methods, Genocop III and SS.

6 Conclusion

In this paper, we have presented a continuous TS method called Directed Tabu
Search (DTS) method. First, neighborhood-local search strategies are intro-
duced to provide more powerful search procedures to generate trial moves. A
new pattern search procedure and the NM method are used to construct these
neighborhood-local search strategies. Moreover, new memory elements called
TR, Semi-TR and multi-ranked TL are applied to compose anti-cycling rules
and to escape from local minima. Finally, a diversification scheme based on
the memory element VRL is introduced to explore broad areas of the solution
space. The numerical results show the promise of the proposed method.
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A Test Functions

(AKn) Ackley Function

Definition: AKn(x) = 20 + e − 20e−
1
5

√
1
n

∑n

i=1
x2

i − e−
1
n

∑n

i=1
cos(2πxi).

Search space: −15 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); AKn(x∗) = 0.

(B2) Bohachevsky Function
Definition: B2(x) = x2

1 + 2x2
2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7.

Search space: −50 ≤ xi ≤ 100, i = 1, 2.
Global minimum: x∗ = (0, 0); B2(x

∗) = 0.

(BL) Beale Function
Definition: BL(x) = (1.5 − x1 + x1x2)

2+(2.25 − x1 + x1x
2
2)

2
+(2.625 − x1 + x1x

3
2)

2
.

Search space: −4.5 ≤ xi ≤ 4.5, i = 1, 2.
Global minimum: x∗ = (3, 0.5); BL(x∗) = 0.

(BO) Booth Function
Definition: BO(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 ,
Search space: −10 ≤ xi ≤ 10, i = 1, 2
Global minimum: x∗ = (1, 3); BO(x∗) = 0.

(CV) Colville Function
Definition: CV(x) = 100(x2

1 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2 +

10.1 ((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).
Search space: −10 ≤ xi ≤ 10, i = 1, . . . , 4.
Global minimum: x∗ = (1, 1, 1, 1); CV(x∗) = 0.

(DJ) De Joung Function
Definition: DJ(x) = x2

1 + x2
2 + x2

3.
Search space: −2.56 ≤ xi ≤ 5.12, i = 1, 2, 3.
Global minimum: x∗ = (0, 0, 0); DJ(x∗) = 0.

(DPn) Dixon&Price Function
Definition: DPn(x) = (x1 − 1)2 +

∑n
i=2 i (2x2

i − xi−1)
2
.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗
i = 2

−

(
2i

−2

2i

)

, i = 1, . . . , n; DPn(x∗) = 0.
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(ES) Easom Function
Definition: ES(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).
Search space: −100 ≤ xi ≤ 100, i = 1, 2.
Global minimum: x∗ = (π, π); ES(x∗) = −1.

(Gn) Griewank Function

Definition: Gn(x) =
∑n

i=1
x2

i

4000
− ∏n

i=1 cos
(
xi/

√
i
)

+ 1.
Search space: −300 ≤ xi ≤ 600, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), Gn(x∗) = 0.

(GP) Goldstein&Price Function
Definition: GP(x) = (1 + (x1 + x2 + 1)2 (19 − 14x1 + 13x2

1 − 14x2 + 6x1x2 + 3x2
2))∗

(30 + (2x1 − 3x2)
2 (18 − 32x1 + 12x2

1 − 48x2 − 36x1x2 + 27x2
2)) .

Search space: −2 ≤ xi ≤ 2, i = 1, 2.
Global minimum: x∗ = (0,−1); GP(x∗) = 3.

(H3,4) Hartmann Function

Definition: H3,4(x) = −∑4
i=1 αi exp

[
−∑3

j=1 Aij (xj − Pij)
2
]
, α = [1, 1.2, 3, 3.2]T ,

A =




3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35




, P = 10−4




6890 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828




.

Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3.
Global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x

∗) = −3.86278.

(H6,4) Hartmann Function

Definition: H6,4(x) = −∑4
i=1 αi exp

[
−∑6

j=1 Bij (xj − Qij)
2
]
, α = [1, 1.2, 3, 3.2]T ,

B =




10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14




, Q = 10−4




1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381




.

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.
Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
H6,4(x

∗) = −3.32237.

(HM) Hump Function
Definition: HM(x) = 4x2

1 − 2.1x4
1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2.
Search space: −5 ≤ xi ≤ 5, i = 1, 2.
Global minimum: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126); HM(x∗) = 0.
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(Ln) Levy Function

Definition: Ln(x) = sin2 (πy1) +
∑n−1

i=1

[
(yi − 1)2

(
1 + 10 sin2 (πyi + 1)

)]

+ (yn − 1)2
(
1 + 10 sin2 (2πyn)

)
, yi = 1 + xi−1

4
, i = 1, . . . , n.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.
Global minimum: x∗ = (1, . . . , 1); Ln(x∗) = 0.

(MT) Matyas Function
Definition: MT(x) = 0.26 (x2

1 + x2
2) − 0.48x1x2.

Search space: −5 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0); MT(x∗) = 0.

(Pn,β) Perm Function

Definition: Pn,β(x) =
∑n

k=1

[∑n
i=1

(
ik + β

) (
(xi/i)

k − 1
)]2

.
Search space: −n ≤ xi ≤ n, i = 1, . . . , n.
Global minimum: x∗ = (1, 2, . . . , n); Pn,β(x∗) = 0.

(P0
n,β) Perm Function

Definition: P0
n,β(x) =

∑n
k=1

[∑n
i=1 (i + β)

(
xk

i − (1/i)k
)]2

.
Search space: −n ≤ xi ≤ n, i = 1, . . . , n.
Global minimum: x∗ = (1, 1

2
, . . . , 1

n
); P0

n,β(x∗) = 0.

(PSb1,...,bn
) Power Sum Function

Definition: PSb1,...,bn
(x) =

∑n
k=1

[(∑n
i=1 xk

i

)
− bk

]2
.

Search space: 0 ≤ xi ≤ n, i = 1, . . . , n.
Global minimum for PS8,18,44,114(x): x∗ = (1, 2, 2, 3); PS8,18,44,114(x

∗) = 0.

(PWn) Powell Function

Definition: PWn(x) =
∑n/4

i=1 (x4i−3 + 10x4i−2)
2+5 (x4i−1 − x4i)

2+(x4i−2 − x4i−1)
4+

10 (x4i−3 − x4i)
4 .

Search space: −4 ≤ xi ≤ 5, i = 1, . . . , n.
Global minimum: x∗ = (3,−1, 0, 1, 3, . . . , 3,−1, 0, 1); PWn(x∗) = 0.

(Rn) Rosenbrock Function

Definition: Rn(x) =
∑n−1

i=1

[
100 (x2

i − xi+1)
2
+ (xi − 1)2

]
.

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.

(RC) Branin RCOS Function
Definition: RC(x) = (x2 − 5

4π2 x
2
1 + 5

π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10.

Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.
Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475); RC(x∗) = 0.397887.

(RTn) Rastrigin Function
Definition: RTn(x) = 10n +

∑n
i=1 (x2

i − 10 cos (2πxi)) .
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Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), RTn(x∗) = 0.

(S4,m) Shekel Function

Definition: S4,m(x) = −∑m
j=1

[∑4
i=1 (xi − Cij)

2 + βj

]−1
, β = 1

10
[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T ,

C =




4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6




.

Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.
Global minima: x∗ = (4, 4, 4, 4); S4,5(x

∗) = −10.1532, S4,7(x
∗) = −10.4029

and S4,10(x
∗) = −10.5364.

(SCn) Schwefel Function

Definition: SCn(x) = 418.9829n − ∑n
i=1

(
xi sin

√
|xi|

)
.

Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), SCn(x∗) = 0.

(SH) Shubert Function

Definition: SH(x) =
(∑5

i=1 i cos ((i + 1) x1 + i)
) (∑5

i=1 i cos ((i + 1) x2 + i)
)
,

Search space: −10 ≤ xi ≤ 10, i = 1, 2
Global minima: 18 global minima and SH(x∗) = −186.7309.

(SRn) Sphere Function
Definition: SRn(x) =

∑n
i=1 x2

i ,
Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), SRn(x∗) = 0.

(SSn) Sum Squares Function
Definition: SSn(x) =

∑n
i=1 ix2

i ,
Search space: −5 ≤ xi ≤ 10, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), SSn(x∗) = 0.

(Tn) Trid Function
Definition: Tn(x) =

∑n
i=1 (xi − 1)2 − ∑n

i=2 xixi−1,
Search space: −n2 ≤ xi ≤ n2, i = 1, . . . , n
Global minima: a) n = 6, x∗

i = i (7 − i) , i = 1, . . . , n, Tn(x∗) = −50,
b) n = 10, x∗

i = i (11 − i) , i = 1, . . . , n, Tn(x∗) = −210,

(Zn) Zakharov Function
Definition: Zn(x) =

∑n
i=1 x2

i + (
∑n

i=1 0.5ixi)
2 + (

∑n
i=1 0.5ixi)

4 .
Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n
Global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.
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