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Abstract

We consider equilibrium constrained optimization problems, which have a general formulation that encompasses
well-known models such as mathematical programs with equilibrium constraints, bilevel programs, and generalized
semi-infinite programming problems. Based on the celebrated KKM lemma, we prove the existence of feasible points
for the equilibrium constraints. Moreover, we analyze the topological and analytical structure of the feasible set. Alter-
native formulations of an equilibrium constrained optimization problem (ECOP) that are suitable for numerical pur-
poses are also given. As an important first step for developing efficient algorithms, we provide a genericity analysis for
the feasible set of a particular ECOP, for which all the functions are assumed to be linear.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An equilibrium constrained optimization problem (ECOP) is a mathematical program, for which an
embedded set of constraints is used to model the equilibrium conditions in various applications. This equi-
librium concept corresponds to a desired state such as the optimality conditions for the inner problem of a
bilevel optimization model, or the Nash equilibrium of a game played by rational players. For an introduc-
tion to ECOP we refer to [14,15]. Applications of ECOP appear not only in economics (Cournot oligopoly,
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Stackelberg games, generalized Nash equilibrium) but also in optimum design problems in mechanics (con-
tact problems with friction, elasticity problems with obstacles, etc., see [15]).

This paper is concerned with the analysis of some structural properties of an ECOP. In order to pursue
this analysis, we frequently use standard terms from generalized convexity and set valued analysis. For an
unfamiliar reader, we have added Appendix A that reviews the definitions of these terms.

Let f : Rnþm ! R, / : Rnþ2m ! R be real valued functions and K: Rn
�Rm a set valued mapping with

closed values. A general form of an ECOP is now given by
min
x;y

f ðx; yÞ

s:t: ðx; yÞ 2 Z;

y 2 KðxÞ;
/ðx; y; vÞ P 0; 8v 2 KðxÞ;

ð1:1Þ
where x 2 Rn, y; v 2 Rm and the set Z � Rnþm is a closed nonempty set. The constraints
/ðx; y; vÞ P 0; 8v 2 KðxÞ; ð1:2Þ

depending on the parameter x and y, are called the parametric equilibrium constraints. For notational con-
venience, we now introduce the so-called graphðKÞ (see [2]) of the set valued mapping K given by
graphðKÞ: ¼ fðx; yÞ 2 Rnþm : y 2 KðxÞg
and the set E � Rnþm defined by
E: ¼ fðx; yÞ 2 Rnþm : /ðx; y; vÞ P 0; 8v 2 KðxÞg.

This notation allows us to denote the feasible set of (1.1) by
F: ¼ Z \ E \ graphðKÞ. ð1:3Þ

Hence, we can rewrite the ECOP as follows:
min
x;y

f ðx; yÞ

s:t: ðx; yÞ 2 F.
ð1:4Þ
A frequently used instance of (1.2) arises when for every x the set K(x) is closed, convex, and the function
/ is given by
/ðx; y; vÞ: ¼ hv� y; F ðx; yÞi. ð1:5Þ

The parametric equilibrium constraints (1.2) associated with the function / in (1.5) and the closed con-

vex set K(x), are called the (parametric) Stampacchia variational inequalities. Moreover, it is well-known
(see [9]) that if the function y ! F ðx; yÞ in (1.5) is pseudomonotone (see Definition A.1), then the function
/ can be replaced by
/ðx; y; vÞ: ¼ hv� y; F ðx; vÞi. ð1:6Þ

Accordingly, the parametric equilibrium constraints defined by the function / in (1.6) are known as the

(parametric) Minty variational inequalities. Notice that in the literature an ECOP is called a mathematical
program with equilibrium constraints (MPEC) when / has the form (1.5). In this paper we have chosen the
more general form (1.2) so that in addition to MPECs, our model also includes bilevel programs and semi-
infinite problems.

In Section 2 of this paper, we investigate under which sufficient conditions on the set valued mapping K

and the function /, the set E \ graphðKÞ is nonempty. In Section 3, we then study under which conditions
on K and /, the set E \ graphðKÞ is closed and convex. In Section 4, we derive different formulations of an
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ECOP as a nonlinear programming problem. We are especially interested in formulations, which are suit-
able for numerical purposes. Finally, in Section 5 we give a genericity analysis for the structure of the fea-
sible set of a linear ECOP (where all the problem functions are linear). This genericity analysis constitutes
the first step towards developing efficient algorithms.
2. Existence of feasible solutions

In this section, we are interested in some sufficient conditions, which guarantee that the equilibrium con-
straints defining the set E \ graphðKÞ, allow feasible points. By the definition of the sets E and graph(K), it
is clear that E \ graphðKÞ 6¼ ; if and only if there exists some x 2 Rn such that
V ð/;KðxÞÞ: ¼ fy 2 KðxÞ: /ðx; y; vÞ P 0; 8v 2 KðxÞg 6¼ ;.

From now on, we fix x arbitrarily, define C 2 Rm by C: ¼ KðxÞ and /x : R

2m ! R by /xðy; vÞ: ¼ /ðx; y; vÞ,
and assume that C is nonempty and convex. Recall that by our general assumption in Section 1, the set C is
also closed. First, observe that
V ð/x;CÞ ¼
\
v2C

UðvÞ; ð2:1Þ
where the set valued mapping U : C�C is defined by
UðvÞ: ¼ fy 2 C: /xðy; vÞ P 0g. ð2:2Þ
In order to prove that the set V ð/x;CÞ is nonempty, we will apply to relation (2.1) the celebrated lemma
of Knaster–Kuratowski–Mazurkiewicz (KKM lemma) discussed in the Appendix. If we additionally know
that the set U(v) is convex for every v 2 C (this holds if the function y ! /xðy; vÞ is quasiconcave (see Def-
inition A.2) for every v 2 C), then the KKM lemma is a direct consequence of the separation result for dis-
joint closed convex sets in a finite dimensional vector space, and for this special case one can actually prove
a stronger result. Since this is not well-known, an elementary proof of this stronger result is also presented
in Appendix B.

The proof of the next result follows immediately from Definitions A.3 and A.4.

Lemma 1. If the set valued mapping U is given by relation (2.2), then the following conditions are equivalent:

(1) The function /x : R
2m ! R is properly quasimonotone (see Definition A.3) on C.

(2) The mapping U is a KKM-mapping (see Definition A.4).

In general it is difficult to verify that the function /x is properly quasimonotone, or equivalently (see
Lemma 1), that U is a KKM-mapping. Therefore, a sufficient condition involving a well-known function
class is given in the next lemma.

Lemma 2. If the function /x : R
2m ! R satisfies /xðy; yÞ P 0 for every y 2 C and v ! /xðy; vÞ is quasiconvex

(see Definition A.2) on C for every y 2 C, then the function /x is properly quasimonotone on C.

Proof. Let fv1; . . . ; vkg � C be given. Since the function v ! /xðy; vÞ is quasiconvex on C for every y 2 C it
follows for every y 2 C that
max
16i6k

/xðy; viÞ ¼ max
v2coðfv1;...;vkgÞ

/xðy; vÞ;
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and this implies, using /xðy; yÞ P 0 for every y 2 C, that
max
16i6k

/xðy; viÞ ¼ max
v2coðfv1;...;vkgÞ

/xðy; vÞ P 0
for every y belonging to coðfv1; . . . ; vkgÞ. Therefore, we obtain that
inf
y2coðfv1;...;vkgÞ

max
16i6k

/xðy; viÞ P 0;
and the result is verified. h

As an immediate consequence of Lemma 1 and Theorem B.3 (or B.4) of Appendix B, we now have the
following result.

Theorem 1. Let y ! /xðy; vÞ be upper semicontinuous (see Definition A.5) for every v 2 C, then the following

statements hold:

(1) If the function /x is properly quasimonotone on C, then for every finite set fv1; . . . ; vkg � C we have
coðfv1; . . . ; vkgÞ \
\k
i¼1

UðviÞ 6¼ ;.
(2) If additionally the function y ! /xðy; vÞ is quasiconcave on C for every v 2 C, then the function /x is

properly quasimonotone if and only if for every finite set fv1; . . . ; vkg � C we have
coðfv1; . . . ; vkgÞ \
\k
i¼1

UðviÞ 6¼ ;.
Proof. Since y ! /xðy; vÞ is upper semicontinuous for every v 2 C, all its upper level sets are closed. In com-
bination with /x being properly quasimonotone, this implies by Lemma 1 that U is a KKM mapping with
closed values. Applying now Theorem B.3 yields the first part. To show the second part we observe that the
quasiconcavity of the function y ! /xðy; vÞ on C for every v 2 C, ensures that the set valued mapping U has
convex values. Applying now Theorem B.4 shows the second part. h

By the above result, we know that every finite intersection
T

vi2CUðviÞ, is nonempty. To show that the
intersection

T
v2CUðvÞ is also nonempty (or equivalently, V ð/x;CÞ 6¼ ;), we need to impose a compact-

ness-type assumption.

Theorem 2. Suppose there exist some compact sets B � C and S � C satisfying
inf
v2B

/xðy; vÞ < 0 ð2:3Þ
for every y 2 C n S. If the function y ! /xðy; vÞ is upper semicontinuous for every v 2 C and /x is properly

quasimonotone on C, then the set V ð/x;CÞ is nonempty.

Proof. Since there exist compact sets B � C and S � C satisfying inf v2B/xðy; vÞ < 0 for every y 2 C n S we
obtain that the set valued mapping U given by relation (2.2) satisfies
\

v2B
UðvÞ ¼ y 2 C: inf

v2B
/xðy; vÞ P 0

� �
� S. ð2:4Þ
Moreover, using that y ! /xðy; vÞ is upper semicontinuous for every v 2 C, we obtain that U has closed
values and so by relation (2.4) the set

T
v2BUðvÞ is a closed subset of a compact set and hence compact. This

implies that the mapping U : C n B�C given by
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UðvÞ ¼ UðvÞ \
\
v2B

UðvÞ
 !
has compact values. Since
T

v2CUðvÞ ¼
T

v2CnBUðvÞ, it is now sufficient, in view of the finite intersection
property of compact sets (see [16]) applied to the collection fUðvÞ: v 2 C n Bg, to verify that the intersectionTk

i¼1UðviÞ is nonempty for every finite collection fv1; . . . ; vkg � C n B. To show this, let fv1; . . . ; vkg � C n B
be given and consider an arbitrary finite set fvkþ1; . . . ; vkþlg � B. By Theorem 1, it follows that
coðfv1; . . . ; vkþlgÞ \
\kþl

i¼1

UðviÞ
 !

6¼ ;;
and since fv1; . . . ; vkþlg � B [ fv1; . . . ; vkg, this implies that
\kþl

i¼kþ1

HðviÞ 6¼ ;; ð2:5Þ
where
HðvÞ: ¼ UðvÞ \
\k
i¼1

UðviÞ \ coðB [ fv1; . . . ; vkgÞ
 !

.

Since the set B is compact, the set coðB [ fv1; . . . ; vkgÞ is also compact, and hence for every v 2 B, the
nonempty set H(v) is compact. Using now again the finite intersection property for compact sets applied
to the collection fHðvÞ: v 2 Bg, we obtain by relation (2.5) that
\k

i¼1

UðviÞ
 !

\ coðB [ fv1; . . . ; vkgÞ ¼
\
v2B

HðvÞ 6¼ ;;
and we have verified the desired result. h

Remark 1. If the set C is compact, then clearly the compactness-type assumption listed in relation (2.3) is
trivially satisfied by taking S ¼ B ¼ C and so this condition is only nontrivial for a noncompact, convex
and closed set C. Moreover, it is straightforward to see that the typical compactness-type condition used
in the literature (see [8] and references therein) does imply relation (2.3). Actually, this compactness-type
condition is a generalization of a similar condition for / given by (1.5) (see [12]).

Before we conclude this section, we can illustrate our feasibility results on the Stampacchia variational
inequalities. It is clear that the function v ! /xðy; vÞ in (1.5) is linear and the condition /xðy; yÞ P 0 holds.
Thus, by Lemma 2, /x is a properly quasimonotone function. We make the common assumptions as in the
literature (see [8,7]) and suppose that for an arbitrary x, the function y ! F ðx; yÞ is continuous and the set
valued mapping K has compact convex values (or assume that the compactness-type condition (2.3) holds,
see Remark 1). Then, as a direct consequence of Theorem 2, we state that there exists a feasible solution for
the Stampacchia variational inequality problem. As a last note, it is well-known in the variational inequal-
ity literature that compactness-type assumptions can be further relaxed by imposing additional assump-
tions on the function F (see [8]).
3. Structure of the feasible set

Recall from (1.3) that the feasible set of an ECOP is given by
F ¼ Z \ E \ graphðKÞ.
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In this section, we analyze the topological structure of F in order to state some conditions under which the
intersection E \ graphðKÞ is closed and convex. We start with stating the conditions for closedness.

Lemma 3. If the set valued mapping K is closed (see Definition A.6) and lower semicontinuous (see Definition

A.8), and the function / is upper semicontinuous, then the set E \ graphðKÞ is closed.

Proof. Since the set graph(K) is closed by hypothesis, it is sufficient to show that the set E is closed. Let
ðxn; ynÞ belong to E and suppose ðxn; ynÞ converges to ðx; yÞ. Choose any element v 2 KðxÞ. Since K is lower
semicontinuous it follows that one can find some sequence vn 2 KðxnÞ converging to v. Hence,
/ðxn; yn; vnÞ P 0 and by the upper semicontinuity of / we obtain that /ðx; y; vÞ P 0. Since v is an arbitrary
element of K(x) this implies that ðx; yÞ 2 E and the result is proved. h

In the next counterexample we illustrate that the condition for K being lower semicontinuous is crucial in
the above result.

Example 1. Consider the ECOP with /ðx; y; vÞ ¼ ðv� yÞ, KðxÞ ¼ f1g [ fv:� x 6 v 6 0g where x; y; v 2 R.
Then the equilibrium constraints v� y P 0, 8v 2 KðxÞ lead to the condition
�x P y for x P 0;

1 P y for x < 0.
So the points in fðx; yÞ: x ¼ 0; 0 < y 6 1g are boundary points of E but do not belong to E and also the
set E \ graphðKÞ is not closed:
E \ graphðKÞ ¼ fðx;�xÞ: x P 0g [ fðx; 1Þ: x < 0g.
Let now K be defined explicitly by
KðxÞ ¼ fv 2 Rm : Gðx; vÞ 6 0g; ð3:1Þ
where G: Rnþm ! Rq is a continuous function and v ! Gðx; vÞ is convex for every x 2 Rn. Clearly, the graph
of K becomes
graphðKÞ ¼ fðx; vÞ: v 2 KðxÞg ¼ fðx; vÞ: Gðx; vÞ 6 0g. ð3:2Þ
In this case, the set valued mapping K has closed convex values. In the next result, we specify sufficient con-
ditions for K to be lower semicontinuous.

Lemma 4. Let the function G: Rnþm ! Rq be continuous, and assume that v ! Gðx; vÞ is convex. If the set

K0ðxÞ: ¼ fv 2 Rm : Gðx; vÞ < 0g is nonempty for every x 2 Rn (Slater condition), then the set valued mapping

K is lower semicontinuous.

Proof. We will first show that the set valued mapping K0 is lower semicontinuous. Fix x 2 Rn and con-
sider an arbitrary sequence xn converging to x. For any v 2 K0ðxÞ it follows by definition that
Gðx; vÞ < 0 and by the continuity of G this implies that there exists some n0 2 N such that Gðxn; vÞ < 0
for every n P n0. Hence it holds that v 2 K0ðxnÞ for every n P n0 and so by taking vn ¼ v for n P n0 we
have verified that K0 is lower semicontinuous. Since the function v ! Gðx; vÞ is convex for every x 2 Rn

and K0ðxÞ is nonempty we obtain for every v0 2 K0ðxÞ and v 2 KðxÞ that the convex combination
vk :¼ kv0 þ ð1� kÞv belongs to K0ðxÞ for every 0 < k < 1. This implies that clðK0ðxÞÞ ¼ KðxÞ. Using now
that lower semicontinuity is preserved under taking closures we obtain that the set valued mapping K is
lower semicontinuous. h
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Next we study the convexity of the feasible set F. We assume that graph(K) is convex.

Lemma 5. If the set valued mapping K is concave and convex, and the function / is quasiconcave, then the set

E \ graphðKÞ is convex.

Proof. The set graph(K) is convex from the hypothesis. It is now sufficient to show that the set E is convex.
Let ðx1; y1Þ; ðx2; y2Þ 2 E and for k 2 ð0; 1Þ define xk :¼ kx1 þ ð1� kÞx2 and yk :¼ ky1 þ ð1� kÞy2. Since the
set-valued mapping K is concave, it follows for every v 2 KðxkÞ that there exists some v1 2 Kðx1Þ and
v2 2 Kðx2Þ, such that
v ¼ kv1 þ ð1� kÞv2.

As a direct consequence of / being quasiconcave, we have
/ðxk; yk; vÞ P minf/ðx1; y1; v1Þ;/ðx2; y2; v2Þg P 0.
Since v is an arbitrary element of the set KðxkÞ, we conclude that ðxk; ykÞ belongs to E. h

Notice that the conditions of Lemma 5 are rather strong. However, these assumptions are satisfied for
certain applications. In the following examples K is both concave and convex.

• The mapping K is constant, i.e., KðxÞ ¼ C, "x. Then it is immediately clear that the set valued mapping
is concave and convex.

• Let K be defined by
KðxÞ: ¼ fv 2 Rm : Gðv� AxÞ 6 0g.

where G: Rm ! Rq is convex and A an m� n matrix. Then by setting w: ¼ v� Ax or v ¼ wþ Ax and
C0 :¼ fw 2 Rm j GðwÞ 6 0g we obtain
KðxÞ ¼ fwþ Ax j GðwÞ 6 0g ¼ C0 þ Ax.
From this representation it is obvious that K is both concave and convex.
• In Section 6, we analyze the (linear) case
KðxÞ ¼ fv 2 Rm j B1xþ B2v 6 bg.

It is not difficult to show that in this case K is both concave and convex if rank½B1 B2� ¼ rankB2

6 m
(i.e., if K is defined (essentially) by no more conditions than the dimension m).

In the linear case (Section 6) we consider functions of the form /ðx; y; vÞ ¼ ðv� yÞTc (full linear case) and
/ðx; y; vÞ ¼ ðv� yÞTðC1xþ C2y þ C3vþ cÞ. In the first case / is (trivially) quasiconcave but in the other
case, except for ½C1 C2 C3� ¼ 0, it is not.
4. Formulation of an ECOP as a nonlinear program

In this section, we are interested in reformulations of ECOP, which are suitable for the numerical solu-
tion of the problems. We transform an ECOP to a problem with bilevel structure and obtain a formulation
of the program as a nonlinear problem with complementarity constraints.

To deal with the equilibrium constraints (1.2) of ECOP, consider the optimization problem
ðQðx; yÞÞ
min

v
/ðx; y; vÞ

s:t: v 2 KðxÞ;
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depending on the parameter ðx; yÞ. Obviously (assuming that Qðx; yÞ is solvable), for a solution v ¼ vðx; yÞ of
Qðx; yÞ, we can write
E \ graphðKÞ ¼ fðx; yÞ: y 2 KðxÞ and the solution v of Qðx; yÞ satisfies /ðx; y; vÞ P 0g. ð4:1Þ

Recall that the feasible set of an ECOP is given by F ¼ Z \ E \ graphðKÞ. So an ECOP can be written in
the form
ðP 2Þ

min
x;y;v

f ðx; yÞ

s:t: ðx; yÞ 2 Z;

y 2 KðxÞ;
/ðx; y; vÞ P 0;

v is a solution of Qðx; yÞ.
Remark 2. In view of the constraints
/ðx; y; vÞ P 0; 8v 2 KðxÞ

(if the sets K(x) are infinite) formally an ECOP can be seen as a so-called generalized semi-infinite problem

(GSIP) (see e.g., [19,18]). In the form (P2) it is a typical bilevel problem (see e.g., [4]).

Under the extra assumption
/ðx; y; yÞ ¼ 0 for all y; ð4:2Þ

the parameter v in P2 can be eliminated as follows. Condition (4.2) implies for any y 2 KðxÞ:
min
v2KðxÞ

/ðx; y; vÞ 6 /ðx; y; yÞ ¼ 0;
i.e., if a minimizer v of Qðx; yÞ satisfies /ðx; y; vÞ P 0 (thus =0), then y must also solve Qðx; yÞ. So
E \ graphðKÞ ¼ fðx; yÞ: y 2 KðxÞ; y is a solution of Qðx; yÞg and (P2) simplifies:
ðeP 2Þ

min
x;y

f ðx; yÞ

s:t: ðx; yÞ 2 Z;

y 2 KðxÞ;
y is a solution of Qðx; yÞ.
We now assume that the sets Z and K(x) are given explicitly in the form
Z ¼ fðx; yÞ 2 Rnþm : gðx; yÞ 6 0g; KðxÞ ¼ fv 2 Rm : Gðx; vÞ 6 0g
with C1-functions g: Rnþm ! Rp and G: Rnþm ! Rq. Let also / be from C1.
Let rv/ðx; y; vÞ and rvGðx; vÞ denote the derivatives with respect to v. If v is a solution of Qðx; yÞ which

satisfies some constraint qualification (CQ), then v must necessarily satisfy the Karush–Kuhn–Tucker condi-
tions (KKT conditions):
rv/ðx; y; vÞ þ kTrvGðx; vÞ ¼ 0;

kTGðx; vÞ ¼ 0;
with some multiplier 0 6 k 2 Rq. So we can consider the following relaxation of the ECOP problem
(P2):



1116 S� . _I . Birbil et al. / European Journal of Operational Research 169 (2006) 1108–1127
ðP 3Þ

min
x;y;v

f ðx; yÞ

s:t: /ðx; y; vÞ P 0;

rv/ðx; y; vÞ þ kTrvGðx; vÞ ¼ 0;

kTGðx; vÞ ¼ 0;

k;�gðx; yÞ;�Gðx; yÞ;�Gðx; vÞ P 0.
(P3) is a relaxation of (P2) in the sense that (under CQ) the feasible set of the ECOP is contained in the
feasible set of (P3). In particular, any solution ðx; y; vÞ of (P3) with the property that v is a minimizer of
Qðx; yÞ, must also be a solution of the ECOP.

In case that (4.2) holds, problem (P2) reduces to (see ðeP 2Þ):
ðeP 3Þ

min
x;y

f ðx; yÞ

s:t: rv/ðx; y; yÞ þ kTrvGðx; yÞ ¼ 0;

kTGðx; yÞ ¼ 0;

k;�gðx; yÞ;�Gðx; yÞ P 0.
4.1. Convexity conditions for Qðx; yÞ

Let us now consider the special case that Qðx; yÞ represents a convex problem, i.e., for any fixed x and y

the function /ðx; y; vÞ is convex in v, and for any fixed x, the function Gðx; vÞ is convex in v. Then, it is
well-known that the KKT conditions at v are sufficient for v to be a solution of Qðx; yÞ. So in this case
any solution ðx; yÞ of (P3) (or ðeP 3Þ) provides a solution of an ECOP. If moreover CQ is satisfied for
Qðx; yÞ (which is automatically fulfilled if v ! Gðx; vÞ is linear), then (P3) (or ðeP 3Þ) is equivalent with the
original ECOP.

In the form (P3) and ðeP 3Þ, an ECOP is transformed into a nonlinear program with complementarity con-
straints (see e.g., [17]). In this form the problems can be solved numerically, for instance by an interior point
method (see e.g., [24]).

4.2. The linear case

In the next section, we will analyze ECOP for the case that all problem functions are linear,
f ðx; yÞ ¼ c1xþ c2y, and
giðx; yÞ ¼ a1i xþ a2i y 6 ai; i 2 I ;

Gjðx; yÞ ¼ b1j xþ b2j y 6 bj; j 2 J .
Here and in the rest of the paper we omit the transposed sign in the inner products, i.e., ax denotes aTx. For
the function /ðx; y; vÞ ¼ ðv� yÞF ðx; y; vÞ, we consider the case
/ðx; y; vÞ ¼ ðv� yÞðC1xþ C2y þ C3vþ cÞ;
with matrices and vectors of obvious dimension. We assume that the (m� m) matrix C3 is positive semi-
definite. Then the problem Qðx; yÞ is convex and by the discussions above, ECOP and ðeP 3Þ are equivalent.
By replacing C2y þ C3y by C2y (for notational simplicity) our problem ðeP 3Þ takes the form
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ðLECOPÞ

min
x;y

c1xþ c2y

s:t: a1i xþ a2i y 6 ai; i 2 I : ¼ f1; . . . ; pg;

b1j xþ b2j y 6 bj; j 2 J : ¼ f1; . . . ; qg;

C1xþ C2y þ cþ
P

j2Jðx;yÞ
kjb

2
j ¼ 0;

kj P 0; j 2 Jðx; yÞ;

where for ðx; yÞ 2 Rn � Rm, we define the active index sets Jðx; yÞ: ¼ fj 2 J : b1j xþ b2j y ¼ bjg and also
Iðx; yÞ: ¼ fi 2 I : a1i xþ a2i y ¼ aig.

Remark 3. For the special case F ðx; y; vÞ ¼ c, i.e., C1;C2 ¼ 0, the problem ECOP, or equivalently eP 3, can
be written as a common linear bilevel problem
min
x;y

c1xþ c2y

s:t: a1i xþ a2i y 6 ai; i 2 I ;

y is a solution of Qðx; yÞ:
min cv� cy

s:t: b1j xþ b2j v 6 bj; j 2 J ;
and LECOP becomes
ðLBLÞ

min
x;y

c1xþ c2y

s:t: a1i xþ a2i y 6 ai; i 2 I ;

b1j xþ b2j y 6 bj; j 2 J ;

cþ
P

j2Jðx;yÞ
kjb

2
j ¼ 0;

kj P 0; j 2 Jðx; yÞ.

So for this special case the third constraints become �independent� from the other constraints which

means that LECOP has a more complicated structure than the bilevel problem LBL.

In [20], a genericity analysis was done for linear bilevel (i.e., for the case LBL). Note that also the (full)
linear case /ðx; y; vÞ ¼ axþ by þ cv leads (via P3) to a problem of bilevel structure. In the next section we
are going to analyze the structure of LECOP from a generic point of view (structure in the general case).
5. The generic structure of linear ECOP

In the present section, we reconsider the (linear) ECOP of the form LECOP. We are going to analyze the
structure of LECOP from a generic point of view (structure in the general case). In [20], a genericity analysis
was done for the linear bilevel problems LBL, which corresponds to the case ½C1 C2� ¼ 0 (see Remark 1).
Since both problems LBL and LECOP have a similar structure, the genericity analysis for LECOP can be per-
formed with similar techniques. We therefore present the results here in a concise form but emphasize that
the more general problem LECOP leads to a more complicated structure of the feasible set than problem
LBL.
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First we introduce some abbreviations
z ¼ ðx; yÞ; c ¼ ðc1; c2Þ; ai ¼ ða1i ; a2i Þ; bj ¼ ðb1j ; b2j Þ 2 Rnþm and C ¼ ðC1;C2Þ.
We define the matrices A, B, B2 with rows ai, i 2 I , bj, j 2 J , b2j , j 2 J , respectively, and for the vectors
a ¼ ða1; . . . ; apÞ, b ¼ ðb1; . . . ; bqÞ, we also introduce the constraint sets
QA ¼ fz: Az 6 ag; QB ¼ fz: Bz 6 bg;
Q ¼ QA \ QB.
This leads to the following compact form:
ðLECOPÞ

min cz

s:t: Az 6 a;

Bz 6 b;

Czþ cþ
P

j2Jðx;yÞ
kjb

2
j ¼ 0;

kj P 0; j 2 Jðx; yÞ.

Note that if we assume that Q is compact (bounded) and that the feasible set of LECOP is nonempty, it is
clear that a solution always exists.

For linear bilevel problems, the feasible set simply consists of a union of faces (of dimension n) of the
polyhedron Q. Moreover, for the special case I ¼ ;, the feasible set (in general nonconvex) is (path-)con-
nected. Both facts are no more true for LECOP.

5.1. Genericity

For fixed problem parameters ðn;m; p; qÞ, any LECOP can be seen as an element from the problem set
P ¼ fP ¼ ðc;A;B; a; b;C; cÞg � RK with K ¼ nþ ðnþ mþ 1Þðmþ p þ qÞ.
Throughout the paper, by a generic subset P0 of P � RK we mean a set, which is open in RK and has a
complement set of measure zero (notation lðRK nP0Þ ¼ 0). Note that this implies that the set P0 is dense
in RK . For details on genericity we refer to [6,11].

Our genericity analysis will be based on the following �nontrivial� result (see [6]).

Lemma 6. Let p: RK ! R be a polynomial function, p 6� 0. Then, the solution set p�1ð0Þ ¼
fw 2 RK j pðwÞ ¼ 0g is a closed set of measure zero. Equivalently the complement G ¼ RK n p�1ð0Þ is a

generic set in RK .

Remark 4. The result of Lemma 6 will be used repeatedly as follows. By noticing that detA ¼P
p2Pl

signpa1pð1Þ � � � alpðlÞ defines a polynomial mapping p: Rl�l ! R we directly are led to the following
result: Let V l denote the set of real ðl� lÞ-matrices, V l ¼ fA ¼ ðaijÞi;j¼1;...;l j aij 2 Rg � Rl�l. Then, the set
V 0

l ¼ fA 2 V l j detA ¼ 0g is a closed set of measure zero in Rl�l. Equivalently the set V r
l ¼ V l n V 0

l of reg-
ular matrices is generic in Rl�l.

In the sequel, z0 ¼ ðx0; y0Þ will be a point such that with appropriate multipliers kj, j 2 Jðz0Þ, the con-
straints of LECOP are fulfilled. We then call z0 or ðz0; kÞ a feasible point for LECOP. Often the abbreviation
I0 ¼ Iðz0Þ, J 0 ¼ Jðz0Þ will be used.

We say that at a feasible point ðz0; kÞ the strict complementary slackness condition holds if for all j 2 J :
ðSCÞ kj > 0 () ðbj � bjz0Þ ¼ 0.
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Among others it will be analyzed whether generically the condition SC holds at a solution of LECOP. The
answer will be negative.

Remark 5. For the special case that QA is contained in the interior of QB (implying Q ¼ QA) our problem
takes the form of a common LP:
ðLECOPÞ
min cz

Az 6 a;

Cz ¼ �c.
Here, the generic structure is simply given by the well-known generic structure of such an LP.

We now are going to analyze the structure of the feasible set of LECOP near a feasible point ðz0; k0Þ and
define
Ja
0 ¼ fj 2 J 0 : ½k0�j ¼ 0g and Jn

0 ¼ J 0 n Ja
0.
The following observation is crucial for the analysis below. Since the vector �ðCz0 þ cÞ 2 Rm is an element
of cone fb2j ; j 2 Jn

0g by Caratheodory�s theorem we can assume
jJn
0j 6 m. ð5:1Þ
Consider now a feasible direction d0 at ðz0; k0Þ given by a solution ðd0; d0Þ of the system:
aid 6 0; i 2 I0;

bjd 6 0; j 2 Ja
0;

bjd ¼ 0; j 2 Jn
0;

Cd þ
X
j2J0

djb
2
j ¼ 0;

djðbjdÞ ¼ 0; j 2 Ja
0;

dj P 0.

ð5:2Þ
The following necessary condition for local minimizers is obvious.

Lemma 7. Let ðz0; k0Þ be feasible for LECOP. Then, if z0 is a local minimizer, there is no solution ðd; dÞ of (5.2)
such that cd < 0, i.e., there is no feasible descent direction.

Note that for any solution ðd; dÞ of (5.2) the points ðzðtÞ; kðtÞÞ ¼ ðz0 þ td; k0 þ tdÞ are feasible for LECOP if
t P 0 is not too large. As a first genericity result we obtain the following lemma.

Lemma 8. Generically for any local solution z0 of LECOP the condition jIðz0Þj þ jJðz0Þj P n must hold.

Proof. Suppose that jI0j þ jJ 0j < n (I0 ¼ Iðz0Þ, J 0 ¼ Jðz0Þ). We will show that generically this implies that
there is a solution ðd; dÞ of (5.2) satisfying cd < 0 and the result follows by Lemma 6. To do so consider the
system
cd ¼ �1;

aid ¼ 0; i 2 I0;

bjd ¼ 0; j 2 J 0;

Cd þ
X
j2J0

djb
2
j ¼ 0;

dj ¼ 1; j 2 J 0;
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with s: ¼ 1þ jI0j þ jJ 0j þ mþ jJ 0j equations in nþ mþ jJ 0j P s unknowns. Generically the system matrix
has full rank (see Remark 4) and thus admits a solution. h

Noticing that y0 is a boundary point of K(x0) if and only if Jðx0; y0Þ 6¼ ;, we obtain the following result as
a corollary.

Corollary 1. Generically for any local minimizer z0 ¼ ðx0; y0Þ of LECOP which satisfies jIðz0Þj < n, y0 must be
a boundary point of K(x0).

The next theorem states that in the generic case the feasible set of an LECOP is n-dimensional (in the z-
space).

Theorem 3. Generically the (projection onto the z-space of the) feasible set of LECOP consists of a (finite)

union of polyhedra of dimension n.

Proof. Let be given ðz0; k0Þ, feasible for LECOP with corresponding index sets I0; J 0; Ja
0; J

n
0; jJn

0j 6 m (see
(5.1)). We will show that generically near z0 the feasible set (in the z-space) has exactly dimension n.

Dimension at most n: Any feasible point ðz; kÞ must be a solution of an equation
bjz ¼ bj; j 2 Jn
0;

Czþ
X
j2Jn

0

kjb
2
j ¼ �c;
for some subset Jn
0 � J with jJn

0j 6 m. Generically this system has full rank jJn
0j þ m and thus its solution set

is of dimension nþ mþ jJn
0j � m� jJn

0j ¼ n in the ðz; kÞ-space. Consequently its dimension in the z-space
(projection) cannot exceed n.

Dimension at least n: Note first that ðz0; k0Þ is a solution of the equations
aiz ¼ ai; i 2 I0;

bjz ¼ bj; j 2 J 0;

Czþ
X
j2Jn

0

kjb
2
j ¼ �c.

ð5:3Þ
Generically this system has full rank
k ¼ minfjI0j þ jJ 0j þ m; nþ mþ jJn
0jg
with jJn
0j 6 m. Moreover, the system of nþ mþ jJn

0j unknowns must satisfy the relation
jI0j þ jJ 0j þ m 6 nþ mþ jJn
0j or equivalently jI0j þ jJa

0j 6 n. ð5:4Þ
To see this assume that jI0j þ jJ 0j þ m P nþ mþ jJn
0j þ 1, then the vector ða; b;�cÞ 2 RjI0jþjJ0jþm (right-

hand side of (5.3)) is contained in the (nþ mþ jJn
0j)-dimensional space spanned by the columns of the sys-

tem matrix in (5.3), (a closed set of measure zero in RjI0jþjJ0jþm). This is generically excluded.
Consider now the system
aid ¼ �1; i 2 I0;

bjd ¼ 0; j 2 Jn
0;

bjd ¼ �1; j 2 Ja
0;

Cd þ
X
j2Jn

0

djb
2
j ¼ 0.
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Since generically jI0j þ jJa
0j 6 n must hold (see (5.4)) this is a system of jI0j þ jJ 0j þ m 6 nþ mþ jJn

0j equa-
tions in nþ mþ jJn

0j unknowns. So generically there is a solution ðd; dÞ of this system (possibly zero in the
case I0 ¼ Ja

0 ¼ ;). By construction, for any t1 > 0 small enough, the point
ðz1; k1Þ ¼ ðz0; k0Þ þ t1ðd; dÞ

is feasible for LECOP with Iðz1Þ ¼ ;, Jðz1Þ ¼ Jn

0 (½k1�j > 0, j 2 Jðz1Þ). Consequently, near ðz1; k1Þ all points
ðz; kÞ ¼ ðz1; k1Þ þ tðd; dÞ, t > 0 (small) are feasible if ðd; dÞ solves the equations
bjd ¼ 0; j 2 Jn
0;

Cd þ
X
j2Jn

0

djb
2
j ¼ 0. ð5:5Þ
This system of jJn
0j þ m equations generically has a solution set of dimension
nþ mþ jJn
0j � jJn

0j � m ¼ n
in the ðz; kÞ-space. But generically also the projection of this solution set to the z-space is of dimension n. To
see this, consider the system (5.5). Since jJn

0j 6 m we can decompose the system as
B 0

C1 B2
1

C2 B2
2

0B@
1CA d

d

� �
¼

0

0

0

0B@
1CA
with a jJn
0j � jJn

0j-matrix B2
2, which is generically regular. From the last jJn

0j equations we can eliminate d,
d ¼ �ðB2
2Þ

�1C2d;
resulting in the system
Bd ¼ 0;

C1 � B2
1ðB2

2Þ
�1C2

� �
d ¼ 0;
with m equations for the nþ m unknowns. With the help of Lemma 6 it is not difficult to show that also this
system generically has full rank m, i.e., generically the solution space has dimension nþ m� m ¼ n. h

Remark 6. More precisely, according to the proof of Theorem 3, generically, the feasible set (projected
onto the z-space) of LECOP has the following structure. The polyhedron Q is generically either empty or
has full dimension nþ m. So LECOP consists of the sub-polyhedron fz 2 Q: Czþ c ¼ 0g (generically empty
or n-dimensional) together with a (finite) union of n-dimensional sub-polyhedra on faces defined by the
equalities bjz ¼ bj. Note that by convexity, each of these faces can only contain one of these feasible
polyhedra.

Finally, by a simple example we show that, in case I ¼ ;, in contrast to LBL (see Remark 4 and [20]), the
feasible set of LECOP need not be connected.

Example 2. Consider the LECOP with n ¼ m ¼ 1 and the feasible set defined by (z ¼ ðx; yÞ)
bjz 6 bj; j 2 J : ¼ f1; 2; 3; 4g;
Czþ c ¼ �

X
j2JðzÞ

kjb
2
j .
The feasible set is given by the points in Q: ¼ fz j bjz 6 bj; j ¼ 1; . . . ; 4g which satisfy one of the relations
Cz ¼ �c or
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bjz ¼ bj;

Czþ c ¼ �kb2j ; k P 0;
ð5:6Þ
for the indices j 2 J . The structure of the feasible set depends on the choice of the data C, b1, etc. Let us
now choose C ¼ ð0;�1Þ, c ¼ 0, b1 ¼ b2 ¼ b3 ¼ b4 ¼ 1 and
b1 ¼ ð0; 1Þ; b2 ¼ ð�1; 1
2
Þ; b3 ¼ ð1; 1

2
Þ; b4 ¼ ð0;�1Þ.
Then the feasible set consists of the set F 0 ¼ fz ¼ ðx; yÞ 2 Q j Cz ¼ �cg ¼ fðx; 0Þ j �1 6 x 6 1g and the
parts on the faces of Q given by (5.6) for j ¼ 1; . . . ; 4:
F 1 ¼ fz ¼ ðx; yÞ 2 Q j b1z ¼ 1;Cz ¼ �kb21; k P 0g
¼ fðx; 1Þ j �1

2
6 x 6 1

2
g;

F 2 ¼ fð1
2
y � 1; yÞ j 0 6 y 6 1g;

F 3 ¼ fð1� 1
2
y; yÞ j 0 6 y 6 1g;

F 4 ¼ fðx;�1Þ j �1.5 6 x 6 1.5g.
So obviously, the feasible set F ¼
S4

j¼0F j is not connected. Note that this situation is stable with respect to
(small) perturbations of the parameter values.

We end up with an observation which is important from a theoretical and practical point of view. For
any given subset J 0 � J we consider the LP:
ðPðJ 0ÞÞ

min cz

s:t: Az 6 a;

Bz 6 b;

bjz ¼ bj; j 2 J 0;

Czþ cþ
P
j2J0

kjb
2
j ¼ 0;

kj P 0; j 2 J 0.
So obviously, to solve LECOP amounts to solving the problem:

• Find the index set J0 (J 0 � J ) such that the objective value of P(J0) is minimal.

In a forthcoming paper we describe a descent method which by updating J0 in each step finds a local min-
imizer of LECOP. With regard to the problem P(J0) we can directly deduce the following:

• Generically, every point z0 in Q, i.e., every feasible point of LECOP, satisfies jIðz0Þj þ jJðz0Þj 6 nþ m.
• Generically each problem P(z0) attains a (unique) solution at a (nondegenerate) vertex ðz0; k0Þ of the cor-
responding polyhedron. In particular nþ mþ jJ 0j constraints must be active. This implies that precisely
for n� jIðz0Þj indices j 2 J , either kj ¼ 0 for j 2 J 0 must be active, or bjz0 ¼ bj, for j 2 J n J 0. So in the
extreme case I ¼ ; the (SC) condition is violated for n indices.
6. Conclusion

This paper studies a form of an equilibrium constrained optimization problem (ECOP) which contains
bilevel programs (BL) and generalized semi-infinite problems (GSIP) as special instances. The relation and
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differences between these three types of problems is analyzed. Based on the KKM lemma, under certain
convexity assumptions, the existence of feasible points can be proven. For a special linear ECOP a full gene-
ricity analysis is given which constitutes the basis for efficient algorithms to compute (local) minimizer of
ECOP.
Appendix A

We refer to [3] for generalized convexity related definitions and for definitions from set valued-analysis
we refer to [2].

Definition A.1. A function w : Rm ! Rm is called pseudomonotone if for every x; y 2 Rm
hwðxÞ; x� yi P 0 implies that hwðyÞ; x� yi P 0.
Definition A.2. A function w : Rn ! R is called quasiconvex if all its lower level sets are convex. A function
w is quasiconcave if �w is quasiconvex.

Definition A.3. A function w : R2m ! R is called properly quasimonotone on the convex set X � Rm if
inf
y2coðfx1;...;xkgÞ

max
16i6k

wðy; xiÞ P 0
for every finite set fx1; . . . ; xkg � X .

Definition A.4. A set valued mapping W : X�X is called a KKM-mapping if
coðfx1; . . . ; xkgÞ �
[k
i¼1

WðxiÞ
for every finite set fx1; . . . ; xkg � X .

Definition A.5. A function w : X ! X is called upper semicontinuous if all its upper level sets are closed.
Similarly, it is called lower semicontinuous if all its lower level sets are closed.

Definition A.6. A set valued mapping W : X�X is called closed if the set graph(W) is closed.

Definition A.7. A set valued mapping W : X�X is convex if and only if
kWðx1Þ þ ð1� kÞWðx2Þ � Wðkx1 þ ð1� kÞx2Þ
for every x1; x2 2 X and 0 6 k 6 1. Accordingly, we call a set-valued mapping W concave if
Wðkx1 þ ð1� kÞx2Þ � kWðx1Þ þ ð1� kÞWðx2Þ
for every x1; x2 2 X and 0 6 k 6 1.

Definition A.8. A set valued mapping W : X�X is called lower semicontinuous at x 2 X if for every
v 2 WðxÞ and for every sequence xn converging to x, there exists a sequence vn 2 WðxnÞ, such that vn con-
verges to v. W is called lower semicontinuous if it is lower semicontinuous at every x 2 X .
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Appendix B

To show that under certain conditions the intersection in relation (2.1) is nonempty, we apply the impor-
tant KKM lemma from nonlinear analysis. Before introducing this lemma, let ei be the ith unit vector in Rn,
i ¼ 1; . . . ; n and introduce for every subset J � N : ¼ f1; . . . ; ng the simplex DJ, given by
DJ :¼ coðfej : j 2 JgÞ � Rn. ðB:1Þ
Definition B.1. The collection of sets Ej � Rn, 1 6 j 6 n satisfies the KKM property if for every subset
J � f1; . . . ; ng it holds that DJ �

S
j2JEj.

The KKM lemma is now given by the following result (cf. [25,13,5]).

Theorem B.1. If Ei � Rn, i ¼ 1; . . . ; n are closed sets satisfying the KKM property, then it follows thatTn
i¼1Ei 6¼ ;.

The KKM lemma is equivalent with Sperner�s lemma (see [23]) and Sperner�s lemma can be proved by
combinatorial arguments (see [1] or Theorem 3.4.3 of [21]). If the sets Ei, 1 6 i 6 n, are additionally convex,
then an elementary proof of the KKM lemma can be given (see Theorem B.2) by using the next result of
Berge (see [22]). The result of Berge is based on the well-known separating hyperplane result for disjoint
finite dimensional compact convex sets and its proof can be found in [22].

Lemma B.1. If Ci � Rn, 1 6 i 6 r and r P 2 are closed convex sets satisfying
Sr

i¼1Ci is convex and for any

J � f1; . . . ; rg with jJ j ¼ r � 1 it holds that
T

j2JCj is nonempty, then it follows that
Tr

i¼1Ci is nonempty.

Before giving a proof of an improvement of the KKM lemma for closed convex sets based on Lemma
B.1, we introduce the following definition.

Definition B.2. The collection of sets Ei � Rn, 1 6 i 6 n, satisfies the simplex finite intersection property if
for every subset J � N : ¼ f1; . . . ; ng it holds that DJ \

T
j2JEj

� �
6¼ ;.

For convex sets one can now give the following improvement of the KKM lemma by elementary meth-
ods. This proof is adapted from the proof of a related result in [10].

Theorem B.2. If Ei � Rn, 1 6 i 6 n, is a collection of closed convex sets the following conditions are

equivalent:

(1) The collection Ei, 1 6 i 6 n, satisfies the simplex finite intersection property.

(2) The collection Ei, 1 6 i 6 n, satisfies the KKM property.
Proof. To prove the implication 2 ) 1 we verify by induction that for every r 6 n and J � f1; . . . ; ng sat-
isfying jJ j 6 r it holds that
DJ \
\
j2J

Ej

 !
6¼ ;; ðB:2Þ
if the collection Ei, 1 6 i 6 n, satisfies the KKM property. Since the KKM property holds it follows that
ej 2 Ej and so relation (B.2) holds for r ¼ 1. Suppose now that relation (B.2) holds for r ¼ l� 1 and con-
sider a subset J � N : ¼ f1; . . . ; ng consisting of l elements. Since the sets Ej, j 2 J are closed and convex
also the nonempty sets Ej \ DJ , j 2 J are closed and convex. By the KKM property we obtain
DJ �

S
j2JEj and this implies
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[
j2J

ðEj \ DJ Þ ¼ DJ . ðB:3Þ
Moreover, it follows by the induction hypothesis for every j 2 J that the set DJ=fjg \
T

j2J=fjgEj

� �
is non-

empty and since clearly
DJ=fjg \
\

j2J=fjg

Ej

0@ 1A �
\

j2J=fjg

ðEj \ DJ Þ;
we obtain for every j 2 J that
\
j2J=fjg

ðEj \ DJÞ 6¼ ;. ðB:4Þ
Using now relations (B.3) and (B.4) we may apply Berge�s lemma with Ci replaced by Ei \ DJ and this

shows DJ \
T

j2JEj

� �
6¼ ; completing the induction step. To show the implication 1 ) 2 we need to verify

for Ei, 1 6 i 6 n satisfying the simplex finite intersection property that for any subset J � N : ¼ f1; . . . ; ng
with jJ j 6 r and 1 6 r 6 n it follows that
DJ �
[
j2J

Ej. ðB:5Þ
If r ¼ 1, then J � N : ¼ f1; . . . ; ng consists of one element j and so by the simplex finite intersection property
we obtain that
ej ¼ DJ 2 Ej;
showing that relation (B.5) holds for r ¼ 1. Suppose now relation (B.5) holds for any subset J with
jJ j 6 r � 1 and let x 2 DJ with jJ j ¼ r. This means x ¼

P
j2Jkjej with kj P 0 and

P
j2Jkj ¼ 1. If some kj

equals 0 we may apply the induction hypotheses and so without loss of generality we may assume that
kj > 0 for every j 2 J . Since the collection Ei, 1 6 i 6 n, satisfies the simplex finite intersection property
it follows that there exists some nonnegative sequence lj, j 2 J satisfying

P
j2Jlj ¼ 1 and
x :¼
X
j2J

ljej 2
\
j2J

Ej. ðB:6Þ
Introducing now the finite number
m :¼ maxfljk
�1
j : j 2 Jg
we obtain using l; k 2 DJ that m P 1. If m ¼ 1 this implies that lj ¼ kj for every j 2 J and so by relation
(B.6) it follows that x ¼ x 2

S
j2JEj and we are done. Therefore m > 1 and consider now
k�j :¼
kj � m�1lj

1� m�1
; j 2 J .
By the definition of m we obtain
P

j2Jk
�
j ¼ 1 and k�j P 0. Since k�j ¼ 0 for some j 2 J it follows by our induc-

tion hypothesis that
x� :¼
X
j2J

k�j ej 2 Ej�
for some j� 2 J . Moreover, by relation (B.6) we obtain x 2 Ej� and since x ¼ m�1xþ ð1� m�1Þx� it follows by
the convexity of Ej� that x 2 Ej� �

S
j2JEj. This completes the induction step. h
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We will now extend the KKM lemma to set valued mappings W : C�C with nonempty values.

Definition B.3. The set valued mapping W : C�C is called a KKM mapping if coðfv1; . . . ; vkgÞ �Sk
j¼1WðvjÞ for every finite subset fv1; . . . ; vkg of the set C.

An important consequence of the KKM lemma to set valued mappings is given by the following result.

Theorem B.3. If W : C�C is a set valued KKM mapping with closed values, then it follows for every finite set

fv1; . . . ; vkg � C that
coðfv1; . . . ; vkgÞ \
\k
j¼1

WðvjÞ
 !

6¼ ;.
Proof. Introduce for every 1 6 i 6 k the sets Ei :¼ fk 2 DN :
Pk

j¼1kjvj 2 WðviÞg. Since the sets W(vi),
i ¼ 1; . . . ; k are closed, it follows that the sets Ei � Rk are also closed. Moreover, if J � f1; . . . ; kg and
k :¼ ðk1; . . . ; kkÞ 2 DJ � Rk we obtain, using coðfvj : j 2 JgÞ �

S
j2JWðvjÞ, that
Xk
j¼1

kjvj ¼
X
j2J

kjvj 2
[
j2J

WðvjÞ.
This shows that k belongs to
S

j2JEj and so DJ �
S

j2JEj. Applying now the KKM lemma yields the desired
result. h

If the set valued mapping W : C�C has closed convex values one can show the following improvement
of Theorem B.3.

Theorem B.4. If W : C�C is a set valued mapping with closed convex values, then it follows that W is a KKM

mapping if and only if for every finite set fv1; . . . ; vkg � C it holds that
coðfv1; . . . ; vkgÞ \
\k
j¼1

WðvjÞ
 !

6¼ ;.
Proof. If W is a KKM mapping we obtain by Theorem B.3 the desired result. To prove the reverse impli-
cation we adapt in an obvious way the proof of Theorem B.2. h
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