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Abstract

This paper describes a parametric family of utility functions for decision analysis. The parameterization embeds the
HARA class in a four-parameter representation for the risk aversion function. The resulting utility functions can have
only four shapes: concave, convex, S-shaped, and reverse S-shaped. This makes the family suited for both expected util-
ity and prospect theory. The paper also describes an alternative technique to estimate the four parameters from elicited
utilities, which is simpler than standard fitting by minimization of the mean quadratic error.
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1. Introduction

Utility functions over monetary outcomes are essential to decision analysis, because they are often a nec-
essary condition to guide or describe choices among risky gambles. In applications, the task of working
with utility functions is usually made more manageable by restricting attention to a few convenient para-
metric families.

Under the expected utility paradigm, the dominant approach to constrain the admissible parameteriza-
tions for the utility function u(w) goes through risk aversion and its refinements. The best known example is
constant absolute (or relative) risk aversion, which limits the choice to linear and exponential (or power and
logarithmic) functions. Other examples include proper risk aversion (Pratt and Zeckhauser, 1987), standard
risk aversion (Kimball, 1993), and constant risk exchange (Farquhar and Nakamura, 1987). In an elegant
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proposal, Bell (1988) shows how the one-switch rule—increasing wealth cannot switch preferences among
two risky gambles more than once—implies four functional forms for the utility function. Bell and Fish-
burn (2000) carries over and generalizes this argument to three non-expected utility models.

This approach fits uncomfortably with prospect theory, where the ‘‘carriers of value are changes in
wealth’’ and the value is a function of ‘‘the asset that serves as reference point, and the magnitude of
the change’’; see Kahneman and Tversky (1979, p. 277). Inspired by Markowitz (1952), they advocate a
value function v(x ; m) where x denotes increments in wealth and m is the reference point. In practice, pros-
pect theory holds that preferences are not much affected by ‘‘small or even moderate variations’’ in the ref-
erence point and hence assumes that the value function depends only on the wealth increments x, writing it
as v(x). This extreme lack of asset integration severs the link between risk attitude and total wealth under-
lying the notion of a coefficient of risk aversion.

Another difficulty is that the two theories tend to make conflicting assumptions about the functional
forms. According to prospect theory, the lack of asset integration engenders a reflection effect and loss aver-
sion. The first one yields decreasing marginal utility as we move away from the reference point. The second
one induces a sharper decrease over losses. The two effects imply that v(x) is S-shaped with a steeper slope
below the reference point, while expected utility usually deals with concave or convex functions. Pragmat-
ically, prospect theory usually imports the parameterizations of expected utility by stitching together a con-
cave function over gains and a convex function over losses. A third problem is that a complete
parameterization of prospect theory requires to deal also with the probability weighting function, increas-
ing the difficulty of calibrating a model.

It is not surprising, therefore, that the existing parameterizations of prospect theory are not satisfactory.
Neilson and Stowe (2002) makes a compelling argument that the proposed parameterizations may ‘‘fit the
experimental data well, [but] they have poor out-of-sample performance’’ and concludes that ‘‘alternative
functional forms are needed’’ (p. 44). The purpose of this paper is to describe a parameterization for utility
and value functions that works across expected utility and prospect theory. In a nutshell, we work out a
direct parameterization of the risk aversion functions—turn to Eq. (4) below for a preview—and then re-
cover from this the associated utility (or value) functions. A consequence of this technique is that all the
functions in our family are twice differentiable.

The most important advantages of the proposed parameterization are four. First, it embeds the HARA
utility functions, which include the most commonly used functional forms in expected utility. Second, there
are only four possible shapes for the functional forms: convex, concave, S-shaped and reverse S-shaped.
Third, the parameterization requires at most four parameters; moreover, one of these can be directly inter-
preted as the reference point assumed by prospect theory. Fourth, the parametric family is the analog of a
well-known parameterization for probability distribution functions; in particular, this suggests an estima-
tion procedure which is easier to implement than the mean residual error technique typically used for utility
assessment and calibration.

On the downside, our parameterization includes utility (or value) functions which have no closed-form
representation. However, since their first derivatives always admit an explicit representation, they can be
easily recovered by numerical integration. In a world where decision analysis is usually carried out by
means of interactive computer software, we see this as an acceptable shortcoming. For theoretical purposes,
we also note that preference functionals like expected utility can sometimes be analytically computed by
means of a trivial integration by parts. The paper discusses an alternative interpretation of expected utility
that makes working with first derivatives very natural.

Finally, a word of caution: the arguments we provide to support the mathematical interest of the pro-
posed parametric family have a theoretical bias. The acid test for a parameterization must come from
empirical work comparing the performance of alternative families over tasks such as utility assessment
and calibration. Since we lack a proper training as experimentalists, these important tests are better left
where the comparative advantage lies.
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The plan of the paper is the following. Section 2 presents a parameterization of the risk aversion function
which is closely linked to the Pearson system of probability distributions. Section 3 provides a general
description of the utility functions associated with this parameterization. Section 4 discusses the target-
based interpretation of expected utility as a tool for the construction of preferences and demonstrates
how to use simple statistics associated with the utility function to derive tests or describe psychological
properties. Section 5 describes an estimation procedure for the parameters, which is known in the literature
as the method of moments. Section 6 offers some concluding remarks, including the suggestion to extend
the parameterization to probability weighting functions.
2. The Pearson equation

We begin with expected utility. Consider a von Neumann–Morgenstern utility function u(w) defined over
monetary outcomes, that we interpret as final wealth positions. We define the support of u(w) as the (pos-
sibly unbounded) interval (w1, w2) of its points of increase. We assume that over its support u(w) is
bounded, strictly increasing and twice differentiable, with u 0(w) > 0. Since u(w) is unique up to a strictly
increasing affine transformation (that is, it is defined on an interval scale), we normalize its range so that
inf u(w) = 0 and sup u(w) = 1. When necessary, we extend the domain of u by continuity, taking
u(w) = 0 for w 6 w1 and u(w) = 1 for w P w2.

Under our assumptions, the (local and absolute) risk aversion function
rðwÞ ¼ � u00ðwÞ
u0ðwÞ
is properly defined over the same support as u. The interpretation of r(w) is well known. It equals twice the
risk premium per unit of variance for an infinitesimal zero-mean risk at a given level of wealth w. The risk
aversion function was first studied in deFinetti (1952) and independently rediscovered by Arrow (1971) and
Pratt (1964).

Even if its definition is local, the risk aversion function characterizes preferences in a global sense as well.
As Pratt (1964, p. 126) puts it, ‘‘the local risk aversion function r associated with any utility function u con-
tains all essential information about u’’. More precisely, we can recover u(w) from r(w). Integrating �r(w)
and exponentiating gives ecu 0(w). This can be integrated again to derive ecu(w) + d, where c and d are two
immaterial constants of integration. Consistent with our normalization, we choose the version of u 0 such
that
 Z w2

w1

u0ðwÞdw ¼ 1 ð1Þ
so that c = d = 0.
The one-to-one relationship between risk aversion functions and (normalized) utility functions makes it

possible to advance a direct parameterization of the risk aversion function and derive from this a class of
utility functions. The best known example for this approach is the class of HARA utility functions. They
inherit this name from being associated with an hyperbolic risk aversion function, which (up to irrelevant
constants) can be written as
rðwÞ ¼ 1

aþ bw
: ð2Þ
Some authors define the reciprocal of r(w) as the coefficient of risk tolerance and refer to them as utility
functions with linear risk tolerance. This class includes as special cases the utility functions with constant
absolute risk aversion for b = 0 (in particular, risk neutrality obtains for a !1) and those with constant
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relative risk aversion for a = 0. They are often invoked as sufficient (and sometimes) necessary conditions
in several theoretical results, ranging from linear risk sharing rules (Cass and Stiglitz, 1970) to the optimal-
ity of myopic policies in dynamic portfolio selection (Merton, 1969). We require that our parametric family
should embed the HARA functions as a special case.

Let us now turn to prospect theory. We assume that the support of v(x) is a (possibly unbounded) inter-
val over which v(x) is bounded, strictly increasing and twice differentiable, with v 0(x) > 0. Consistent with
common practice and the axiomatization in Wakker and Tversky (1993), we also assume that v(0) = 0 and
that v(x) is defined on a ratio scale. In particular, we normalize v(x) so that sup v(x) = 1.

Define r̂ðxÞ ¼ �v00ðxÞ=v0ðxÞ as a formal equivalent of the risk aversion function for v(x). We stress that the
function r̂ðxÞ cannot be interpreted as a risk aversion function, because prospect theory allows for proba-
bility distortions and we cannot presume that expectations are computed using the stated probabilities.
Consequently, we do not claim equivalence of choice behavior under the two theories. On the other hand,
the formal equivalence with the risk aversion function of expected utility implies that there is a one-to-one
relationship between v(x) and r̂ðxÞ.

We can unify the treatment of the two paradigms by dealing with the function r(m + x), where m is the
reference level and w = m + x is the final wealth position. Within the expected utility model, the function
r(w) = r(m + x) is interpreted as a risk aversion function from which we can recover the utility
function u(w). Within the prospect theory paradigm, r̂ðxÞ ¼ rðmþ xÞ is the formal equivalent of a risk aver-
sion function, from which we can recover the value function v(x) = u(m + x) = u(w). For simplicity,
regardless of the paradigm, from now on we speak of r and r̂ indifferently as the risk aversion function
r(m + x).

Under prospect theory, the most representative property of the value function is its S-shape, which is
usually justified as a consequence of diminishing sensitivity. Since v(x) is concave if and only if r(m + x)
is positive, a parameterization for r consistent with an S-shape for v must allow for a case in which the sign
of r(m + x) is equal to the sign of x. We assume linearity and require that our parameterization embeds the
equation
rðmþ xÞ ¼ x
c
: ð3Þ
We note that c ! +1 corresponds to the linear case and that c < 0 generates a reverse S-shape. By analogy
with expected utility, we say that the value function underlying (3) has a linear coefficient of risk aversion or
a hyperbolic coefficient of risk tolerance.

Eqs. (2) and (3) represent the two special cases that we want to embed in our parameterization of the risk
aversion function. They are associated with hyperbolic and linear risk aversion functions or, dually, to lin-
ear and hyperbolic risk tolerances. Taking the sum (or the average) of the coefficients of risk tolerance
yields a rich parameterization that is also widely studied in statistics. After renaming constants, the sum
of the reciprocals of r(w) = 1/(a + bw) from (2) and of r(w) = (w � m)/c from (3) can be written as
rðwÞ ¼ w� m
aw2 þ bwþ c

: ð4Þ
This is the parametric family of risk aversion functions discussed in this paper. Section 3 presents the main
utility functions associated with this family. (From now, we subsume the value functions under the heading
of utility functions for simplicity.) We discuss here the relationship of (4) with a well-known parameteriza-
tion used in statistics.

Between 1890 and 1895, Pearson (1895; see also 1901, 1916) worked out a system of probability distri-
butions in which every member has a density function f(x) which satisfies the differential equation
d log f ðxÞ
dx

¼ � x� m
ax2 þ bxþ c

: ð5Þ
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His purpose was to offer a four-parameter family of distributions from which one could select a member to
approximate empirical distributions. The similarity with the problem of designing a parametric family for
utility assessment and calibration runs deeper than one might suspect by comparing (4) and (5).

Under our assumptions, u(w) is a bounded, strictly increasing and twice differentiable function defined
over R and normalized between 0 and 1. Moreover, u 0(w) integrates to 1. Hence, u(w) is formally equivalent
to a probability distribution function and u 0(w) to a probability density function. This observation recurs in
the literature. Borch (1968) uses it to study the probability of ruin. Berhold (1973) exploits it to propose a
family of natural-conjugate utility functions inspired by results in Bayesian statistics. Castagnoli and LiCal-
zi (1996) shows that this formal equivalence can be given meaning by interpreting expected utility as the
probability of meeting a target which is imperfectly known. Bordley and LiCalzi (2000) builds on this to
propose a target-based paradigm which preserves the results of the expected utility model by giving up
the notion of a utility function; see Section 4, or Bordley (2002) for a more extensive discussion. Abbas
and Matheson (2003) works out the mathematical duality underlying this formal equivalence.

When u(w) is interpreted as a probability distribution function, u 0(w) turns out to be its density func-
tion. Since r(w) = �d log u 0(w)/dw, (4) and (5) are formally equivalent. For this reason, we refer to them
as the Pearson equation for risk aversion functions and the Pearson equation for densities, respectively.
The estimation technique for assessing utility functions suggested in this paper is the adaptation of
Pearson�s method of moments for the selection of distribution functions. This technique is described in
Section 5.
3. The Pearson system of utility functions

The solutions to (5) are often nicknamed Pearson densities. By analogy, we call Pearson utility functions

those associated with the risk aversion functions described by (4). The purpose of this section is to provide
an appreciation of the main properties and of the diversity of the set P of Pearson utility functions, which
includes as special cases almost all the most important examples commonly used in the literature—the big-
gest exception being some of the one-switch functions proposed in Bell (1988).

A convenient way to approach the study of the Pearson system of utility functions is to rewrite (4) as
u00ðwÞ ¼ � ðw� mÞ
aw2 þ bwþ c

� �
u0ðwÞ ð6Þ
and to work out the properties of u by studying the solutions u 0 of (6). Note that we are only interested in
those solutions where u 0(w) P 0 over the support of u—corresponding to an increasing utility function.
Hence, formal solutions of (6) may be restricted to an interval (w1, w2) where u 0(w) P 0, assigning the value
u 0(w) = 0 outside of the interval.

A few properties follow immediately. First, since u 0(w) cannot be strictly negative, a Pearson utility
function can have at most one inflexion point at m. This implies that the risk attitude can switch at most
once. Hence, a Pearson utility function has only one of four shapes: concave, convex, S-shaped and reverse
S-shaped. These are exactly the typical cases considered in most of the literature. Note also that the risk
attitude switches if and only if the reference point m belongs to the interval (w1, w2). Therefore, any tech-
nique which selects a ‘‘best fit’’ among the utility functions associated with (6) provides a simple method for
deriving m endogenously. Contrast this with prospect theory, which usually bypasses the issue of estimating
the reference point by assuming m = 0; this choice reduces the number of free parameters in (6) to three.

Second, if u is a Pearson utility function over an interval S, it is also a Pearson utility function over any
subinterval S 0 � S. To avoid ambiguities, we always assume the largest possible support. However, in
applications where only a few values for the utility function have been elicited, this property allows one
to estimate or calibrate a Pearson utility function over a smaller interval and then consistently extend



M. LiCalzi, A. Sorato / European Journal of Operational Research 172 (2006) 560–573 565
it—if necessary—to a larger support. As we see below, the maximal support for a Pearson utility function
may range from a bounded interval to R, depending on the combination of the parameters.

A third useful property is that the set P of Pearson utility functions is invariant to shift and rescaling of
the x-units: if u1(x) belong to P, so does u2(x) = u1(ax + b) with a > 0. This condition is the equivalent for
utility functions of the location–scale conditions for random variables in Meyer (1987). Moreover, P is also
invariant under an order reversal: that is, if u1(x) is in P, so does u2(x) = u1(ax + b) for any a 5 0. This last
property makes it possible to describe P by partitioning it in equivalence classes, each of which is closed
under shifts, rescaling and order reversal.

Pearson himself organized the solution to his equation in a system of twelve classes identified by a num-
ber. His numbering criterion has no systematic basis, but it has nonetheless become customary to use it and
thus we retain it. Since some of the original Pearson�s classes can be retrieved as limiting cases of other clas-
ses, we follow Johnson et al. (1994) and explicitly discuss only the major cases. See Kendall (1948) for a more
detailed exposition. To circumvent the non-existence of closed-form solutions for some classes of utility
functions, we list u 0(w) as representative element. Recall the interpretation of u 0 as the analog of the density
function of a distribution function. When possible, we use this analogy to suggest a nickname for each class.

The form of the solution to (6) depends on the nature of the zeros of the denominator (aw2 + bw + c) on
the right-hand side. In the special case a = b = 0 corresponding to (3), we obtain
u0ðwÞ ¼ K exp �ðw� mÞ2

2c

" #
for w 2 R; ð7Þ
where K ¼ ð
ffiffiffiffiffiffiffiffi
2pc
p

Þ�1 is a constant chosen to normalize the integral of u 0(w) to 1. The exact value of K > 0 is
irrelevant for decision analytic purposes, so we omit its specification in the following. The resulting normal

utility function is not assigned to any class and can be viewed as a limiting case. Except for III, assume
a 5 0 in the following discussion.

I (Beta) Suppose D: = b2 � 4ac > 0 and assume that the two real roots r1 < r2 of (aw2 + bw + c) = 0 lie
on opposite sides of the support of u. Then the representative element is
u0ðwÞ ¼ Kðw� r1Þklðr2 � wÞk2 for w 2 ðr1; r2Þ;

with k1 = (r1 � m)/[a(r2 � r1)] > �1 and k2 = (m � r2)/[a(r2 � r1)] > �1. (We leave it understood that
u 0(w) = 0 elsewhere.)

The shape of the corresponding utility function u depends on the signs of k1 and k2: if k1 Æ k2 < 0, it is
concave when k1 < 0 and convex when k1 > 0; if k1 Æ k2 > 0, it is S-shaped when k1 > 0 and reverse
S-shaped when k1 < 0. The symmetric case with k1 = k2 5 0 is known as Class II. The risk-neutral utility
function u(w) = w is the limiting case associated with k1 = k2! 0.
III (Gamma) Suppose a = 0 and b 5 0. For b > 0, the representative element is
u0ðwÞ ¼ Kðcþ bwÞk exp �w
b

� �
for w > � c

b
;

with k = (c/b2) + (m/b). The corresponding utility functions are S-shaped if k > 0 and concave if k < 0. For
b < 0, the support becomes w < �(c/b) and the corresponding utility functions are reverse S-shaped for
k > 0 and convex for k < 0. The case k = 0 gives Class X, which is formed by the exponential utility
functions.
IV Suppose D < 0. Then the representative element is
u0ðwÞ ¼ K½C þ aðwþ BÞ2��
1

2a exp
mþ Bffiffiffiffiffiffi

aC
p arctan

wþ Bffiffiffiffiffiffiffiffiffiffiffiffi
ðC=aÞ

p
" #

for w 2 R;
where B = b/(2a) and C = c � [b2/(4a)] = c � B2. The corresponding utility functions are S-shaped.
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V (Inverse gamma) Suppose D = 0 and let r be the only root of (aw2 + bw + c) = 0. When (m � r)/a > 0,
the representative element is
u0ðwÞ ¼ Kðw� rÞ�
1
a exp � m� r

aðw� rÞ

� �
for w > r:
The corresponding utility functions are S-shaped for a > 0 and concave for a < 0. When (m � r)/a < 0, the
representation is similar but the support is w < r. Moreover, the corresponding utility functions are reverse
S-shaped for a > 0 and convex for a < 0. Utility functions with constant relative risk aversion belong to this

class for m = r = 0. Moreover, when m = r, and jaj < 1, we have the special case u0ðwÞ ¼ Kðw� rÞ�
1
a. This

is known as Class VIII for a > 0 and as Class IX and a < 0.
VI (Inverse beta) Suppose D > 0 and assume that the two real roots r1 < r2 of (aw2 + bw + c) = 0 lie

on the same side of the support of u. Assuming a support on the right of r2, the representative element is
u0ðwÞ ¼ Kðw� r1Þk1ðw� r2Þk2 for w > r2;
with k2 < �1 and k1 + k2 < 0. The corresponding utility functions are concave. A similar representation
with k1 < �1 holds when the support lies on the left of r1, but in this case the utility functions are convex.
This class bears a relationship with Class I analogous to the one between III and V.

VII Suppose m = b = 0, a > 0 and c > 0. Then the representative element is
u0ðwÞ ¼ Kðcþ aw2Þ�ð1=2aÞ for w 2 R:
The corresponding utility functions are S-shaped.
The representative element for each of these classes is the derivative of the utility function u. This looks

unusual, and possibly hard to interpret. We have two comments in this respect. The first one is that there is
no loss of generality (except for the assumption of differentiability itself) or computational ability. A simple
integration by parts shows that knowledge of the functional form of u 0 can replace knowledge of the func-
tional form of u in the computation of the expected utility of a risky lottery X. (The proof is in Appendix
A.)

Proposition 1. Let u be differentiable. Given a random variable X with distribution function F, suppose that
Eju(X)j < 1. Then
EuðX Þ ¼ uð0Þ �
Z 0

�1
u0ðxÞF ðxÞdxþ

Z þ1

0

u0ðxÞ½1� F ðxÞ�dx:
A similar argument applies to several (even if not all) the different versions of prospect theory. For instance,
consider the cumulative prospect theory of Tversky and Kahneman (1992) when the two non-additive mea-
sures w+ and w� over gains and losses can be written as two (possibly different) distortions g+( Æ ) and g�( Æ )
of the underlying probability measure. In this case (recall that v(0) = 0), the preference functional is
Z 0

�1
vðxÞdðg� � F ÞðxÞ �

Z þ1

0

vðxÞd½gþ � ð1� F Þ�ðxÞ
which, upon integration by parts, becomes
�
Z 0

v0ðxÞðg� � F ÞðxÞdxþ
Z þ1

v0ðxÞ½gþ � ð1� F ðxÞÞ�dx:

�1 0
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The second—and, in our eyes, more important—comment is that there exists a plausible point of view
which actually makes working with u 0 the natural option for assessing and calibrating a preference func-
tional under risk. We turn to illustrate it in the next section.
4. Targets and simple statistics

Let us start with an example. Suppose that the agent is trying to decide which of several risky invest-
ments he should commit to in view of saving for his retirement. The agent does not know which investment
he likes best and therefore must think his way about the best choice. Here is one possible route. Suppose
that the agent can pinpoint the target wealth t that he would like to achieve by the time of his retirement. In
this ideal situation, he should pick an investment which delivers a final wealth X that maximizes the prob-
ability P(X P t) of meeting his target.

However, at the moment of making his choice, the agent generally lacks crucial information about the
exact amount of the target he should seek. In other words, the target is not perfectly known. We can model
this by means of a random variable T = t + e, where e is a zero-mean error term that is stochastically inde-
pendent of the risky options available to the agent. The natural extension of the previous criterion is to pick
an investment that, at the moment of making the choice, maximizes the probability P(X P T) of meeting
the imperfectly known target.

Suppose that the (stochastically independent) target T has distribution function u(x) and that the final
wealth X associated with an investment has distribution function F(x). Then
P ðX P T Þ ¼
Z

P ðx P T ÞdF ðxÞ ¼
Z

uðxÞdF ðxÞ:
Since the mathematical representation of the functional is the same, an agent trying to maximize the
probability of meeting a target with distribution function u(x) would make exactly the same choices as
another agent trying to maximize the expected value of a utility function u. In other words, target-based
decisions and expected utility decisions are observationally equivalent. Therefore, these two competing
viewpoints have the same explanatory power, and it is a matter of taste (or convenience) which one
to adopt.

Under the target-based perspective, the function u(w) is the cumulative distribution function of an
imperfectly known target. Therefore, working with u 0(w) is equivalent to dealing with its probability density
function. Entrenched usage favors a value-based language and therefore suggests to assess a utility function
u. The target-based perspective brings to the fore a probability-based language and ends up dealing with the
density function u 0 of the target. There are advantages in taking this alternative point of view; see Bordley
and LiCalzi (2000).

For instance, consider the reflection effect of prospect theory. Arguing from a value-based perspec-
tive, it is defined by the requirement that the value function v(x) is S-shaped. This mathematical char-
acterization is sufficient if prospect theory has only the modest goal of accounting for what people
actually do. However, a more compelling approach should also explain how people construct their pref-
erences whenever they do not happen to know them already. In this respect, the target-based viewpoint
suggests that, if people are trying to ‘‘beat’’ some implicitly defined target, the reflection effect is the
consequence of contemplating a density function u 0(m + x) which is unimodal around the reference
point m.

Given the scope of this paper, this is not the place for an exhaustive comparison of the two viewpoints.
We have chosen to couch the presentation in the language of utility, because this is the established conven-
tion in the profession. The short discussion above in this section is meant to suggest that an alternative and
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perhaps more natural route would be to turn the problem of providing a parameterization for u into the
problem of parameterizing the density u 0 of an imperfectly known target.1

There are at least two other advantages in viewing u as a probability distribution function. First, this
may help to devise new experimental tests. The key point is to compute and make use of simple statistics
such as the mode or the median or the moments associated with u. Note that working with these statistics is
(consistent with but) independent of the target-based interpretation. For instance, while the target-based
interpretation provides an argument to define the reference point m as the mode of the imperfectly known
target, the definition may stand on its own. For simplicity, we equate the reference point and the mode
associated with u in the following example.

An important tenet of prospect theory is the notion of loss aversion, which substantiates the idea that
losses matter more than gains: an agent usually turns down fair gambles around his reference point. The
common rendition formalizes this property by the assumption that u 0(m + x) 6 u 0(m � x) for x > 0. How-
ever, as Kahneman and Tversky (1979) is careful to show, a slightly weaker assumption suffices:
1 A
density
uðmÞ � uðm� xÞP uðmþ xÞ � uðmÞ for all x > 0: ð8Þ

In words, the increment in utility from reducing a loss by x is greater than (or equal to) the increment in
utility from making a gain of equal amount. (See Neilson (2002) for an alternative and stronger definition
of loss aversion.)

If we think of u as a distribution function and let x ! +1 in (8), we obtain u(m) P 1 � u(m); that is,
u(m) P 1/2. Therefore, a necessary condition for u to exhibit loss aversion is that the median associated
with u should not be greater than its mode. This is a simple and general property that can be tested using
elicited utility functions. Under the additional assumption that u is a Pearson utility function, we can derive
a second test. Sato (1997) has shown that unimodal Pearson densities with finite mean always satisfy
the mean–median-mode inequality, which states that the median is always contained in the (possibly,
degenerate) interval delimited by the mean and the mode. Therefore, a necessary condition for S-shaped
utility functions to exhibit loss aversion is that their (finite) first moment should not be greater than the
mode.

The second type of advantage is that we can use the statistics associated with u to provide simple but
effective indicators for psychological patterns regarding preferences under risk. Here is an example. Con-
sider the normal utility function given in Eq. (7). The two parameters m and c describe the position of
the reference point and the intensity of the diminishing sensitivity effect. The greater m, the larger the ref-
erence point; analogously, the smaller c, the sharper the changes in utility associated with increments in
wealth from the reference point. On the other hand, m and c are easily recognized as the mean and the var-
iance associated with u. Hence, at least for this type of utility functions, the second (central) moment can be
used to measure the strength of the diminishing sensitivity effect. The next section builds on the moments
associated with u to derive a procedure to fit Pearson utility functions to elicited utilities.
5. The method of moments

In general, the assessment of utility functions over money is carried out in three stages: first, one elicits a
few values for the utility function; second, one selects a parametric class of utility functions; third, one esti-
mates the parameters by searching for the best fit with the data. This section presents a method to handle
the third stage for the Pearson family of utility functions. As we discuss below, this method of moments can
bit of reverse engineering also shows how much this paper has borrowed from Pearson�s approach about fitting theoretical
functions to empirical distributions.
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be used in alternative or in conjunction with the standard approach that estimates parameters by minimiz-
ing the sum of squared errors or some analogous measure.

As for the first stage, under the expected utility paradigm there exist several methods for the elicitation
of utilities; see Farquhar (1984) for a survey. However, the most reliable among these techniques require
the assumption that the agent does not distort the probabilities of the risky outcomes. This assumption is
untenable, as the successful challenge of prospect theory to the descriptive validity of expected utility has
made clear. In a laudable effort to make utility elicitation independent of the paradigm, Wakker and
Deneffe (1996) have thus developed the tradeoff method, which is not affected by probability distortions.
This advantage has been promptly recognized and endorsed by the advocates of prospect theory; see for
instance Abdellaoui (2000), Bleichrodt and Pinto (2000), and Fennema and van Assen (1999). Hence,
utility elicitation is by now essentially unified across the paradigms of expected utility and prospect
theory.

In general, the method of moments is a statistical technique to estimate probability distributions by
equating their theoretical moments with the moments of the empirical distributions. When applied to
the estimate of Pearson distributions, it consists in choosing the four parameters in (5) to make sure
that the theoretical moments of the associated distribution function match the empirical moments.
We present the method with reference to the Pearson equation (5) for the density function and then
show how to apply it to the estimate of the coefficients of the Pearson equation (4) for the risk aversion
function.

Given a density function f(x) that satisfies the Pearson equation (5), suppose that the first four moments
lk = �xkf(x) dx for k = 1, . . . , 4 exist and are finite. Using (5), a bit of manipulation—see Johnson et al.
(1994, p. 22)—leads to the system of linear equations
m þ 2l1a þ b ¼ l1;

l1m þ 3l2a þ 2l1b þ c ¼ l2;

l2m þ 4l3a þ 3l2b þ 2l1c ¼ l3;

l3m þ 5l4a þ 4l3b þ 3l2c ¼ l4;

ð9Þ
from which we obtain the four parameters m, a, b, and c as a function of the first four moments:
m ¼ 9l1l
3
2 þ 8l1l

2
3 þ 12l3

1l4 þ 3l2
2l3 þ l3l4 � 20l2

1l2l3 � 13l1l2l4

18l3
2 þ 12l2

3 � 6l2
1l

2
2 þ 8l3

1l3 þ 10l2
1l4 � 10l2l4 � 32l1l2l3

;

a ¼ 6l3
2 þ 3l2

3 � 3l2
1l

2
2 þ 4l3

1l3 þ 2l2
1l4 � 2l2l4 � 10l1l2l3

18l3
2 þ 12l2

3 � 6l2
1l

2
2 þ 8l3

1l3 þ 10l2
1l4 � 10l2l4 � 32l1l2l3

;

b ¼ �3l1l
3
2 � 2l1l

2
3 � 6l3

1l4 � 3l2
2l3 � l3l4 þ 8l2

1l2l3 þ 7l1l2l4

18l3
2 þ 12l2

3 � 6l2
1l

2
2 þ 8l3

1l3 þ 10l2
1l4 � 10l2l4 � 32l1l2l3

;

c ¼ �4l2
1l

2
3 þ 3l2l

2
3 � 4l2

2l4 þ 3l2
1l2l4 þ l1l

2
2l3 þ l1l3l4

18l3
2 þ 12l2

3 � 6l2
1l

2
2 þ 8l3

1l3 þ 10l2
1l4 � 10l2l4 � 32l1l2l3

:

ð10Þ
We warn that statisticians are used to assume l1 = 0 and solve for the parameters as a function of the cen-
tral moments or other statistics. Therefore, formulas taken from handbooks in statistics will in general look
different (and probably nicer). Here is an example, with l1 possibly different from 0. Let X be a random
variable with density f(x). Let l and r denote the mean and the standard deviation of X and denote the
two coefficients of skewness and kurtosis for X by
b1 ¼
EðX � lÞ3

r3
and b2 ¼

EðX � lÞ4

r4
� 3:
Then the solution in (10) can be rewritten as
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m ¼ lþ rb1ðb2 þ 6Þ
12b2

1 � 10b2 � 12
;

a ¼ 3b2
1 � 2b2

12b2
1 � 10b2 � 12

;

b ¼ � rb1ðb2 þ 6Þ þ 2lð3b2
1 � 2b2Þ

12b2
1 � 10b2 � 12

;

c ¼ l2ð3b2
1 � 2b2Þ þ lrb1ðb2 þ 6Þ þ r2ð3b2

1 � 4b2 � 12Þ
12b2

1 � 10b2 � 12
:

ð11Þ
In particular, given m and a, the values of b and c can be obtained as
b ¼ lð1� 2aÞ � m;

c ¼ l2aþ ðm� lÞ l� 2r
b1

� �
:

ð12Þ
We now turn to the estimate of the risk aversion function in (4). Let there be a set of elicited utilities; for-
mally, for some w1 < w2 < � � � < wn, we are given the corresponding values of the utility function
u(w1) 6 u(w2) 6 � � � 6 u(wn). To rule out the trivial case of a constant utility function, we assume that at
least one strict inequality holds. Apply the standard normalization and rescale utilities so that u(w1) = 0
and u(wn) = 1. Alternatively, one may specify one or two additional points w0 < w1 and wn+1 > wn and
let u(w0) = 0 and u(wn+1) = 1.

We need to compute the ‘‘moments’’ associated with this utility function. Recall that u(w) shares the for-
mal properties of a distribution function but at this stage we only know a few points on its curve. Thus, we
approximate it by the piecewise linear function ûðwÞ joining (wi, u(wi)) to (wi+1, u(wi+1)) for all
i = 1, 2, . . . , n � 1. Using the corresponding piecewise constant ‘‘density’’
û0ðwÞ ¼ ûðwiþ1Þ � ûðwiÞ
wiþ1 � wi

for w in ðwi; wiþ1Þ;
we obtain the four moments by computing
lk ¼
Z wn

w1

xkû0ðwÞdw for i ¼ 1; 2; 3; 4:
These moments are substituted in (10)—or, equivalently, in (11)—to derive the four parameters m, a, b, c

and, possibly, other statistics such as r or b1. Once the values of the parameters have been obtained, a
glance to the list of the major classes of Pearson utilities in Section 5 suffices to identify the functional form
for u 0(w). In general, then, numerical integration is necessary to reconstruct u from u 0 because some of the
Pearson utility functions have no closed-form representation.

As described above, the method of moments simultaneously selects a functional form and its exact para-
metric specification. This provides an elementary way to estimate the utility function. On the other hand,
the method has little theoretical appeal except for its simplicity. (Since the Thirties, for instance, it has been
replaced as the method of choice for the estimate of density functions in statistics by the maximum likeli-
hood method suggested by Fisher.) An alternative possibility is to use it only to select a functional form
from the classes in Section 5 and then apply standard techniques such as the minimization of mean square
errors for the choice of the exact values of the parameters.
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6. Closing remarks

Prospect theory (and its variants) also presume the existence of a probability weighting function g. Re-
cent formulations require that g is an increasing and continuous function that maps from [0, 1] onto [0, 1].
For instance, the two best known parameterizations for g are g(p) = (pk)/[pk + (1 � p)k]1/k in Tversky and
Kahneman (1992) and g(p) = exp[�(�ln p)k] in Prelec (1998). Both of these functions are reverse S-shaped
to fit the empirical evidence.

By analogy with the treatment of utility functions, one is naturally led to consider probability weighting
functions that satisfy the Pearson equation. Given the additional constraint that the support of g is [0, 1],
this implies that the only possible choice belongs to Class I (Beta) and therefore suggests to look into a
probability weighting function g such that g 0(p) = [1/B(a,b)]xa(1 � x)b. Adding the constraint of reverse
S-shapedness imposes a < 0 and b < 0. This derivation of a possible parameterization is purely formal,
and at this stage we are unable to offer a probabilistic interpretation for g(p) similar to the target-based
interpretation of u. On the other hand, it adds plausibility to our modest claim that the Pearson equation
is a natural source of alternative parameterizations.

Finally, we wish to point out that the limited number of parameters characterizing Pearson utility func-
tions simplifies the identification of specific conditions over preferences. For instance, consider standard
risk aversion by Kimball (1993). It is well known that a sufficient condition for a utility function u to exhibit
standard risk aversion is that its coefficient of risk tolerance (i.e., the reciprocal of the risk aversion func-
tion) is increasing and concave—see Gollier (2001, p. 166). Imposing these two conditions on the reciprocal
of the risk aversion function in (4), we obtain that a > 0 and am2 � bm � c 6 0 imply that the utility func-
tion u(m + x) exhibits standard risk aversion over positive increments x above the reference point. In par-
ticular, if we assume m = 0 as in prospect theory, a > 0 and c 6 0 suffice to ensure that the value function
exhibits standard risk aversion over gains.
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Appendix A. Proof

Proof of Proposition 1. By integration by parts,
Z b

0

uðxÞdF ðxÞ ¼ uð0Þ½1� F ð0Þ� � uðbÞ½1� F ðbÞ� þ
Z b

0

u0ðxÞ½1� F ðxÞ�dx: ðA:1Þ
Since Eju(X)j < 1,
E j uðX Þ j¼
Xþ1
k¼0

Z kþ1

k
j uðxÞ j dF ðxÞ <1
implies
Xþ1
k¼b

Z kþ1

k
j uðxÞ j dF ðxÞ ! 0
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as b " 1. Thus, as b " 1,
0 6 uðbÞ½1� F ðbÞ� 6j uðbÞ j P ðX P bÞ 6
Xþ1
k¼b

Z kþ1

k
j uðxÞ j dF ðxÞ ! 0:
Going to the limit in (A.1),
Z þ1

0

uðxÞdF ðxÞ ¼ uð0Þ½1� F ð0Þ� þ
Z þ1

0

u0x½1� F ðxÞ�dx:
By a similar argument,
Z 0

�1
uðxÞdF ðxÞ ¼ uð0ÞF ð0Þ �

Z 0

�1
u0ðxÞF ðxÞdx
from which the result follows. h
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