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Abstract

We consider multiperiod portfolio selection problems for a decision maker with

a specified utility function when the variance of security returns is described by a

discrete time stochastic model. The solution of these problems involves a dynamic

programming formulation and backward induction. We present a simulation-based

method to solve these problems adopting an approach which replaces the preposterior

analysis by a surface fitting based optimization approach. We provide examples to

illustrate the implementation of our approach.

Key words: Portfolio optimization; Bayesian inference; decision analysis; stochastic

volatility; dynamic programming.
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1. Introduction and Overview

The portfolio selection problem was originally considered by Markowitz

(1952) for an investor who has a sum of money to allocate among securities.2

Markowitz's approach to the problem consisted of two steps. First forming a set of

efficient portfolios and secondly selecting from the efficient set the one portfolio that

provides the investor with the most suitable combination of risk and return. Extension

of the Markowitz model was considered by others where particular objective functions

were suggested and mean-variance analysis was introduced [see for example, Farrar

(1962)].

An earlier decision theoretic approach to the problem was considered by Mao

and Sarndal (1966). The decision theoretic point of view provided a justification for

the mean-variance analysis. For example, it can be shown that the formulation of

Farrar (1962) follows from maximization of expected utility when security returns are

normally distributed and the investor's utility function is exponential. Most of the early

work in portfolio selection focused on single-period models. Some exceptions to this

are the multiperiod models of Mossin (1968).

A Bayesian decision theoretic approach to the problem (with revision of

uncertainty) was presented in Winkler and Barry (1975) and Barry and Winkler (1976)

where Bayesian multiperiod models were introduced and computational difficulties

were pointed out. More recent Bayesian work includes Quintana (1992), Quintana and

Putnam (1996) where single period adaptive Bayesian models were considered. In

other words, these models used sequential updating and one-step ahead portfolio

allocations. Polson and Tew (2000) also presented a single period adaptive Bayesian

model using a hierarchical model setup. None of these models considered a formal

treatment of stochastic volatility. The recent work by Aguilar and West (2000)

introduced single period dynamic factor models with stochastic volatility.

Quintana and Putnam (1994) and Quintana et. al. (1998) considered the multi-

period problem and discussed the difficulties in solving the stochastic dynamic

program. In Quintana and Putnam (1994), the authors showed that if the utility

function is additive over time, then the optimal solution to the multi-period problem

consists of one-period optimal solutions over time. In other words, the one-step look

ahead rule is optimal in this case. A comprehensive review of Bayesian work in

portfolio management is given in Quintana et. al. (2003).

In this paper we will consider the multi-period portfolio selection problem from

a Bayesian decision theoretic point of view. In our development we assume that the

security returns are described by multivariate stochastic variance models and in so

doing consider both the multivariate GARCH models of Bollerslev et. al. (1988) and
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state-space type stochasic volatilility models of Uhlig (1997) and Liu (2000). We note

that the presented approach is general and can be applied to other types of multivariate

stochastic volatility models considered by Harvey et. al. (1994) and Soyer and Tanyeri

(2003). Our formulation of the problem will follow a setup similar to that considered in

Winkler and Barry (1975). We present a solution to the decision problem based on

Monte Carlo methods that alleviate some of the difficulties. In section 2 we present the

decision theoretic setup for the portfolio selection problem. We focus on the two-

period problem with stationary returns and show the difficulties involved in the

preposterior analysis. In section 3 present we consider the extension of the problem

where the returns following two different classes of multivariate stochastic variance

models. We introduce a standard Monte Carlo approach to solve the two-period

portfolio selection problem in the multivariate stochastic variance models in Section 4

and illustrate the computational burden and inefficiencies involved in implementation of

the standard Monte Carlo method. To alleviate these problems we present an

alternative Monte Carlo method. Our method is based on the curve surface fitting°

approach of Muller and Parmigiani (1995) that was developed for optimal design

problems. This approach enables us to perform the preposterior analysis in an efficient

manner. An implementation of this approach is illustrated in Section 5 using the two

stochastic variance models and the results are compared with the standard Monte

Carlo method.

We note that the multi-period allocation problem that we consider here arises

also in derivatives pricing in the context of discrete time hedging problem. As pointed

out by one of the referees, these problems typically involve allocation between two

assets and thus are well-suited to the proposed method.

2. Portfolio Selection ProblemDecision Theoretic Setup for the

Let > ! >! �denote the wealth of the investor at the end of time period and

denote the initial wealth of the investor at time . as the return from� �Also, we define �
!

security during time period If we� !À assume that there are no transaction costs and

the portfolio will be chosen from securities, then the investor's wealth at the end of2

period is given by!

> ~ >!

�~�

2

�

!
� (2.1)

where is the amount invested in security at the beginning of time period> � ! b �À�
!

The wealth of the investor at the end of time period can be written as²! b �³
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. (2.2)> ~ ²� b � ³> ~ > b � >!b� !

�~� �~�

2 2

� � � �
!b� ! !b� !

� �

Following the development of Winkler and Barry (1975), we assume that the

investor's objective is to maximize the utility of wealth at the end of a finite time period

; <²> ³, that is, to maximize . The form of the utility function describes the investor's;

attitude towards risk and provides the investor with a combination of risk and return

that reflects this attitude. As pointed out by Mao and Sarndal (1966), in finance

literature various suggestions have been made to choose a portfolio and these

strategies can be justified by specifying different utility functions. For example, the

mean-variance analysis is justified by a quadratic utility function irrespective of the

distribution of security returns. Another form of mean-variance analysis, as in Farrar

(1962), is justified by an exponential utility function when security returns are normally

distributed.

In the multiperiod problem with a finite horizon , the investor will be;

maximizing the utility by sequentially choosing the decision variables ,<²> ³ >;
�
!

! ~ �ÁÃ Á; c � � ~ �ÁÃ Á2and at different points in time based on the available

information. That is, the optimal allocation will be revised as the random quantities

� Á ! ~ �ÁÃ Á;�
!

, are observed over time. The multiperiod optimal allocation problem

can be represented as a sequential decision problem as given by the -stage decision;

tree in Figure 1.
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Figure 1. Decision tree for the multiperiod portfolio selection problem.

In Figure 1 the decision nodes at time periods are denoted by! ~ �ÁÃ Á; c �

+ + Ã + 6 6 Ã� � ;c� � �, , , and the random (observation) nodes are denoted by , , ,

6 ! ~ � > +; � �. At , given the initial wealth , at decision node , the investor will

determine , , , that is, the amounts invested in the securities.>2

� � �

� 2~ ²> Ã > ³ 2

At time period , the returns from securities, are! ~ � 2 � Á � ÁÃ Á � ³�� ~ ² � � 2 Z

� � �

observed. This is denoted by the random node in the decision tree. Next, given the6�

observed returns t decision node the investor will determine , ,��, a + ~ ²> Ã�
�

�
>2

�
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> ³2 Z

�
and this process is repeated at the subsequent nodes. As pointed out by Winkler

and Barry (1975), the solution of this problem involves a dynamic programming

formulation and backward induction. Solution of the tree proceeds in the usual way by

taking expectation at random nodes and maximizing the expected utility at the decision

nodes [see Lindley (1985)]. At decision node , given the observed returns ,²; c �³ ��
 

 ~ �ÁÃ Á ; c � � ~ �ÁÃ Á2 ~ ²> Á > Áand , the decision variables>2

;c� ;c� ;c�

� �

ÃÁ> ³2 Z

;c�
are chosen such that

��% , ´<²> ³µ (2.3)
>
2

;c�

;c� ;

where denotes the expectation conditional on the returns from the first, ²; c �³;c�

periods In other words, the expectation is taken with respect to the probabilityÀ ,;c�

distribution of given . We will� � � �; � � ;c�~ ² Á ÁÃ Á� Á � ÁÃ Á � ³ ~ ² ³� � 2 Z

; ; ; ;c�

Z

D

denote this distribution by �² �; O ³D;c� assuming all of its parameters are known.

Let < ²> ³i

;c� ; denote the optimal value of the expected utility corresponding

to the optimal allocation at time . At> ~2i

;c� ;c� ;c� ;c�

�i �i 2i²> Á > Á Ã Á> ³ ²; c �³

time , that is, at decision node , the optimal allocation is obtained via²; c �³ ²; c �³

��% , ´< ²> ³µ (2.4)
>
2

;c�

;c� ;
i

;c�

where . In general at time period ,< ²> ³ ~ , < > b � > !i � �i

;c� ; ;c� ;c�

�~�

2

; ;c�
< 4 5=�

given the observed returns the decision variables areD!
� � 2 Z
! ! !

>2
!

~ ²> Á > Á Ã Á> ³

chosen such that

��% , ´< ²> ³µ (2.5)
>
2

!

! ;!b�
i

where denotes the expectation conditional on the returns from the first, !! �
²!³

periods and is the expected utility corresponding to the optimal allocation at< ²> ³!b�
i

;

time periods In this case expectation, , is taken with respect to the! b �ÁÃ Á; c �À ,!

probability distribution .�² ³�!b�O D!

Continuing in this manner, at time , the optimal allocation for investment�

period , is obtained by solving�

��% , ��% , Ã ��% , ´<²> ³µ Ã . (2.6)
> > >
2 2 2

�� ;c�

� � ! ;> ?< =
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Note that (2.6) is equivalent to solving

��% , ´< ²> ³µ, (2.7)
>
2

�

� ;�

i

and for the special case of a single period problem, that is, , the above reduces; ~ �

to

��% , ´<²> ³µÀ (2.8)
>
2

�

� �

In general, even for the case of a finite horizon problem, calculation of the

optimal allocation is not trivial as it involves implicit computation of expectations and

maximizations at each time period. Also, the Bayesian strategy requires revision of

uncertainty about the parameters of the distribution of after each time period. Thus,�!

the evaluation of the expectations may not be analytically tractable. If 1, then we; ~

have a single period problem implying that the investor follows a myopic policy which

requires only looking at one period ahead. In this case solution can be obtained for

some simple cases.

In what follows we will consider a two-period problem with a specific form for

the utility function as well as for the probability distribution of the returns.

2.1 A Two-period Problem

To illustrate an implementation of the Bayesian decision theoretic setup now

we consider a two-period portfolio selection problem where the investor needs to

determine the optimal portfolio so that the utility of wealth at the end of period 2, that

is,

<²> ³ ~ <²> b � > ³ ~ <²> b ³2 1 12 1
�
�~�

2

� �
�
Z

�
>

2

�
(2.9)

is maximized. The decision tree associated with the two-period portfolio selection

problem is shown in Figure 2.
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Figure 2. Decision tree for the two-period portfolio selection problem.
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We assume that at time period the dimensional return vector! 2 �! is normally

distributed with mean vector and covariance matrix . We will denote this� '

distribution as

² Á Á ³� � 5!O ³ ²� ' � ' , (2.10)

and following 'sWinkler and Barry (1975) we will assume that are independent�!

random vectors. For our development in this section we also assume that is�

unknown and is described by a normal prioruncertainty about �

² Á Á ³�O ³ ²� * � 5 � *� � � � , (2.11)

where quantities. The covariance matrix� *� �and are specified is assumed to be'

known in this section.

The two-period decision problem shown in Figure 2 is solved in the

conventional manner by the decision tree via taking expectations at thefolding back

random nodes and maximizing the expected utility at the decision nodes. We assume

that the investor has an exponential utility function

<²> ³ ~ c �%�² c (> ³2 2 (2.12)

where and is referred to as the "risk tolerance" and describes the degree of( � � �°(

risk aversion. Smaller the is the higher the risk tolerance is for the investor.(

At the random node the expected utility is evaluated by using6 , ´<²> ³µ� 1 2

the probability distribution of given� � � �2 2 1�, that is by using . Given the above�² O ³

setup, via standard Bayesian updating it can be shown that

²� � ³ � 5 � *2 1O ² b ³1 1Á ' , (2.13)

where

� * * � � * *1 1~ ² b ³ ~ ² b ³c� c� c� c� c�

� � �� �

c�
' 'and . (2.14)

Since , at> ~ > b >2 1 2� �
Z
� �>2

�
, given will also have a normal distribution.Thus,

random node 6 , ´<²> ³µ� the expected utility is obtained as1 2

, ´<²> ³µ ~ c �%�² c (> ³�²> O ³ �>1 2 2 2 2� �� . (2.15)

Using the properties of normal distribution it can be shown that



9

, ´<²> ³µ ~ c �%� c ( > b c ² ³
(

�
1 2 F G<4 5 4 5=

� �
Z

1> > 7 >
2 2 Z 2

� � �� (2.16)

where . The optimal portfolio for period two is obtained as7� ~ *1 b'

>
7

2i �

�

c�

~
(

�1
(2.17)

by maximizing (2.16) with respect to at decision node . Optimal value of the>2

�
+�

expected utility, (2.16) using< ²> ³
�

i
2 , is obtained by evaluating . Next> >2 2i

� �
~

at random node , needs to be obtained using the predictive6 , ´< ²> ³µ� � �

i
2

distribution which is a normal density with mean vector�² ³� �� 0 and covariance

matrix . Note that and² b ³* �0 ' < ²> ³ >
�

i
�2 involves which both are functions of1

�� and thus the expectation can not be evaluated in closed form and the, ´< ²> ³µ� �

i
2

optimal portfolio can not be obtained analytically. In this case one alternative approach

is to use a Monte Carlo method to evaluate the expectation and then find the portfolio.

But this is not easy to implement for problems with T 2 periods and may become�

computationally inefficient in the multivariate random variance models that are

considered in section 3.

3. Multivariate Random Variance Models

In this section we assume that the conditional variance of returns is a function

of time, that is,

² Á Á ³� � 5²!O ³� ' � 't t, D!c� , (3.1)

where D!c� ~ ² ³� � �1 2, , ,Ã !c� and we treat as a stochastic process. In so doing,'t

we will consider two classes of models. The first model is a state-space type stochastic

volatilility model which has been considered by Uhlig (1997) and Liu (2000) and the

second model is the multivariate GARCH model of Bollerslev et. al. (1988). As

previously mentioned other types of stochastic processes such as discrete time gamma

processes can also be considered to model conditional variances. In what follows we

first introduce the models and then consider the portfolio selection problem using these

models and discuss computational issues.

3.1 State Space Volatility Model

We first rewrite (3.1) as a linear model with observation noise as�!

�! !~ b� �t , (3.2)
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where , and� ) )! !c� !
c

!
dD 0� ³ ~5² 1

'c1
t

is the precision matrix. We will2 d2

assume that the prior for mean return vector is given by�t

� ) )t
d

! !c� !c�

c

!
Á � ² °#³D 5 � , (3.3)�

where is a specified precision parameter and is the known mean vector at time# �!c�

! c �. Conditional on 's, 's are independent random quantities in (3.3). Following) �! t

Uhlig (1997) and Liu (2000) the precision matrix is assumed to follow a first-order)!

Markov structure as

) ) � )! ! ! !~ ² ³ ² ³C C (3.4)-1 -1
Z ,�

where C is the upper Cholesky decomposition of . Given we assume² ³) )! ! !c�-1 -1 D

that is will have a matrix beta distribution [see denoted�! Uhlig (1994) for definition]

as

�! !c� !c� !c� (3.5)d 4 5D � 4)�!� � °�Á ²� c ³� °�� �

and that has a Wishart distribution [see and)! !c�-1 Uhlig (1994)] with scale matrix 7

degrees of freedom denoted as�!c�

)! !c� !c� !c�-1
dD � >� �² Á � ³7 . (3.6)

We note that in the above 0 1 where is typically larger than 0.9 and� �� �

�� � 2!c� for the matrices to be positive definite. It can be shown that (3.4)-(3.6)

imply a prior for as)!

)! !c� !c� !c�
dD � >� �² � ³� �7 , . (3.7)

The above development yields a random walk type of evolution for the precision

matrix from one period to the next. We note that (3.6) and (3.7) imply that

,² ³ ~ ,² ³ ~ �) )! !c� ! !c� !c�

c

!c�-1
1d dD D 7 , (3.8)

that is, the means are the same, but the dispersion increases as we move from period

²! c �³ !to . More specifically, , the scale matrix of changes to in7 7!c� ! !c�) -1, �

(3.7).
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An attractive feature of the above model is that if we start with a prior

)0 0 0 0
dD � >� �² � ³7 , at time 0, then a conjugate Bayesian analysis is available. It

can be shown that

)! ! ! !
dD � >� �² Á � ³7 , (3.9)

and

� ) )t
d 4 5

! ! !

c

!
Á � °²� b #³D 5 � , (3.10)�

where � ~ � b �! !c�� ,

7 7 � c� � c�! !c� ! !c� ! !c�

Z
= ,� b ² ³ ² ³

#

� #b

and

� � �
! ! !c�~ b

� #

� # � #
.

b b

3.2 Multivariate GARCH Models

A multivariate extension of the univariate ARCH and generalized ARCH

models of Engle (1982) and Bollerslev (1986), is introduced by Bollerslev et. al.

(1988). Using the observation model

�! !~ b� � , (3.11)

where , , the multivariate GARCH( , ) model is defined as� '! !c� !
dD 0� ² ³ � �5

#��� ~ b #��� b #���4 5 � �6 7 6 7' � � '! � � � !c�

�~� �~�

� �

!c� !c�( ( )
Z

. (3.12)

In (3.12) denotes the column stacking operator of the lower portion of a#��� h4 5

symmetric matrix, is a 1 2 vector, 's and are( ( )� � � ~ ° d2²2 b �³  d  

matrices. We note that certain conditions need to be satisfied in (3.12) for to be a'!

positive definite matrix. In what follows, we will consider the ARCH models in (3.12),

that is, the case where 0. Similar to the univariate ARCH models, multivariate� ~

ARCH( ) models imply that follows a vector autoregressive process of� #���6 7� �
! !

Z

order . In other words, we can motivate an ARCH( ) process via� �
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#��� ~ b #��� b6 7 6 7�� � � �
! ! !c� !c�� � !

�~�

�
Z Z

( ( " , (3.13)

where is a zero-mean white-noise process."! ! ! !
~ #��� c #���4 5 6 7' � �

Z

We note that the model (3.12) is highly parameterized. For example, for

2 ~ 2, the first order ARCH model can be written as

r u
s v

x { x {
y | y |

x {z }
y |

' � � � �

' � � � � � �

' � � � �

�

�

11t

12t , ,

22t

2
,

,
2

~ b h

�� �� �� ��

�� �� �� �� � !c� � !c�

�� �� �� ��

� !c�

� !c�

. (3.14)

A natural simplification is obtained by assuming a diagonal structure for the matrix(1

in (3.14), that is, 0 if i j. As pointed out by Bollerslev et. al. (1988), this�ij ~ £

simply implies that each covariance depends only on its past values, that is,

r u
s v

x {z }
y |

'

' � � � �

'

� � �

� � �

11t

12t , ,

22t

2
,

,
2

~

b

b h

b

�� �� � !c�

�� �� � !c� � !c�

�� �� � !c�

. (3.15)

Similar simplifications can be obtained for multivariate GARCH models which are

motivated by being a vector ARMA process.#���6 7� �
! !

Z

A Bayesian analysis of the multivariate GARCH model using any form of prior

distributions for , , 's and 's, requires use of Markov chain Monte Carlo� ( ( )� � �

(MCMC) methods. The MCMC approach introduced by Muller and Pole (1998) for

univariate GARCH models has been extended to multivariate GARCH models in Soyer

and Tanyeri (2004).

3.3 Portfolio Selection using Random Variance Models

The two-period portfolio selection problem presented in Section 2.1 requires

evaluation of expected utility at random nodes 6 6� �and . As we have pointed out

earlier, the expectation at node is with respect to the posterior predictive6�

distribution �²� �2 1O ³. In Section 2.1 where this distribution was given as a normal

density in (2.13), we were able to evaluate the expected utility in (2.15).

In the state space volatility model, based on the posterior results (3.9) and

(3.10) it is again possible to obtain the posterior predictive distribution �²� �2 1O ³. In
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this case is a multivariate-t density with degrees of freedom�² � c2 b �³� �2 1O ³ ²� � ,

mean vector has a� 71, and scale matrix . This also implies that given� �> �1

multivariate-t distribution and as a result the expectation in (2.15) can not be evaluated

in closed form and thus the optimal portfolio at decision node can not obtained+�

analytically.

In the multivariate GARCH models, the posterior analysis can not be obtained

analytically and as a result the exact form of the posterior predictive distribution

�²� �2 1O ³ is not known. Using MCMC methods we can draw samples from the

posterior predictive distribution, but this does not allow us to solve the expectation in

(2.15) analytically. Thus, in both of these cases solution of the optimal portfolio

selection problem requires use of Monte Carlo methods. In the sequel, we will present

Monte Carlo-based methods to solve the multi-period portfolio selection problem with

random variances.

4. Monte Carlo Based Approaches for Portfolio Selection Problem

We consider the two-period problem presented in Section 2.1 with the

conditional variance is described by the random variance models of Section 3 and

illustrate how the decision problem can be solved using Monte Carlo based methods.

In so doing, we first present a standard Monte Carlo approach and illustrate how this

method becomes computationally inefficient in Section 4.1. To alleviate the

computational problems, in Section 4.2 we introduce an alternate Monte Carlo method

to solve the two-period problem by adopting the simulation based approach of Muller

and Parmigiani (1995) where the preposterior analysis is replaced by a surface fitting

approach. We discuss extension of the proposed approach to multi-period portfolio

selection problems in general as well as the related computational issues.

4.1 Standard Monte Carlo Approach

Let denote unknown parameters of the model for the returns at time#! !

which can be either described by the state space model of Section 3.1 or by the

multivariate GARCH model of Section 3.2. The standard Monte Carlo solution of the

decision tree given in Figure 2 involves Monte Carlo averages at random nodes and6�

6 + +� � �and maximization of these Monte Carlo averages at random nodes and .

Folding back the decison tree using the Monte Carlo approach consists of the

following steps:
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Step 1: Choose initial wealth and portfolio . Also, choose the vector>� �
>2

of weights , , , , for , where represents$
� 

� ~ ²$ $ Ã $ ³ � ~ �ÁÃ Á 1 $�  2 �

� � � �

2

the portion of the wealth which will be allocated to security in period 2's> ��

portfolio. Note that 1.�
�~�

2

�

�
$ ~

: Generate and 1, , , based on the prior and priorStep 2 # #�

� ��
�

1
, � ~ Ã 0 �² ³

predictive distribution . Compute�² > ~ > b� �1O ³#�
2

�
for the model

�

1 �
�Z

�
>

and for each 1, , , using the weight vector , obtain the portfolios� ~ Ã 0 $
�
�

> ~ $
2� �
� �²�³ > � ~ �ÁÃ Á1

�

1
for .

Step 3: For each and enerate and 1, , , based on the# #� �

� �
� �

� �

1 2
, g , � ~ Ã 3

model. Compute the utility where for 1,<²> ³ > ~ > b ²�³ ~� �

2 2 1

�

�
�Z
�
>

2�
� �

Ã 3 � ~ �ÁÃ Á1 � ~ Ã 0, , and 1, , .

Step 4: At random node evaluate the expectation using the Monte Carlo6�

average

,´<²> ³O ²�³µ ~ <²> ³Á
�

3
2 2> >

2 2�
�

�~�

3

�

�
, (4.1)�

�

�
, �

for 1, , , and 1, , .� ~ Ã 3 � ~ �ÁÃ Á1 � ~ Ã 0

Step 5: At decision node optimize (4.1) with respect to , that is,+ ²�³� >2

�

find that maximizes , , ,> > >2i 2
� �

2�²�³ ,´< ²> ³O ²�³µ � ~ �ÁÃ Á 12 �
�
�

�
,

and obtain

< ²> ³ ~ ,´<²> ³O ²�³µ
� �

i

2 2 > >
2 2i

�
, , (4.2)�

�

�
,

where .>2i

�
²�³ is a function of ��

�

Step 6: At random node compute the preposterior expected utility using the6�

Monte Carlo average

,´< ²> ³O µ ~ ,´<²> ³O ²�³µ
�

0� � �

i

2 2> > >
2 2 2i

�~�

3

�
, . (4.3)� �

�

�
,

Step 7: Go to Step 1 and repeat steps 2-6 for a different and finally at>2

�

decision node find the maximizer of which gives us the+ ,´< ²> ³O µ� �

i

�2 >
2

optimal first period portfolio.
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For implementation of the Monte Carlo approach, in the state space model of

Section 3.1 we have and in the multivariate GARCH model# � ) # �t t~ ² ³ ~ ²! !, ,

' 't t³ where is a function of , 's and 's as defined in (3.12). In the state space( ( )� � �

model initially the prior of is specified and is generated using (3.7) and given) )0 1

) �1 0with specified value of the mean vector is generated using (3.3) and the� 1

return vector is generated from (3.2). In step 3 given , is generated using the�1 ) )1 2

transition model (3.4) with is drawn from (3.5) for Given and is drawn� ) �2 2 �1, 2

from (3.3) with is updated accordingly. In the multivariate GARCH model, if we�1

assume that we have a multivariate GARCH(1,1) model then the prior , , ,�²� ( (� �

) (� �³ #��� ~is specified. In so doing, initially we can choose and assume that4 5'0

�
�
~ 2� �where is a dimensional vector of zeros. Note that in choosing the prior of

( ( )� � �, , we need to ensure the positive definiteness of the matrix. Once ,' �1

( ( )� � �, and are generated, then is drawn from (3.12) Next the error is' �1 1

drawn and the return vector is generated from (3.11). Given and , for the�1 ' �1 1

second period, is drawn from (3.12) and from (3.11).'2 �2 is drawn

Note that even for the two-period problem, the implementation of the above

Monte Carlo approach is not computationally efficient. The approach requires, for each

first period portfolio , specification of second period portfolios and> >2 2

��
1 0 d 3

draws from the returns for each portfolio combination. Thus, evaluation of the Monte

Carlo integral (4.1) requires a large computational effort in obtaining for each<²> ³2

>2

�
.

4.2 Surface Fitting Approach

The computational burden involved in the use of standard Monte Carlo

approach is common to many Bayesian decision problems such as the optimal design

problems. As pointed out by Mueller (1999), such a large scale simulation for each

value of the decision variable fails to exploit the continuity of the expected utility

surface. To avoid the computational burden in use of the standard Monte Carlo

approach, we will adopt the curve surface fitting method proposed by Muller and°

Parmigiani (1995) to the portfolio selection problem. This approach facilitates

preposterior analysis by replacing the integration steps required at random nodes of the

decision tree by smoothing steps. The maximization steps at the decision nodes are

replaced by the maximization of the fitted smooth surfaces.

The proposed approach consists of the following steps:

Step 1: Choose initial wealth and portfolio . Also, choose the vector>� �
>2 

of weights , , , , for , where 1.$
 

�
~ ²$ $ Ã $ ³  ~ �ÁÃ Á: $ ~�  2 �

� � � �

�~�

2
2 �
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: Generate and , using andStep 2 ²  ~ �ÁÃ Á: �² ³ �²# # # 

� � �� �
 

1 1³ O ³, for

the model. Compute and obtain the portfolios> ~ > b
 

1 � �
 Z

�
>2 

�

.> ~ $2  

� �
>

 

1

Step 3: Given and enerate and 1, , , based on the² ~ Ã :# #  

� �
� �
  

1 2
³  , g ,

model. Using points evaluate the utility , with: < ~ <²> ³  

� 2

> ~ > b ² 

2 1

 

�
 Z

�
> >2 2 

� �
and record the Monte Carlo sample points ,

>2 

�
, and .� �

  

1 2
, ³ <  

�

Step 4: Fit a surface , , to the points , , .3 ² ³ ² < ³�
 

�
> > > >2 2 2 2 

� � � �
� �  

1 1
,

Note that this step is analogous to taking expectation at random node of the6�

decision tree.

Step 5: Find the maximum of fitted surface , , over3 ² ³� > > >2 2 2

� � �
�
 

1

and replace the Monte Carlo points by , where ,² ³ ~ 3 ²> >2 2 

� �
� 
1
," "

  

� � �

> > > > >2i 2i 2 2 2i

� � � � �
, and is the maxima of , , . Here is� �

  

1 1
³ 3 ² ³�

the solution of the portfolio selection problem for the second period and it

depends on , This is analogous to the maximization step at²>2 

�
� 
1
³.

decision node of the decision tree.+�

Step 6: Fit a surface to the points . This is analogous to3 ² ³ ² ³� > >2 2 

� �
,"

 

�

the expectation taken at random node of the tree.6�

Step 7: Find the maximum of the fitted surface over . This is3 ² ³� > >2 2 

� �

analogous to the maximization step at decision node of the decision tree+�

and the maxima is the solution of the portfolio selection problem for>2i

�

the first period.

For the multi-period portfolio selection problems with periods, steps 3; � �

through 5 of the proposed algorithm would be repeated times.²; c �³

In implementation of the surface fitting algorithm, generation of random

quantities , , and# #� �� �1 2, under both models follow along the same lines presented

for the standard Monte Carlo approach in Section 4.1. However, the computational

effort that is required is a lot more modest for the surface fitting approach. As pointed

out by Muller (1999), the surface fitting approach does not use a large scale simulation

for each allocation but instead exploits the continuity of the expected utility surface. In

Step 4 of the algorithm a nonparametric surface , , is fitted to the3 ² ³� > >2 2 

� �
� 
1

points , , . We can think about the points , , ,² < ³ ² < ³> > > >2 2 2 2 

� � � �
� �  

1 1
, ,

  

� �
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 ~ �ÁÃ Á: <, as the data of a regression problem with as the dependent variable�

and ( , , ) as the vector of predictors, or the independent variables. Thus,> >2 2

� �
�1

this step is an approximation to the conditional expectation with respect to . In Step�2

5, we maximize the fitted surface with respect to , which is a multi-32 >2

�

dimensional optimization. This usually requires numerical techniques since most

nonparametric regression surface estimators are not available in closed forms. In Step

6 surface is fitted to the points and in Step 7 ( is3 ² ³ ² ³ 3 ³� > > >2 2 2

� � �
,"

 

� 1

maximized with respect to which is a -dimensional optimization. The optimal>2

�
2

solution at the decision node of the tree gives us the optimal portfolio for the first+�

period. As previously mentioned, it is important to note that the optimal decision at +�

represents the optimal portfolio for the second period and this decision depends on

both the first period portfolio and the returns outcome of the first period.�1Á

The choice of the smoothing technique used in steps 4 and 6 depend on the

dimensionality of the problem. Nonparametric regression methods or commonly used

smoothing methods can be appropriate. In our implementations in Section 5, we used

the local regression model of Chambers and Hastie (1992). In some applicationsLoess

the fitted expected utility surfaces may have tendency to be flat, but it is possible to

tighten the expected utility surfaces using power transformations as suggested by

Muller (1999).

5. Illustrations of the Monte Carlo Approach

We will illustrate implementations of the surface fitting approach using the two

multivariate random variance models of Section 3. In so doing, we will consider a two-

period portfolio selection problem as in Figure 2 and we assume that there are 32 ~

securities in the portfolio where the third security is a risk-free asset. For illustrative

purposes we assume that we do not have any historical data and therefore all the

simulations will be based on the prior and prior predictive distributions.

In our illustrations we assume that the initial wealth is and the return> ~ ��

on riskless asset is 0.02. The risk tolerance parameter is specified as 0.9 in (2.12).( ~

We will use the surface fitting approach based on 1000 simulations and portfolios.: ~

To see the accuracy of our results we will also solve the problem using a standard

Monte Carlo approach based on a large scale simulation of 1000 samples.�

For the state space model of Section 3.1, we will specify the discount

parameter as and the parameters of the Wishart prior for as� ~ �À
 � ~ ����)0 0 0
dD

and

70 ~ @ A0.020 0.002

0.002 0.010
.
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The prior parameters of are chosen as . Note that0.05 0.05�0 # ~ �0.8 and �

Z
~ " #

the choice of these prior parameters ensures the positive definiteness of the precision

matrices.

We use a multivariate ARCH(1) model with a diagonal structure given by

(3.14) in our illustration. In so doing, we assume that the components of vector are(�

independent gamma distributed random quantities, that is, ��Á� � .����4 50.75Á � Á

� ~ � Ã �, , . Similarly, the diagonal matrix (� has independent gamma components,

� �1Á�Á� � .����4 50.75 , , , . The mean vectorÁ � � ~ � Ã � is assumed to have a

normal prior with mean vector and variance covariance matrix0.03 0.025� ~� " #
Z

* ~ ( (� @ A0.010 0.00

0.00 0.010
. Furthermore, we assume that apriori






, , and are� � �

independent of each other and specify .0.0 0.0�
�

Z
~ " #

Note that since the initial wealth is , we can think of the initial portfolio> ~ ��

as the weight vector , , such that 1. Thus, represents> �

� � � � � �

� � � �

�~�

�

~ ²$ $ $ ³ $ ~ $2 �

proportion of which is allocated to the risk-free asset in the first period's portfolio.>�

We first present results of implementing the surface fitting algorithm of Section

4.2 with the state space volatility model using a simulation size of 1000 in the: ~

algorithm. Based on the above priors the optimal portfolio for period 1 is chosen as

$ ~ $ ~ $ ~
�i �i �i

� � �
0.352, 0.598 implying that 0.05. In other words, approximately

35% of the wealth is allocated to the first security, 65% is allocated to the second

security and remaining 5% is allocated to the risk-free asset. To obtain the exact

optimal portfolio we used the standard Monte Carlo method of Section 4.1 and ran a

large scale simulation of 1000 samples. This also resulted in an allocation of�

$ ~ $ ~
�i �i

� �
0.35, and 0.60 implying the accuracy of the results from surface fitting

algorithm. The optimal first period portfolio weights for the surface fitting and the

standard Monte Carlo approaches are shown in Table 1.

Table 1: Comparison of Optimal Portfolios using the Surface Fitting and

Standard Monte Carlo (SMC) Approaches

$ $ $ ² $ ² ³

�À�	 �À	
 �À�	� �À
�

�i �i �i �i

� � � �
SMC) SMC

2 8 0

In Figure 3, we present the plot of the fitted expected utility surface that we

obtain at the random node of the decision tree. In other words, this correponds to6�

the fitted surface to the points in Step 6 of the algorithm presented3 ² ³ ² ³� > >� �

� �
,"

�

in Section 4.2. Note that the optimal portfolio $ ~ $ ~
�i �i

� �
0.352 and 0.598 is
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obtained by andmaximizing this expected utility surface with respect to at the$ $
1 2

� �

decision node as implied by the Step 7 of the algorithm.+�

Figure 3. Expected Utility Surface as a Function of and .$ $
1 2

� �

As we have previously pointed out, the selection of the optimal portfolio for

the second period will be made after observing the first period returns. Thus, this

selection is a function of both the portfolio of the first period, and the observed> �

�
,

return vector . Two examples of optimal portfolios for period two for selected�1 > �i

�

values of and are shown in Table 2. Columns 1 and 2 of the table show the> �

�
�1

selected allocations to the risky securities whereas columns 3 and 4 show the returns

observed at period 1. Optimal portfolio allocations for period 2 using the surface

fitting approach are illustrated in columns 5 and 6 and the optimal portfolios using the

standard Monte Carlo approach are given in columns 7 and 8.

Table 2: Optimal Portfolios for Period 2 as a Function of using the> �

�
and �1

Surface Fitting and Standard Monte Carlo (SMC) Approaches

$ $ � � $ $ $ ² ³ $ ² ³

�� � 0 �À �À c �À �À �À�� �À

�� � 00 �À��
 �À�
 c 		 ��� �À��� �À
� �À�

1

� � � � � � � �

� � � �i �i �i �i
SMC SMC

712 007 0.0894 0.0970 002 963 0 960

5 0.0 2 0.0 5 � �À
�0 0

When we compare the results of the two approaches, we see that they are very

close. Thus, the surface fitting algorithm, which is based on a simulation effort of only
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: ~ 1000 samples, seems very accurate. Note that under the first case in the table, a

portfiolio of 0.712 and 0.007 is specied implying that 0.281 is$ ~ $ ~ $ ~
1 2 3

� � �

allocated to the risk-free asset. During the first period the returns on risky securities

are observed as 0.0894 and 0.0970. As a result of this loss in security 1� ~ c � ~
� �

� �

and gain in security 2, the optimal portfolio for period 2 is revised to 0.002,$ ~
�i

�

$ ~ $ ~
�i �i

� �
0.963 and 0.035. Note that since we observe a loss on security 1 and

the return on risk-free asset is 0.02, allocation is shifted to security 2 after the first

period.

In Figure 4, we present expected utility surface associated with the case 1 of

Table 2. This corresponds to the expectation taken at at the random node of the6�

decision tree , , to the pointsand it is obtained as fitting the surface 3 ² ³� > >� �

� �
�1

² < ³> >� �

� �
, , in Step 4 of the algorithm. Note that the optimal portfolio�1, �

$ ~ $ ~
�i �i

� �
0.002 and 0.963 is obtained by maximizing this expected utility surface

with respect to at the decision node as implied by the Step 5 of the$ $
1 2

� �
and +�

algorithm.

Similar analysis can be done by using the multivariate ARCH(1) model with a

diagonal structure using the priors presented earlier. Note that in this case prior mean

return of the first security is higher than the second one. Based on the surface fitting

approach with 1000 samples we have obtained the first period portfolio as: ~

$ ~ $ ~ $ ~�i �i �i

� � �
0.674, 0.321 implying that 0.005. Use of the standard Monte

Carlo approach with 1000 samples resulted in very similar results again implying the�

accuracy of the surface fitting algorithm. These results are shown in Table 3.

Figure 4. Expected Utility Surface for Case 1 as a Function of and .$ $
1 2

� �
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Table 3: Optimal Portfolios using the Surface Fitting and Standard

Monte Carlo (SMC) Approaches with ARCH(1) model

$ $ $ ² ³ $ ² ³

�À
�� �À��� �À � �À��

�i �i �i �i

� � � �
SMC SMC

6 0 0

Two examples of optimal portfolios for period two for selected values of> �i

�

> �

�
ARCH(1) modeland are shown in Table 4 using the . As implied by the�1

comparison with the standard Monte Carlo algorithm results, the surface fitting

algorithm looks very accurate. Note that under the first case in the table, a portfiolio of

$ ~ $ ~ $ ~
1 2 3

� � �
0.387 and 0.578 is specied implying that 0.035 is allocated to the

risk-free asset. As a result of loss in security 2 and gain in security 1 during the first

period, the optimal portfolio for period 2 is revised to 0.853, 0.000 and$ ~ $ ~
�i �i

� �

$ ~
�i

�
0.147.

Table 4: Optimal Portfolios for Period 2 using the Surface Fitting and Standard

Monte Carlo (SMC) Approaches ARCH(1) model

$ $ � � $ $ $ ² ³ $ ² ³

�� � 0 �À �À c �À �À �À �À��

�� � 00 �À �À c �À �À �À

1

� � � � � � � �

� � � �i �i �i �i
SMC SMC

387 578 0.0209 0.0283 853 000 850 0

303 576 0.0205 0.0089 002 077 000 080�À

5.1 Sensitivity Results and Comparison with Single-period Problem

An important parameter in our implementation of the proposed surface fitting

approach is . Note that specification of determines the decision space, that is, the: :

number of different feasible portfolios as well as the simulation effort. For

computational efficiency, it is desirable to obtain accurate results with a small value of

:. We have invetigated the robustness of the optimal portfolio using different values of

: in the examples that are presented here and have found out that the optimal

portfolios are very similar and accurate (when compared to standard Monte Carlo

results) for 500, 1000, 2000.: ~

We have also invetigated the sensitivity to prior parameters. It is clear that the

optimal allocation for period 1 depends on the choice of the prior parameters in the

two multivariate random variance models. Especially, the allocation is expected to be

quite sensitive to changes in parameters associated with mean and precision of security

returns. To investigate this we have looked at how the optimal allocation in period 1
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changes in the state space model when we change the prior parameters of mean return

vector and the precision matrix . More specifically we have investigated the� )0 0

sensitivity of the results to changes in and� 7� 0.

In the example that we have presented in the above the prior mean vector is

specified as implying equal expected returns for the two risky0.05 0.05��

Z
~ " #

securities. As expected, keeping all the other prior specifications at the same levels,

when we have increased the prior expected return on the first security, optimal

allocation to the first security has increased. An example of this is given in Table 5.

Table 5: Sensitivity of Optimal Portfolios to in the State Space Model��

��

Z

Z

Z

$ $

�À�	 �À	


�i �i

� �

" #

" #

" #

0.05 0.05

0.10 0.05

0.15 0.05

2 8

�À		� �À���

�À
�
 �À�
�

Similarly, we can look at changes in the prior scale matrix for the precision70

of returns. We note that the properties of the Wishart distribution and (3.8) imply that

,² ³ ~ ,² ³ �) )
0 10 0 0
c c� �d dD D 7 , that is, the expected conditional variance (or the

inverse precision) is proportional to the scale matrix . Thus, increasing any of the70

diagonal elements of implies that the expected variance of the corresponding70

security return will increase. As expected this implies a shift in allocation to the less

riskier security. We have investigated this by increasing the first security's prior

parameter in from 0.02 to 0.05 and have observed that the original allocation of70

² ²$ ~ $ ~ $ ~ $ ~�i �i �i �i

� � � �
0.352, 0.598) has changed to 0.205, 0.677). In other

words, the increase in uncertainty about security 1 return has resulted in a decrease in

allocation to this asset. Similar insights can be obtained in the multivariate GARCH

model by changing the prior parameters� *� and of the model.0

In addition to sensitivity analysis, we have also investigated how the optimal

portfolios obtained using the two-period model differ from those obtained using the

single-period model. In so doing, we have compared the optimal portfolios that are

obtained for the first period under the two models using the state space volatility

model. Note that the single period problem does not take into account any uncertainty

associated with the second period returns and thus we expect that the optimal

portfolios chosen will be different under the two models. The difference between the

two sets of optimal portfolios depends on the degree of prior uncertainty as reflected

by the parameters. In our example we have assumed the prior mean return vector

� 7�

Z
~ " #0.05 0.05 and the prior precision scale matrix 0 ~ @ A0.020 0.002

0.002 0.010
with
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degrees of freedom . It can be seen from (3.8) that these prior specifications� ~ ����0

imply a high degree of expected precision for both security returns for periods 1 and 2.

Thus, as a result the optimal portfolios that are obtained under the two models are not

expected to differ much. The optimal portfolio under the single period model is

obtained as , ) which is slightly different than the optimal² �À	��$ ~ �À�
� $ ~�i �i

� �

portfolio given in Table 1 for the two-period problem..

When we decrease the precision of the first security by specifying the scale

matrix as 70 ~ @ A0.050 0.002

0.002 0.010
, we observe a more pronounced difference between

the two portfolios as shown in Table 6. Similarly, changing the prior mean vector

significantly yields more different optimal portfolios under the two models. For

example, if the prior mean is specified as ��

Z
~ " #0.15 0.05 then the optimal

portfolio under the single-period model is obtained as ² �À���$ ~ �À	�� $ ~�i �i

� �
, )

which is quite different than the portfolio , ) obtained under² �À�
�$ ~ �À
�
 $ ~�i �i

� �

the two-period problem as shown in Table 5.

Table 6: Comparison of Optimal Portfolios for the Single and Two-Period Problems

Problem

Single

$ $

�À��	 �À
��

�À��� �À	��

�i �i

� �

Two-period

-period
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