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Abstract 
 

We study the joint replenishment problem (JRP) for M items under deterministic demand, with a 
minimum order quantity constraint for each item in the replenishment order. We first study an iterative 
procedure that proves to be not efficient in this case. Further, we derive bounds on the basic cycle time 
and propose an efficient global optimisation procedure to solve the JRP with constraints. Moreover, we 
also consider the case where a correction is made for empty replenishment occasions. The algorithms 
are tested in a real case. 
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1. Introduction 
 
Minimum order quantities (MOQ) are often encountered in real supply chains, where 
companies enforce economies of scale due to high set-up costs associated with 
production or transportation processes. While costs can be associated to a total order 
consisting of several order lines for products, it is often difficult to determine set-up 
costs for individual order lines. This was observed in a real case [5]. In the methods 
presented so far for the deterministic joint replenishment problem (JRP) it is assumed 
that a major ordering cost is charged at a basic cycle time T and that the ordering 
cycle of each item is some integer kj multiple of T, which is called a (kj,T) policy. Up 
to now, all research on the JRP has assumed existence of order line set-up costs and 
ignored minimal order quantities. In this line of research Goyal [4] and Van Eijs [2] 
proposed solution methods for the JRP based on enumeration of the frequencies kj’s. 
Viswanathan [6] and Fung and Ma [3] used tighter bounds on T to improve the 
procedures by Goyal and Van Eijs. Wildeman, Frenk and Dekker [7] presented an 
efficient optimal solution method for large problems based on Lipschitz optimisation. 
We will adapt their formulation but develop a completely new method to make it 
suitable for minimum order quantities. 
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In the next section we present the mathematical formulation of the JRP with MOQ. 
In section 3 we investigate an iterative method. Next we derive bounds on the basic 
cycle time and we include this information to develop a fast solution method. 
Contrary to many other papers, we explicitly deal with the correction factor for empty 
replenishments and we test the procedures using real data. The final conclusions are 
presented in the last section. 
 
 
2. The model 
 

We consider M items that can be jointly replenished against a fixed cost A, 
independent of the quantity ordered. No minor set-up costs are associated with the 
order lines for the individual items, since a fixed size transportation cost is assumed, 
as in the case of container transportation. The demand is constant and known for the 
different items. We introduce the following notation: 
 
Dj: constant rate of demand for item j 
hj: unit holding cost per year for item j 
M: number of items 
kj:  replenishment frequency of item j (decision variable) 
k: vector of the kj’s, j =1,…, M 
T: basic cycle time (decision variable) 
MOQj: minimum order quantity for item j 
 

Each T time units there is a replenishment opportunity. Hence, every kiT time units 
item i is replenished. Let TC denote the average total cost of the system, which 
includes the ordering and the holding costs. We formulate the deterministic joint 
replenishment problem with minimum order quantities as follows: 
 
JRP with MOQ 
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A standard way to solve problems with order size constraints is to introduce 

dummy order line set-up costs and manipulate them in such a way that the order 
restrictions are met. Note however that this requires multiple solving of the JRP, 
while the new method we will offer here is faster than solving the standard JRP. The 
formulation for the standard JRP is given below. 
 
JRP (standard formulation) 
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s.t.          0>T
1≥jk    integers for j = 1, 2,…, M  

 
where aj ( j = 1,…, M) is the order line set-up cost of item j. 

An alternative formulation of the function TC includes the so-called correction 
factor ∆(k), which does not charge set up costs for empty replenishments, arising 
when the smallest kj is greater than one [1]. Accordingly we define the function TC(c) 
with the correction factor as follows: 
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where the factor ∆(k) is the fraction of non-empty replenishments per year. 

This factor can be evaluated using the principle of inclusion-exclusion, counting 
the total fraction of replenishment occasions of all individual products, then 
subtracting (excluding) the joint replenishment fraction of all pairs of products, then 
adding (including) the joint replenishment fraction of all triples of products, and so on 
until all the joint fractions for the combined set of products have been included or 
excluded, as appropriate. Applying this principle the following formula is given for 
the evaluation of ∆(k) [1]: 
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where  denotes the least common multiple of the integers , 
i.e. the smallest number n for which there exist positive integers n such that 

. From the foregoing we can derive an important 
property that we will need later in our analysis. 
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Proposition 1. Given M products with associated vector k, the following holds: 
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Proof. As the fraction of replenishments of item i per year is (1/ki) it will be clear that 
the RHS holds. Now realise that through the principle of inclusion-exclusion the 
number of non-empty replenishments due to item i is larger than the number of 
replenishments of item i minus the joint replenishments of pairs of products including 
item i. Hence, the LHS of the inequality holds.   
 

If at least one of the ki = 1, then ∆(k) = 1 and TC(c)(T,k) coincides with TC(T,k). 
We will derive solution methods for the JRP with MOQ using both formulations for 
TC. 
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3. Solution methods for the JRP with MOQ 
 

For a fixed vector k = (k1,…,kM), it is easy to verify that the function TC is strictly 
convex in T. Thus, the T-value minimizing TC for given k is 
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Taking into account the above result, we first investigate an iterative procedure 

inspired by the algorithm proposed by Viswanathan [6]. 
 
 
3.1 Iterative algorithm to solve JRP with MOQ 
 
Step 0. Set l = 0. Set  for j = 1,…, M. 1)0( =jk

Step 1. Fix k = k(l) and solve for *T using (4) and let T(l) = max { }
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Step 2. Find the  minimizing TC(T sk l
j ')1( + (l),k) using eqs. (1) and (3).  

Inspection of the function TC yields that the kj’s should be selected as small  
as possible satisfying (1). Hence, 
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Evaluate TC(T (l),k(l+1)). 

 If k(l+1) = k(l) GOTO step 3. Else set l = l +1 and GOTO step 1. 
 
Step 3. Evaluate TC(c)(T(l), k(l+1)), with corresponding correction factor ∆( k(l+1)). 
 

The above algorithm has the possibility of getting trapped in the initial set of 
values for the kj’s. Nevertheless, it may well be that MOQj >> DjT for most of the j. 
Therefore, due to the restriction on the MOQ’s and assuming that differences in size 
do exist for demands across different items, the algorithm forces the values of kj to be 
different from 1, as we will show in the following numerical application. 

Note that the iteration is defined only on TC and not on TC(c). This is because an 
iteration on TC(c) does not need to converge as TC(c) is much more sensitive to T than 
TC. Nevertheless, in step 3 of the algorithm we include the possibility of correcting 
the value of TC. 
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3.2 Numerical example based on real case 
 

We test the proposed procedures using data from a real supply chain for 
homogeneous products (gift items) transported by container from a manufacturer in 
China to a distribution centre in the Netherlands [5]. A staircase transport cost 
structure was identified, resulting from the use of container transportation. We make a 
simplification of the set-up cost and consider it constant, as if the company would 
always send a full container of items. As in that case the MOQ was applied to 
components (chips) of the final product, so we made groups of virtual products when 
they had the same chip component. 

We apply the iterative algorithm to the following data: 
 
M = 8 items 
A = 950 euros per shipment (of a full container from China to the Netherlands) 
hj = 0.325 euros/unit⋅year for all j 
MOQj = 10,000 units for all j 
 

Table 1 shows the demand rates for the items. 
 
 

Table 1. Demand data 
Item j Demand per week, Dj 

1 352 
2 388 
3 323 
4 195 
5 408 
6 195 
7 489 
8 489 

 
 

Given k(0)={1,1,…,1} and the above data step (1) of the algorithm gives: 
years ≈ 10.3 weeks. 199.0)0( =T

Step (2) now yields: k(1) = {3, 3, 4, 5, 3, 5, 2, 2} with associated annual average 
total cost TC(T (0),k(1)) = 19 261 euros/year. 

Following step (1) with the above result for k, we evaluate the new value of T for 
the next iteration, resulting in: T = max{0.114,0.197} years ≈ 10.3 weeks, and the 
algorithm stops in step (2). With the final solution for the kj’s, 4 out of 15 times the 
set-up cost will not be charged, i.e., a correction factor of 1−(4/15) should be applied 
to the total cost, so step (3) yields: TC(c)(T (1),k(1)) = 17 982 euros/year. 

We will now derive some bounds on T, with the idea of formulating a global 
optimisation procedure, thus avoiding the possibility of getting trapped in a local 
minimum of the function TC. 
 
 
3.3 Bounds on T 
 

Following the procedure of Wildeman et al [7], we can rewrite the original 
function TC(T,k) as follows: 
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where the function zj(T) is given by: 
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A lower envelope TClow(T) for the function TC(T) is found by setting kj = 1 for j = 

1,…, M, and removing the MOQ constraints. In Fig. 1 we show a plot of the function 
TC(T) with its envelope using data from the numerical example, and a graphical 
procedure to find lower and upper bounds. 
 
 

 
Figure 1. Plot of TC(T) (upper curve) with its envelope TClow(T) (lower curve) 

 
 

The envelope TClow(T) has an optimal unconstrained solution given by: 
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For the constrained problem, the kj’s have to satisfy: 
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This yields a feasible solution for the JRP with MOQ. 
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Taking into account the above result we can find a lower bound for TC(T,k) by 
solving: TC , where TC),()( )0(* kunclow TTCT = low(T) is the unconstrained cost curve with 
kj = 1 for j = 1, …, M, which comes down to solving T from the following quadratic 
equation: 
 

∑∑











+=+

j
j

uncj

j
junc

uncj
jj D

TD
MOQ

hT
T
ADhT

T
A

*
*

* 2
1

2
1  

 
Let us call the resulting lower bound T  and the upper bound T . An alternative 

upper bound for T can be found by setting k

0
low

0
upp

j = 1 for all j. Using the bounds for T, we 
can formulate a finite optimisation algorithm to solve the JRP with MOQ. 
 
 
3.4 Motivation for the optimisation algorithm 
 

Note that discontinuities of the function TC(T) arise from the integrality of the kj’s 
and the requirements set by the minimum order quantities. At this point, we note that 
the vector k is a function of T, with its elements given by: 
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From (5) it follows that as T decreases, a jump of the function TC(T) will occur 

when at least one element of k, say kj, changes from kj to kj + 1. Note that the new 
vector k will remain constant until the next element of k changes in one unit. In other 
words, TC(T) is piecewise convex in T for the intervals in which the associated 
vectors k’s remain unchanged. This important feature of the function TC(T) allows us 
to make a partition of the set T as follows: 

Define Ii as the interval [ inside which the function TC(T) has an 
associated constant vector k

), )1()( −ii TT
(i-1), with its elements given by (5). Now observe that for 

T∈[  the ratios MOQ), )1()( −ii TT
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when one (or more) of its elements increases by one unit just below T . Therefore, 
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Then, the elements of the vector k just below T , say k)(i (i), are given by: 
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where J (i) is the set of all coordinates of k for which the maximum in (6) is attained. 
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To illustrate the previous ideas we present next a numerical example (see Fig. 2). 
 

Let { }9,3,4
3,2,1
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Select an initial value of T, e.g. T and evaluate the corresponding vector 

k
85.0)0( =

(0) using (5), to get k(0) = {5, 4, 11}. Note that the elements of the vector k(0) will 
remain unchanged for T inside the intervals: 
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 for j = 1, 2, 3: (for kj = 1 the interval is given by: a ) ∞<≤ Tj

 
18.0 <≤ T   ( k remains constant) )0(

1

175.0 <≤ T   ( k remains constant) )0(
2

9.0818.0 <≤ T  ( )k remains constant) 0(
3

 
Note that the vector k(0) will remain constant for T inside the interval 

. From this it is clear that as T decreases, the first element of k9.0818.0 <≤ T (0) to 
change is the one with largest aj/kj ratio,  in this case. In other words, the vector 
k(T) remains unchanged until changes from 11 to 12, just before T , 
and the new vector k

)0(
3k

)(3 Tk 818.0)1( =
(1) = {5, 4, 12} is generated. At this point reset the value of T (0) to 

0.9, so the interval for which k(0) remains constant is )0()1( TTT <≤ . 
Working backwards in time starting from )1(T , we use (6) to get T , which 

is the time defining the next interval inside which k
8.0)2( =

(1) remains constant. So just before 
)2(T  the new vector k(2) is obtained by increasing in one unit the coordinate of k(1) for 

which the maximum in (6) was attained, i.e., k(2) = {6, 4, 12}. Continuing like this, we 
get , where the maximum in (6) was attained for coordinates 2 and 3. Note 
that [  is the interval inside which k

75.0)3( =
), )2()3( TT

T
(2) remains constant, and just before )3(T  

the new vector k(3) = {6, 5, 13} is obtained. 
Note that starting with the vector k(0) = {5, 4, 11} there is no interval for T inside 

which the vector {6, 4, 11} could be produced, since the following sequence was 
obtained: {5, 4, 11} ⇒ {5, 4, 12} ⇒ {6, 4, 12} ⇒ {6, 5, 13}. In other words, there is 
a one-to-one correspondence between the intervals Ii and the vectors k. 

The previous analysis suggests that we can search for the local minima of the 
function TC(T) in each interval Ii in the classical way, and then to compute the global 
minimum of the function among all intervals. From this it is clear that the problem 
min TC(T) s.t. T > 0 is equivalent to: 
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We can start our search procedure in T , with associated vector k , and 

then find the time T  where the previous jump of the function took place. 
Continue like this working backwards in time stopping when the lower bound on T is 
reached. 
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In Fig. 2 a graphical representation of the algorithm is shown. 
 
 

 
Figure 2. Graphical representation of the global optimisation algorithm 

 
 

Next we give the formulation of the optimisation algorithm to solve the JRP with 
MOQ. 
 
 
3.5 Global optimisation algorithm for TC 
 
Step 0. Evaluate the bounds  and T . Determine k0
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Set n = 1. 
 
Step 1. For k(n−1) determine T (n)  from: 
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Obtain the elements of the new vector k(n), according to: 
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Step 2. If T (n) ≤ Tlow STOP with TC . )(

minmin ),( nTCT =k
Otherwise set n = n + 1 and GOTO step 1. 

 
END of the algorithm. 
 
 
3.6 Real case 
 

We apply the global optimisation algorithm to our original data. First we evaluate 
the lower and upper bounds and the initial vector k(0): 
 
Step 0 of the algorithm yields: 
 
 = 0.199 years ≈ 10.3 weeks *

uncT
0

lowT  = 0.0544 years ≈ 3 weeks 
0

uppT = 0.728 years ≈ 38 weeks 
k(0) = {1, 1, 1, 2, 1, 2, 1, 1} 

 
We implemented the above procedure in Maple, searching for the minimal TC 

inside [T ,T ]. For T = 0.0544 years we get k(T ) = {11,10,11,19,9,19,8,8}, 
and since the changes of the k

0
low
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j’s occur in step sizes of 1, we can compute the 
maximum number of steps of the algorithm as follows: 
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Note that the maximum number of steps of the algorithm is linear in the number of 

products. We found the minimum of TC in T = 31 weeks and k = {1,1,1,2,1,2,1,1}. 
The associated TC is 17 840 euros, which represents an improvement of 7.38% over 
the iterative algorithm. The improvement is only 0.79% if we compare it with the total 
cost with correction factor. 
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3.7 Bounds on T with the correction factor in the function TC 
 

If we consider the function TC(c)(T,k), the analysis for the bounds on T presented 
earlier is not valid anymore, since the lower envelope for the function TC(c)(T,k) 
cannot be obtained by setting kj = 1 for all j. Moreover, the function TC(c)(T,k) does 
not go to infinity as T→0 as we can see in the plot of the graph presented in figure 3, 
where TC(c)(T) is defined in an analogous way as TC(T). This behaviour of TC(c) 
arises from the fact that the term ∆(k)/T does not go to infinity as T goes to zero. This 
requires us to set the lower bound of T in zero, which is not good from a practical 
point of view. 
 
 

 
Figure 3. Plot of TC  )()( Tc

 
 

We start our analysis for small T. From proposition 1 we have: 
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In order to evaluate the limits for T→0 in the above inequality first note that: 
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In the following analysis, we will see that the behaviour of the second term in the 
LHS of (7) as T→0 is very much determined by the nature of the ratios aj/ai. Although 
for practical purposes these ratios can be considered as rational numbers, we found an 
interesting behaviour of the product T⋅lcm(ki(T),kj(T)) for T→0 when the ratios are 
regarded as irrational numbers, as is the case when demands are continuous variables, 
rather than discrete. Accordingly, we consider both cases in our analysis. Let ℜ \Q  
denote the set of irrational numbers, where ℜ  is the set of real numbers and Q the set 
of rational numbers. 
 
Lemma 1. If \ , then ∈ij aa / ℜ Q
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However, we assumed that aj/ai was irrational, so there can be no bounded 

subsequence, hence n(T) , m(T) →∞ as T→0 and 
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Remark 1. Lemma 1 implies that the first joint replenishment time of items i and j 
goes to infinity as T→0 if aj/ai is irrational. 
 
Theorem 1. Given M products with demands D1,…,DM and minimum order quantities 
MOQ1,…, MOQM, if \Q  ∀ i, j, then ∈ij aa /  ℜ
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Proof. By lemma 1 we can take limits on both sides of inequality (7) and since both 
limits exist, the limit of ∆(k)/T exists and is equal to the stated value.   
 
Corollary 1. Given two products with ∈ij a/a ℜ \Q , then for every time value Tv, 

there is a cycle time  for which: ),(
lim

jiT
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where T  denotes the harmonization time of products i, j. ),( ji
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Proof. According to lemma 1, if the condition for the ratios aj/ai is satisfied, T  
goes to infinity as T goes to zero. Therefore we can find a T close enough to zero for 
which T > T

),( ji
harm

),( ji
harm v for any Tv large.   

 
The result of corollary 1 can be used to set a practical lower bound on T for the 

function TC(c). 
Although the previous analysis gives us important insight into the behavior of the 

function TC(c) as T goes to zero, the ratios aj/ai do not need to be irrational numbers, 
since the demands Dj may be truncated to rational numbers. It will come out of our 
analysis that in this case the function TC(c) exhibits fluctuations for T close to zero 
rather than going to a limit as we determined before. The reason behind is the fact that 
for some T  arbitrarily small and given a),(

lim
ji

j/ai rational numbers, it is often possible to 
coordinate products i and j for some T , and the harmonization time  does 
not go to infinity as in the case of a

),(
lim

jiT< ),( ji
harmT

j/ai irrational. Consequently the value of ∆(k)/T 
does not go to a limit as T→0 but fluctuates within certain limits. Note however that 
the upper bound of ∆(k)/T as T→0 is independent of the nature of aj/ai, therefore the 
previous derivation for the upper bound of ∆(k)/T remains valid and we can guarantee 
that the function TC(c) is bounded for T→0. 

For the evaluation of a lower bound of ∆(k)/T when T→0 for aj/ai rational, we will 
first derive an upper bound on the second term of the LHS of (7), i.e., we analyse the 

terms 
))(),((

1
TkTklcmT ji⋅

 as T goes to zero. Next we derive bounds on ∆(k)/T. 

We first try to construct a subsequence of T going to zero, say )( lNT , l = 1,2,… s.t. 
 

mNT
aTk lN

iN
i l

l ⋅=



= )(

)( )(   and  nNT
aTk lN

jN
j l

l ⋅=



= )(

)( )(  

 
where m, n are given integers with gcd(m, n) = 1 and . +∈ZNl

Hence, 
 

nmNTkTklcm l
N

j
N

i
ll ⋅⋅=))(),(( )()(  

 
Such a subsequence of T should satisfy the following system for Nl, l = 1,2,… 

 

1
1 )(

)( −
<≤⇒≤<−

mN
aT

mN
amN

T
amN

l

iN

l

i
lN

i
l

l

l
 

           (8) 

1
1 )(

)( −
<≤⇒≤<−

nN
a

T
nN

a
nN

T
a

nN
l

jN

l

j
lN

j
l

l

l
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From system (8) it follows that we can find such a sequence of T ’s if and only if  
 

nN
a

mN
a

l

j

l

i ≥
−1

 and l
l

i

l

j N
mN

a
nN
a

∀≥
−1

 

 
Letting  we obtain: ∞→lN

 

ijli
l

l
j a

m
naNa

mN
nNa ≤⇒∀
−

≤
1

 and ijli
l

l
j a

m
naNa

mN
nNa ≥⇒∀
−

≥
1  

 

Using both results we get ij a
m
n

=a . This implies that the only m, n for which 

 

mNT
a

lN
i

l
⋅=





)(  and nNT
a

lN
j

l
⋅=





)(  have an infinite number of solutions Nl is 

 

given by 
n
m

a
a

j

i = . Let us call these values m0, n0. 

 

Next note that for 
00

)(

nN
a

mN
a jiN

⋅
=

⋅
=T  , N = 1,2,… we have such a sequence for 

which: 
 

)))(),(((lim )()()( lll

l

N
j

N
i

N

N
TkTklcmT ⋅

∞→ 0000
)( )(lim mananmNT jil

N

N
l

l

⋅=⋅=⋅⋅⋅=
∞→

 

 
Now consider an arbitrary m, n given with gcd(m,n) = 1 and a time T for which  

 

mNT
ai ⋅=



  and  nNT

a j ⋅=



  for some integer N > 0. 

 
Note that N satisfies the following system: 

 

mT
TaN

mT
a ii

⋅
+

<≤
⋅

 

          (9) 

nT
Ta

N
nT

a jj

⋅
+

<≤
⋅

 

 

System (9) implies that 
n

Ta
m
a ji +
≤  and 

m
Ta

n
a ij +

≤ , which yields: 

 

nmijji Ta
n
maa

m
naT ,,max ≡







 −−≥                 (10) 
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Note that T  is nonzero if nm,
j

i

a
a

n
m
≠ . Let { }nmnnmmnmji T ,},:),{(

*
,

00

min
<<∈

=
N

T . 

 
Now consider a T  and let w.l.o.g. *

, jiT<
 

mNTk T
i ⋅= )()( ,  for some ℕ nNTk T

j ⋅= )()( ∈)(,, TNnm
 

with gcd(m,n) = 1, and from (9) we have that: 








≥
n
a

m
a

T
N jiT ,max1)( . 

 
Then, 
 







⋅

>⋅≥⋅⋅⋅=⋅
otherwisema

n
a

m
aifnanmNTTkTklcmT

j

ji
iT

ji
)())(),((               (11) 

 
Since  we cannot have by (11) both m*

, jiTT < 0m<  and 0nn < . Hence, either 

 or n . In both cases T . 0mm ≥ 0n≥ 0
)( manmN i

T ⋅≥⋅⋅⋅ 0 an j=⋅
 

From the previous analysis we have established the following lemma: 
 

Lemma 2. If  Q
a
a

i

j ∈ , then the following holds: 

 

0

1
))(),((

10
naTkTklcmT iji ⋅

≤
⋅

≤   for any T . *
, jiT≤

 
The previous analysis implies that eventually all pairs of integers (m, n) will die 

out as T goes to zero, except in the case for which m = m0 and n = n0. In Fig. 4 we can 
see a graphic representation of this finding, in which we show a plot of the function: 
 

))(),((
1)(

21 TkTklcmT
Tg

⋅
=   

 
for products 1 and 2 with corresponding values of a1 and a2. 
 

Lemma 3. If Q
a
a

i

j ∈ then for any T the following holds: *
, jiT<

 

∑∑∑ ⋅
≤

∆
≤

⋅
−

⋅ ≠ i iji ii i TkTTnaTkT )(
1)(1

)(
1

0

k                (12) 

 
Proof. By lemma 2 and equation (7) the result follows.   
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Figure 4. Plot of the function g(T) 

 
 

Lemma 4. If Q
a
a

i

j ∈ , then the following holds: 

 

00

1
))(),((

1suplim
naTkTklcmT ijiT ⋅

=
⋅→

 

 
and 
 

0
))(),((

1inflim
0

=
⋅→ TkTklcmT ji

T
 

 
Proof. A large part of this lemma follows from lemma 2 and the analysis preceding it. 
What remains to be proved is that the liminf as T→0 is indeed 0. For this part suppose 
w.l.o.g. that ai > aj, implying that ki(T) > kj(T) for T small. Note that as T→0, ki(T) 
takes all possible integers 1,2,… Let α1, α2, α3,… be an increasing sequence of prime 
numbers and let )( lT α  be the T-values for which  Now note 
that for T small enough 

,...2,1,)( )( == lTk li
l αα

 
)()())(),(( )()()()( llll TkTkTkTklcm jiji

αααα ⋅=  and hence, 
 

)()(
1lim

))(),((
1lim )()()(0)()()(0 )()( llllllll TkTkTTkTklcmT jiTjiT αααααα αα ⋅⋅

=
⋅ →→

 

 

0
lim

1
))((lim))((lim

1

)(0

)(

0

)()(

0
)(

)()(

=









⋅

=
⋅⋅

=

→
→→

ll

l

l

ll

l

T
a

a
TkTkT j

T
i

j
T

i
T α

ααα

α
αα

.   
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Theorem 2. Given M products with demands D1,…,DM and minimum order quantities 
MOQ1,…, MOQM, if  ∀ i, j then Qaa ij ∈/
 

∑∑∑
=≠≠

→
+











⋅
−=

M

j
jj

aai iaai i

ic

T
MOQh

naMOQ
DATTC

jiji 1: 0:

)(

0 2
1

)
1),(inflim k  

 
and 
 

∑∑
==→

+=
M

j
jj

M

j j

jc

T
MOQh

MOQ
D

ATTC
11

)(

0 2
1),(suplim k  

 
Proof. By lemma 4 we can evaluate the limit as T→0 on the LHS of inequality (7) 
and since the limit exists, the first part of the theorem follows. For the second part 
take the limit on the RHS of (7), and since this limit exists and it is independent of 
aj/ai ∀ (i, j) the claim of the theorem follows.   
 
Remark 2. If aj/ai = 1 then the products can be combined and considered as one 
product, so we do not need to invoke theorem 2, but the result of theorem 1 holds. 
 

By lemma 2 and the analysis preceding it, we can evaluate a lower bound on T for 
the function TC(c) as follows: 
 

{ }*
,:),(

)( min jiaaji

c
low TT

ji ≠
=  

 
Remark 3. The above procedure to evaluate a lower bound on T can yield very small 
values, which may not be useful for practical purposes. In such a case, a practical 
lower bound on the review time T should be established, say one day or one hour, 
which is a reasonable assumption for most inventory tracking systems. 
 

An upper bound on T for the function TC(c) can be evaluated as follows: 
 

Since 











=

TD
MOQ

Tk
j

j
j )( , there is a time T (1) such that for any )1(TT ≥ , kj = 1 for all 

j, given by: 
 













=
j

j

j D
MOQ

T max)1(  

  
Since ∆(k) = 1 if any of the kj = 1 we have: 

 

∑
=

+=
m

j
jj

c DhT
T
ATTC

1

)(

2
1),( k  for )1(TT ≥  
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Since the last function is concave with a minimum value in T , it follows that if 
the function TC

*
unc
*

uncT)1(* TTunc ≥
(c) will monotonically increase for T , otherwise it will 

monotonically increase for 
≥

)1(TT ≥ . Therefore the upper bound on T for the function 
is given by: )(cTC

 
{ })1(*)( ,max TTT unc

c
upp =  

 
Note that the previous upper bound for T is generally larger than the one found 

when considering TC without correction factor. 
Now that we have defined lower and upper bounds on T for TC(c), we can 

formulate a global optimisation algorithm to find the minimum of the function. We 
will do this based on the previous algorithm for TC without correction factor with the 
modified lower and upper bounds on T. 
 
 
3.8 Global optimisation algorithm for TC(c) 
 
Step 0. Evaluation of lower and upper bounds on T. Set k(0) = {1,1,…,1} and select: 
 













=
j

j

j D
MOQ

T max)1(  

 
Evaluate T and set *

unc { })1(*)( ,max TTunc
c

upp =T . 
 
Set { }*

,:),(

)( min jiaaji

c
low T

ji ≠
=T , or use a practical lower bound. 

 
Step 1 (n ≥ 1) and Step 2. Replace the function TC by TC(c) in the global optimisation 
algorithm for TC and use the following formula for the evaluation of T *: 
 

∑ −

−

−
∆

=

j
j

n
jj

n

n Dkh
AT )1(

)1(
*

1
)(2 k   

 
Applying the global optimisation procedure to TC(c)(T,k) we obtained the 

following results: 
 
Tupp = 0.986 years ≈ 51 weeks 
Tlow = 3.21×10-6 year ≈ 0.03 hrs. (we ran the algorithm using a practical lower bound 
Tlow,pract  = 0.0001 year ≈ 1 hour). 
k(Tlow,pract) = {5464, 4957, 5954, 9862, 4714, 9862, 3933, 3933} 
TCmin = 17 297 euros = 3 056 (ordering costs) + 14 241 (inventory costs) 
Topt = 6.44 weeks ≈ 45 days 
kopt = {5, 4, 5, 8, 4, 8, 4, 4} 
 

Using theorem 2 we evaluated the following bounds for the function TC(c) as T→0: 
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eurosTTC c

T
35423),(inflim )(

0
=

→
k  

eurosTTC c

T
64523),(suplim )(

0
=

→
k  

 
As before, the maximum number of steps of the algorithm is given by: 

 

stepskTkstepsofMaximum
jjii DMOQDMOQi

ipractlowi 34878)(#
//:

)0(
, =−= ∑

≠

 

 
As for the algorithm for TC the number of steps of the algorithm for TC(c) is linear 

in the number of items, since it is equal to the sum of jumps of the function TC(c) 
between Tlow and Tupp. 

The solution we found for the optimisation of TC(c) is quite different from the one 
of TC for the same data. Although the improvement in the objective value is only 3%, 
the solution using the correction factor gives a much smaller value of Topt, with the 
consequently use of higher values for the frequencies kj. In this case the times for 
replenishments of the products given by kjT do not differ much from the previous 
solution of TC, but the opportunities per year to review the system are higher when 
using the correction factor. More specifically note that the average time of ordering in 
the previous solution is some 90 days, whereas this figure in the solution for TC 
without correction factor is 217 days. 

The disadvantage of the above algorithm compared with the one for TC, is that in 
order to guarantee the quality of the solution and since the function TC(c) is much 
more sensitive to T, the number of steps in the latter is considerably higher. 
 
 
4. Conclusions 
 

In this paper we showed that it is possible to solve the JRP with minimum order 
quantities by applying a global optimisation procedure. We derived proper lower and 
upper bounds for the basic cycle time T using both formulations of the JRP with 
constraint, with and without correction factor, and we proposed a new solution 
method based on the formulation of the problem given by Wildeman et al [7]. We 
demonstrated that an iterative procedure approach to find simultaneously the optimal 
values for the kj’s and T, as the one used by Viswanathan [6] to improve the bounds, 
does not perform well in this case. 
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