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Abstract

The natural metric of a weighted graph is the length of the shortest paths between
all pairs of vertices. The investigated problem consists in a representation of a given
metric by a graph, such that the total length of the graph is minimized. For that
purpose, we give a constructive algorithm based on a technique of reduction, fusion
and deletion. We then show some results on a set of various distance matrices whose
optimal realization is known.
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1 Introduction

The problem of realizing a distance matrix by a graph of minimal total length
is a difficult problem. A lot of authors have considered the special case where
the distance matrix is a tree metric, also called an additive metric (see for
example [1-14]). Efficient algorithms that construct such trees were published
in [15] or [16]. But real data describe merely a tree metric because they arise
from a similarity measure that includes errors. Such a measure appears in
various fields such as the study of evolution [17-20], the synthesis of certain
electrical circuits [21], the seismic tomography, the traffic modelling [22,23] or
the analysis of memory [10]. Therefore the interest was focus on approximating
a metric by a tree metric [24-33] or finding the greatest sub-metric that is
realizable by a tree [34].
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In this paper we consider the problem of realizing a symmetric distance matrix
by a weighted graph. We recall that a weighted graph G = (V, E, w) realizes
the distance matrix D of order n if and only if {1,...,n} C V and df = d;;
Vi,j = 1,...,n, where dg is the length of a shortest path in G between the
vertices i and j. The vertices in the set {1,...,n} are called external and the
vertices in V'\ {1,...,n} are called internal.

We use a heuristic to solve the problem since it has been proven to be NP-hard
[35,36]. In the next section we describe the algorithm and in the last section
we give some numerical experiments and make some remarks on the results.

2 Algorithm

We give below the algorithm that we have developed. Each step will be ex-
plained in the remaining of this section.

Algorithm
(1) Repeat
Compactify
Reduct
Until no compaction is possible

(2) Greedy algorithm
(3) Triangles’reduction
(4) Fusion
(5) Remove useless edges/vertices
(6) Decompaction/augmentation phase

The complexity of this algorithm is polynomial in O(n?) (in the worst case)
where n is the number of entries in the distance matrix.

2.1 Compaction and reduction phase

This phase will be applied on the distance matrix itself. The aim is to simplify
as much as possible the data. It is a preprocessing step.

Let D be a distance matrix of order n x n and let E; be the matrix where

1 @ j=1i#k
(E)jk=91 : j#i=k
0 : elsewhere



Let D;(a) = D —a* E; as in [1].

The question that arises then is : “How to choose the number a such that
D;(a) is still a distance matrix ?” The answer is in the following theorem.

Theorem 1 [1]D;(a) is a distance matriz < a < 5(dp; + dip — dpy) Vp, 7 #

The new metric D;(a) obtained from D is called a compaction [37]. The com-
paction of an index ¢ of D leads to a new matrix with a possible pair of equal
rows (and by symmetry of equal columns). By deleting one of these equal rows
and columns we obtain a new distance matrix whose order is one unit lower.
This new matrix is called a reduction of D.

Define ag(i) as the maximal value such that D;(ag(i)) is a metric and let a
be smaller or equal to ag(i). G;(a) is a realization of D;(a) with its external
vertices denoted by v, ---,v,. To construct a realization G of D from G;(a)
it is sufficient to add a vertex v; to G;(a) and connect v; to v; with an edge
whose weight is equal to a. This corresponds to step 6 of our algorithm.

Theorem 2 [1/If 0 < a < ag(i) and if G;(a) is an optimum realization of
D;(a) then G obtained from G;(a) is an optimum realization of D.

The first step towards searching for a realization of a distance matrix D is to
compact and to reduce it (if possible) iteratively so that the new matrix is still
a metric. Note that, as mentioned in [37], if a distance matrix is tree-realizable
then the iteration of the above process leads to a matrix of order 1.

This phase requires for each entry of the distance matrix to find two other
entries p and r that minimize the quantity d,; + d; — dp,. The latter quantity
is ag(i). This is done in a time complexity of ©(n?). Moreover the number
of time that this compaction process has to be done is at most | 7] since it



is the number required by a simple path on n vertices. So the overall time
complexity for this phase is ©(n?)

From now on we will consider as a data a distance matrix of order N x N.

2.2 Greedy algorithm

A distance matrix D of order N x N is trivially realized by the complete graph
with for each edge a weight equals to the distance in D. A first realization is
obtained as follow :

Greedy algorithm
(1) Start from a graph G = (V,0)
(2) Sort the distances by a non decreasing order in a
list L
(3) Foreachd,;; € L
if2 dfj > d; ; add edge (i, j) of weight d, ;

& if no path exists between i and j, set df’} =00

In the case that the graph so far obtained is a polygon, it is also an optimal
realization. This is formalized by the underlying theorem :

Theorem 3 [38/Let D be realized by a polygon on at least four vertices denoted
1,2,--- n. This realization is unique and optimal if and only if
Vi mod(n) d(i — 1,4) +d(i,1 +1) =d(i — 1,1+ 1)

The greedy algorithm works in a time complexity of O(elog(e)) where e is the
number of distances, i.e. O(N?log(N))

We observe that if a distance matrix can be realized by an unicyclic graph
with (pendant) trees attached to the vertices of the cycle, then the following
algorithm leads to the optimal realization :

Algorithm
(1) Repeat
Compactify
Reduct
Until no compaction is possible
(2) Greedy algorithm
(3) Decompaction/Augmentation phase

In this last algorithm step 1 ensures to get a reduced matrix whose realization
is an unicyclic graph and step 2 constructs this graph.

Example 4 The greedy algorithm applied to the below distance matrixz gives



the complete graph.

0442
4024
4204
2440

2.3  Triangles’reductions

The purpose of this step is to simplify all the triangles produced by the greedy
algorithm. The general following transformation is applied.

0.5(a+b-c)

R
0.5(at+c-b)
0.5(b+c-a)

We start from a realization G = (V) E, w) obtained with the greedy algorithm,
with V' as vertex set, F as edge set, and w a weight function on the edges. Since
there is no optimal realization containing as a subgraph a complete graph on
three vertices [1] , denoted by K3 and called a triangle, we can look for existing
K3 in G and transform them into a 3-star (a star with 3 branches).

K3 ’reduction
(1) Find the list L of all K3 in G
(2) For each K3 € L
If K5 still exists in the current realization
Transform it into a 3-star

This algorithm works in the worst case in O(N3).

Let K} and K2 be two complete graphs with three vertices in the realization
G such that K3 N K3 # 0. The transformation of K3 into a 3-star deletes one
edge of K2 and we have two triangles less in the realization G.

Nevertheless we can say that the deleted edge is a virtual edge in the trans-
formed graph since there exists a shortest paths in G of length given by the
distance matrix. If the transformation of this “virtual K3, namely K2, leads
to a better realization, then we make it effective. We could therefore try to
transform all paths formed on triplets of external vertices of GG. The time



complexity is again in O(N?).

The first triangle reduction Considering the  “virtual
applied to the previous ex- Ks“ on the vertices x,y and
ample gives: z, we get:

Example 5

2.4  Fusion

When applying the above mentioned transformation, a special topology can
occur : two internal vertices can be linked to two common vertices and some
other vertices. In Figure 1 below, the internal vertices s; and sy are linked
to the external vertices x; and z5. The vertices v; and vy are assumed to be
external.

Fig. 1. Topology T}

We assume that if the graph G contains such a topology 77, there exists
another path linking v1 to v2 whose length e is such that e < ¢+ (b —a) + d.
Let also assume (wlog) that a < b.

We consider the transformation of this topology T} into T, described below:

Fig. 2. Topology T»

The result is a fusion between two edges into another one. In the case that



a = b then s; and sy are reduced into one single vertex (fusion of vertices).
We give a justification of that transformation :

Lemma 6 If G is a realization of a metric D then G' obtained by the above
transformation is also a realization of D.

Proof

We have to show that the length of a shortest path in 77 between two
external vertices is not modified by this transformation.

We denote by PTi(z,y) the length of the shortest path between z and y
in the topology 7;. We have
Pz 29)=a+ (b—a)+a=a+b= Ph(x,25) > D(xy,15).
P2 (x,v)) = a+c= Pli(z,v) > D(x1,01).
P2z, 0)=a+ (b—a)+d=0b+d= P (zy,v5) > D(z1,v9).
By symmetry, equalities hold when x; is replaced by x,.
P™2(vy,v9) = c+(b—a)+d > e = D(vy,vq) by our assumption. This means
that between v; and v, there exists a path whose length is e = D(vy, v9).

f

Remark 1 The transformation can be generalized to the case of internal ver-
tices s1 and so of degree greater or equal to three. Again, the neighbors of s;
and sy are assumed to be external. The condition under which this transforma-
tion remains consistent is : P¢ (u,v) > P%(u,v) Yu € N(s1) and Vv € N(sz)
where N(s;) denotes the set of neighbors of s;, i = 1,2 and P%(u,v) is the
length of a shortest path in G between u and v.

The cost in time of such a transformation is a constant. But the search for such
a topology could be very expansive if there exists a lot of internal vertices to be
checked. The triangles’reductions gives at most (g) internal vertices. So the

number of occurrences of topology T} is bounded by ((g)) and hence the fusion

step is polynomial in O(N®). Since this could be too much time consuming
in practice, this phase has been applied a number of time proportional to the
number of internal vertices. Therefore this fusion step runs in O(N?).

Example 7 We go on with our example and apply the fusion step. The real-
ization obtained so far is :




2.5 Deletion

Once the fusion step has been applied the current realization can contain
useless edges and/or vertices. These edges have to be deleted in order to
reduce the total length of the realization. This could be done by an updating
rule which runs in the worst case in O(N?3). As each edge has to be checked, the
total running time for this step would be in O(N?). Since some experiments
of our algorithm on random distance matrices have shown that the deleted
edges (u,v) are (almost) always such that u belongs to the neighbors of s,
and v belongs to the neighbors of s,, we have restricted the deletion phase to
the set of edges {(u,v) | u € N(s1), v € N(s2)}. Hence the deletion phase
runs in O(N?).

Example 8 Finally, in our example, the edge linking z and t could be deleted.
We get :

2.6 Decompactication/Augmentation

The last step of our algorithm is to get a realization of the original distance
matrix. This can easily be done in at most O(V) iterations with the method
described in 2.1.

3 Numerical experiments

There is a lack of numerical results in the literature for the problem we have
solved. Therefore we have produced our own data. We tested our algorithm on
several distance matrices induced by a given topology. The appendix contains
optimal realizations whose induced metrics were applied to our algorithm.

We indicate in the first column the name of the data file. Columns 2 to 4 shows
the results without the compaction phase. Column 2 indicates the weight of
the realization constructed with the greedy algorithm. Then we applied the K3
reduction (column 3) and the “virtual K3” reduction (column 4). We present
in column 5 the result obtained with the compaction phase. The last column



shows the weight of an optimal realization.

Topology | Greedy | K3 | “Virtual K3” || Compact || Optimal

triangle 9 4.5 4.5 4.5 4.5
stard 12 8 4 4 4
starb 20 12 10 ) )
star6 30 20 14 6 6
H ) ) ) ) 5

4triangles 93 46.5 46.5 46.5 46.5
4dnontree 20 13 10 8 8
PolygonN n n n n n
2pentagons 22 16 11 11 11
2squares 16 16 9 9 9
Cube2 16 16 14 14 14
Hakimi64 18 13 13 11 11

Imrich84 250 192 156 130 128

Data used in these experiments are not extensive but focus on different topolo-
gies. We can observed that the constructive algorithm we have presented in
this paper works very well with various kinds of topologies. Our algorithm
can be improved, especially at step 4 where one could find other types of

topologies.

Our goal was to propose a method to tackle the problem of realizing a distance
matrix by a weighted graph. As far as we know, this method belongs to the
very few ones which solve the problem of realizing a (non-tree) distance matrix

by a graph.

A Appendix

Unless explicitely given, all edges are assumed to have a unit length. The

metric is induced by the black circles.




triangle starN (N=4,5,6) H

o
05
25 15 o ——O
PolygonN : polygon 2pentagons 2squares : an example
on N vertices presented by Simooes-

Pereira in [16]

[ L]

4triangles cube2 Hak64 : an example
presented by Hakimi
and Yau in [1] 2

1 3
3 1
1
4 2 1 1
5 1
2
3 9 9 1
2 5 1 4
5 5 2 2
4 12
[ ]
3 3
15 12

2 In [1] the graph is slightly different since it is not optimal
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