
 1

Solving a Concrete Sleepers Production
Scheduling by Genetic Algorithms

Pérez-Vázquez, M.E.1; Gento-Municio, A.M.1 and Lourenço, H.R.2

(1) Organización y Gestión de Empresas.
E.T.S. Ingenieros Industriales.

Universidad de Valladolid
Valladolid, Spain.

elena@eis.uva.es; gento@eis.uva.es

(2) Departamento d’Economia i Empresa
Universitat Pompeu Fabra

Barcelona, Spain
helena.ramalhinho@upf.edu

UPF Working Paper Series

Abstract
PRECON S.A is a manufacturing company dedicated to produce prefabricated
concrete parts to several industries as rail transportation and agricultural industries.
Recently, PRECON signed a contract with RENFE, the Spanish Nnational Rail
Transportation Company to manufacture pre-stressed concrete sleepers for siding
of the new railways of the high speed train AVE. The scheduling problem
associated with the manufacturing process of the sleepers is very complex since it
involves several constraints and objectives. The constraints are related with
production capacity, the quantity of available moulds, satisfying demand and other
operational constraints. The two main objectives are related with maximizing the
usage of the manufacturing resources and minimizing the moulds movements. We
developed a deterministic crowding genetic algorithm for this multiobjective
problem. The algorithm has proved to be a powerful and flexible tool to solve the
large-scale instance of this complex real scheduling problem.

Keywords: production scheduling, genetic algorithms.
JEL: L61, L23, D83

 2

1. Introduction

PREfabricaciones y CONtratas, S.A. (PRECON, S. A.) is a manufacturing
company established in 1952 dedicated to produce prefabricated concrete parts to
several industries as rail transportation and agricultural industries. The firm is today one
of the largest industrialized construction company in Spain. It belongs to the Catalonian
enterprise Cementos Molins Group, a large concrete manufacturing group found in
1928. The first activities of PRECON were developed in the field of the prefabricated
pipes for irrigation, mainly for the Ministries of Agriculture and Labour, with more of
5.000 kilometers of prefabricated irrigation channel. In the 1956, the Spanish National
Train Transportation Company, REd Nacional de los Ferrocarriles Españoles
(RENFE), entrusted the production of reinforced concrete sleepers to two factories of
PRECON. Later, these factories also produced sleepers to FEVE (narrow-gauge
railway) and two underground public transportation companies, Madrid and Barcelona
METROPOLITANO. In 1986, RENFE presented the project of high speed train, AVE,
with an initial line between Madrid and Sevilla. PRECON signed a contract with
RENFE to manufacture 117,000 meters of pre-stressed concrete sleepers for the lines
and siding of the new railways. Actually, PRECON is the first Spanish company with
the adequate technology and design for the manufacturing of the pre-stressed sleepers.
See Figure 1 for an example of a railway siding with concrete sleepers.

The objectives of PRECON can be summarized as follows:
• Fabrication and assembly of all types of prefabricated concrete elements,

preferably, products that require high technology and quality;
• Having a geographic implantation around all Spanish state;
• Reaching the best relations between quality-price and due dates of the market.

Figure 1: Concrete sleepers in a siding railway

The aim of this work is to solve the scheduling problem associated with the
manufacturing of sleepers at PRECON. This is a complex real problem with several
production constraints and multiple objectives, as maximizing the plant utilization and
minimizing the changes in the production environment. The main objectives of the
company are to be able to respond to the increasing demand of sleepers and to schedule
efficiently its production given the strong limitations on the main production resource
which are the moulds.

 3

Scheduling refer to the assignment of limited resources over time to accomplish an
organization’s tasks. Some usual objectives of a scheduling system are to maximize
resources utilization, to minimize completion time or the customer waiting time. Even
though it is a short-term decision, it has an important strategic component, since it
extends to all of the economical activities of the company. The Operations Research
literature is rich in models and techniques to scheduling problems, see for example
French (1982), Morton and Pentico (1993), Chrétienne et al. (1995), Brucker (1998)
and, Pinedo and Chao (1999). However, it appears that each new real scheduling
problem presents different characteristics that must be taken into account. On the other
hand, many lessons can be learn from the extensive scheduling literature. Given the
complexity and size of most real scheduling problems, it is clear that to be able to solve
efficiently these problems, an heuristic method should be used. The scheduling planning
system should be able to give a good solution within an acceptable time. The most
successful methods to solve scheduling problem are based on metaheuristics, as Tabu
Search, Glover and Laguna (1998), Simulated Annealing, Kirkpatrick et al. (1983), Van
Laarhoven et al. (1992), Iterated Local Search, Lourenço et al. (2003), Genetic
Algorithms, Fang (1994), Mattfeld (1995), among others. Also, the heuristic method
should be easily adapted to an always changing production environment. To solve the
sleepers production scheduling problem we propose a Genetic Algorithm, based on a
specific technique known as deterministic crowding. Genetic Algorithms (GAs) are a
flexible and powerful tool for search and optimization. The motivation to use GAs is
due the good results that this technique has obtained with hard scheduling problems:
Bagchi (1999), Wang and Zheng (2001), and the easy adaptation to multiobjective
problems, Deb (2001).

The paper is organized as follows: first, we describe the production characteristic of the
manufacturing of the concrete sleepers and the respective scheduling problem.
Afterwards, we present the deterministic crowding genetic algorithm, followed by the
details of our implementation. In the next section, we describe the specific
characteristics of the tested instances. In section 4, we analyze the results and finally we
conclude in section 5 with general remarks on this work and directions of future
research.

2. Production system of PRECON

The main products of PRECON are the sidings for railways. Each period of two or three
weeks, PRECON must plan its short-term siding production schedule. The production
scheduling takes into account the siding customers demand and their respective due date
to delivery. Each siding is composed by a set of concrete sleepers for the lineal
extension and the radius of curvature, see Figure 1. There exist a large quantity of
different types of siding, with different lineal extension and radius of curvature that
allows perfectly adaptation to the landscape and circulation characteristics, in terms of
velocity. Different sidings can share the same type of sleepers. The firm maintains a
database that indicates the characteristics of each sleeper and the composition of each
siding. In this way, the inclusion of new sidings or modifications in existing ones is
realized in a easy way. The basic production unit of work is concrete sleeper, and
therefore production planning only refers to sleepers. The association between sleepers
and their respective siding is done a posteriori. Table 1 presents an example of a list of

 4

15 sleepers of a specific siding. The main characteristics each of these sleepers can be
defined as follows (see Table 1):

• Length of the sleeper, in millimeters.
• Configuration and manufacturing specifications.
• Mould reference (registration number of the iron box to be used in the molding

process for this specific sleeper).
• Siding (type reference number) where the sleeper will be used.

The responsible for the production scheduling disposes in this way all relevant
information of each sleeper needed to be manufactured to complete a specific siding.

Currently, PRECON has 75 different types of siding in its range of products, each one
composed by large quantity of sleepers. The number of sleepers of a siding can vary
between 70 to 600 sleepers, as for example, sidings for AVE, which need a low
curvature radius to adapt its high velocity, have a large number of sleepers.

Length Configuration Mould Siding

2617 VAPE25 670F20 DSH-P-60-318-0,11-CC-D-TC
2617 VAPE25 670F20 DSH-P-60-318-0,11-CC-D-TC
2617 VAPE25 670F20 DSH-P-60-318-0,11-CC-D-TC
2617 VAPE25 670F20 DSH-P-60-318-0,11-CC-D-TC
2667 VAPE25 670G20 DSH-P-60-318-0,11-CC-D-TC
2667 VAPE25 670G20 DSH-P-60-318-0,11-CC-D-TC
2800 VAPE25 670A20 DSH-P-60-318-0,11-CC-D-TC
2834 VAPE25 673002 DSH-P-60-318-0,11-CC-D-TC
2836 VAPE25 673003 DSH-P-60-318-0,11-CC-D-TC
2843 VAPE25 673005 DSH-P-60-318-0,11-CC-D-TC
2848 VAPE25 673006 DSH-P-60-318-0,11-CC-D-TC
2854 VAPE25 673007 DSH-P-60-318-0,11-CC-D-TC
2861 VAPE25 673008 DSH-P-60-318-0,11-CC-D-TC
2869 VAPE25 673009 DSH-P-60-318-0,11-CC-D-TC
2879 VAPE25 673010 DSH-P-60-318-0,11-CC-D-TC

Table 1: Example of a part of siding “DSH-P-60-318-0,11-CC-D-TC”

Another important characteristic of the sleepers is the configuration with respect to the
concrete and the pre-stressed steel. The attributes of the concrete are insufficient to
support the flexural and axial dynamic effects that must sustain the sleepers along their
life cycle. Pre-stressed steels must reinforce the internal structure with the finality of
warranting the needful resistance limits. PRECON uses three types of configurations
named, in this work, as 1, 2 and 3 (see Figure 2).

The PRECON plant has four manufacturing lines of 104 meters for the manufacturing
of sleeper types 1 and 2. On the other hand, the configuration 3 (corresponding to AVE)
is manufactured on six independent manufacturing lines of the same length.

The main phases of the manufacturing process are as follows:

1. The moulds are arranged in the bottom of the iron box (manufacturing line).
2. The steel cables are tightening to obtain the different configurations (these must

be kept along all iron box).
3. The delimiters are placed between the sleepers to delimitate them.
4. The moulds are refilled up with concrete.
5. Waiting time to harden.
6. The delimiters are removed (this process will be replaced for a cutting process of

the sleepers).

 5

A Gantt chart of this manufacturing process is shown in the Figure 3. The processing
times are, for some phases, estimatives, since for example phase 5 depends on the
temperature and humidity and phase 1 depends how many moulds remain from the
previous production plank mould. Finally, the sleepers can be extracted and transported
by overhead traveling crane.

Configuration 1

Configuration 2

Configuration 3

Figure 2: Configuration types (number and distribution of pre-stressed steel)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1

2,3

4

5

6

Time

Figure 3: Gantt of the manufacturing process

 6

The production of the sleepers is made by consecutive plank moulds, that use the same
resources. In between plank moulds, all sleepers must be extract form the manufacturing
lines and moulds must be rearranged. This lead to an important scheduling constraint of
the production process, which is the limited number of available moulds. The
manufacturing of each sleeper needs a type of mould. So, the number of specific sleeper
that can be produce on one plank mould is limited to the number of available moulds for
that sleeper. This constraint is very strong because for many types of sleepers there is
only one mould. Therefore, the production scheduling must take into account this
limited resource. Also, moving a mould is a complex operation that should be avoided
as much as possible. The moulds are very heavy and the process of arranging them is
very slow. The process time will decrease if the production scheduling avoids a large
number of moves of the moulds, and so, allowing an increment of the efficiency of the
manufacturing process.

The longer phase is the one related with the harden of the concrete. When this is
hardened, the internal steel cables that initially are extended along all manufacturing
line must be cut to separate the sleepers. This operation is especially dangerous because
the stress of these cables, being one of the reasons of the convenience of filling up all
(or almost all) manufacturing line. The other reason is, of course, to have the
manufacturing lines filled up to obtain a high productivity.

Given the production characteristics and the siding demand for a certain period, the
plant responsible must produce a feasible production scheduling that maximizes the use
of the available resources and satisfies the demand. The first step of the scheduling
process will be to consider the sleepers’ configuration to be produced along a
manufacturing line and to group them according to this. Afterwards, the scheduling is
independently realized for each one of the configurations.

PRECON has two main different objectives to optimize the scheduling process:
 The first and the most important one, due the high volume of production, is to

maximize the utilization of the manufacturing resources (measure by the percentage
of utilization of the manufacturing line).

 The second one is to minimize the number of changes of mould between
consecutive plank moulds.

Next, we will propose an heuristic method based on genetic algorithms to solve this
complex real multiobjective problem. The special production environment conditions
were taken into account.

3. An Heuristics Solution Method based on Deterministic Crowding Genetic

Algorithms

In this section, we will start by present an introduction to the GA’s that we will use as
base for the method implemented in our study: the deterministic crowding GA.

3.1. Introduction to the Genetic Algorithms

To solve the concrete sleepers production scheduling problem we propose a solution
method that consists in three phases, which includes optimization phases where a

 7

crowding genetic algorithm is applied. The main reason to divide the problem in this
phases is the complexity of the production process as described in section 2, as well the
presence of two objective functions. The main phases are the following ones:

Phase 1: Data collection.
Phase 2: Optimization of the sleepers sequence.
Phase 3: Optimization of the production series.

The first phase consist in collect dada, i.e. obtain the unsettled orders and their
respective due date. With this data, we will obtain the demand orders for concrete
sleepers production within a week (or month)’s time (period of time considered by the
expert user of each factory). An important aspect on this phase is to balance the sleepers
production of the following weeks (or months), to avoid extra hours of work. In resume,
this phase produces an assignment of production orders (sidings and sleepers to
manufacture) to a period (for example, a week) such that each period is balanced.

The second phase consists in obtaining the production sequence of the sleepers, grouped
by plank moulds or manufacturing lines, i.e. given the demand orders of sleepers
obtained in phase 1 for the specific period, the manufacturing constraints and
characteristics, optimize the sequence of these sleepers on the manufacturing lines
(plank moulds) such that all orders are produced. The objective is to maximize the
usage of the available production resources i.e. average percentage of manufacturing
lines utilization. In this phase, we apply the crowding genetic algorithm that we will
describe later in detail.

The third phase consists in deciding how to sequence the plank moulds in series for
manufacturing. Note that, in phase two, it was decided the sequence of sleepers within
plank moulds or manufacturing lines. Now, the plank moulds should be grouped in
series, such that each serie consists at maximum of plank moulds as the number of
available manufacturing lines. Note that, most of the times, there is more plank moulds
to be produced than available manufacturing lines, therefore we have to sequence the
plank moulds in consecutive production series. The main objective in sequencing the
plank moulds is to minimize the moulds movements and changes, since as mentioned,
this requires a significant amount of work and time. In this phase, we use again a
crowding genetic algorithm, that we will describe later.

Before describing the details of two crowding genetic algorithms implemented, we will
briefly review the genetic algorithms (GAs) and their crowding version. We will also
comment on the main reasons to apply this technique.

The GAs use a search strategy based on several solutions (population) that improve
according to Darwin’s theories on the species evolution and the natural selection Fogel
(1998). Thus, solutions with the higher fitness (the best adapted individuals to
environment) have higher possibilities of surviving, reproducing and transmitting their
characteristics to their descendants. In the optimizing process, the cost or the quality of
the solution, between other measures, quantifies its adaptation to the environment.
Solutions with lower cost than the average (or higher quality) will have more
probabilities to be selected to be parents transmitting those characteristics, which make
them particularity good, to other new solutions (their children). Those children are
created with information of both parents. In general, the average cost of the children

 8

will be lower than the average cost of the initial population, being this, the principle of
the evolution spices. Therefore, the cost or the quality will improve along generations.

The GAs adapt to many optimization problems, and, as a population-based technique
are specially fitted to solve multiobjective problems. GAs, in general, follow the
flowchart presented in Figure 4, Goldberg (1989), Davis (1989) and Michalewicz
(1995). The basic elements to be defined to a specific problem are: codification of the
solution, selection, reproduction and replacement. These elements must be well defined
and adapted to each new problem, because, if not, the performance of the algorithm can
be not very good, Davis (1989).

Initial Population
Generation t

Selection

Reproduction Process

Replacement Process

Parents Population

Child Population

G
en

er
at

io
n

t+
1

Figure 4. Simple flowchart of the genetic algorithm

The first basic decision that affects the GA performance is to define the codification of
the solutions of the problem, that should contain all the necessary information to able
the search for good solutions. Such codification depends obviously on the specific
problem in study, and there appear different possibilities in the scheduling literature.
Following the criterion established by Fang (1994) and taking into account the
characteristics of the problem (the process belongs to permutation flow shop type), the
most appropriate code is the permutation, used as well in the Travelling Salesman
Problem (TSP): Greffenstette et al. (1985), Whitley et al. (1989) and, Escalada and
Torres (1997).

For example, if we want to scheduling 1000 sleepers, we will need 1000 integer
numbers, each one related to one sleeper: the number 1 will indicate the first sleeper, the
number 2 will indicated the second sleeper, and so on.

The evolution process starts with the selection of the first solutions that will form the
initial population. As suggested by many authors, Michalewicz (1995), these first
solutions (initial population) could be randomly created. In this way, we give to the GA
the necessary exploration to realize the best search. The power of the GAs is in the
optimal balance between the exploration and the exploitation in the search.

In our case, the first solutions will be random permutations of the integer numbers that
we need to code the sleepers. Let S be the number of sleepers to be produced, thus, the
space solutions will be form by S! different permutations of the S integer number. And

 9

one initial populations will be one sample of this space. The population size (N) will be
selected by the user, with N<<S!.

Let us suppose that we have to schedule 9 sleepers, one possible solution is: 1 4 3 7 5 2
9 8 6. The order of the number between the string indicates the position to be scheduled.
In the example, the first sleeper to be scheduled will be the codified with the number 1,
then will be scheduled the sleeper codified with the number 4, etc.

Once the initial population is created the process, the process continues in an iterative
way like in the natural evolution of species. The better individuals of the population will
have higher possibilities to survive for the reproduction. To mimic this natural process,
the parents are selected according to their fitness solution, the simplest process can be
seen like a roulette wheel where each area is proportional to the fitness (quality)
solution, and the dart will select the future parents (Figure 5). Some best selection
methods available in the literature are the ranking Baker (1985) or tournament system
Horn et al. (1994).

The standard parent selection is a fitness-based process. Each individual (i) has a chance
of selection (pi) that is directly proportional to its fitness (fi), where N is the total
number of individuals on the population (the population size):

∑
=

= N

j
j

i
i

f

fp

1

 [1]

Then, the roulette wheel is divided in as many sectors as individuals, and the area of
each one is proportional to the chance of selection of the parent that represents (Figure
5):

12%

i=1

15%

i=2

10%
i=3

12%

i=4

14%

i=5

28%

i=6

9%

i=7
Individual fi pi

1 54 12
2 67,5 15
3 45 10
4 54 12
5 63 14
6 126 28
7 40,5 9

sum 450 100

Figure 5: roulette wheel process selection.

We turn the roulette wheel as many times as parents we want select. Normally, the size
populations are constant: initial population of each generation, parents populations,
children populations, therefore we turn it N times. The parents with the higher fitness
than will have higher chance to be selected.

The selected individuals in the preceding process are grouped in couples, in a random
way, to obtain the breeding pair. The reproduction process consists of two phases: In the
first one, the codified material of two solutions is exchanged using the denominated
crossover operators; In the second phase, the solution is randomly changed following a
mutation process. In this way, the exploitation of good qualities (crossover) and the
exploration of new areas of search space (mutation) are done. However, these two

 10

process act in a stochastic way: the crossover process acts with a pc (crossover
probability) for each couple, and the mutations process acts on each child created in the
previous phase with a pm (mutation probability).

Crossover operators, as well as mutation operators, depend on the type of code used.
Previous studies have shown that the Order Crossover operator (OX), Michalewicz
(1995) see Figure 7, and Order Based Mutation Operator (OBM), Davis (1991) in
Figure 8, obtain good results for this permutation code.

The classical crossover operator is only valid to binary code, it is presented in the figure
6. As we can see, the chromosome parents are divided in two parts and they are
combined to form two news individuals (the children):

0 1 0 1 1 0 1 1 1

1 0 1 1 0 1 1 0 0

Father 1

Father 2

0 1 0 1 0 1 1 0 0

1 0 1 1 1 0 1 1 1

Child 1

Child 2

Figure 6: Classical 1-point crossover operator

The position of the division is randomly selected. Then, the obtained parts are crossed
to form other two individuals. Each one of the children has characteristics of both
parents. Thus, combining goods characteristics we hope to obtain improved individuals
(with higher fitness).

Following these ideas, it was developed other crossover operators adapted to the
permutation code. We must obtain children with characteristics of both parents. We will
use the OX (order-based) crossover operator which maintains the order. Other available
crossover operators maintain the position, Davis (1991). In our case, the refered
characteristics are the orders in which the sleepers will be sequenced and the position
within the string: a sleeper sited in firsts positions are sequenced before than other
sleepers sited in last positions.

Let’s explain in more detail the OX crossover for permutation solutions. See Figure 7
for an example. In first place, two points of cuts are randomly selected. Then, for the
child 1 are created an auxiliary string with the parent 1, from the second point of cut and
considering its string like circular to the preceding position of the second point of cut.
For example, if the second parent is [9 2 6 | 7 3 1 | 4 5 8], the auxiliary string will be [4
5 8 9 2 6 7 3 1]. The child 1 inherits from parent 1, the numbers placed between the two
points of cut in position and order (in our example, the numbers are 6 8 3). These
numbers must delete of the auxiliary string (4 5 8 9 2 6 7 3 1). With the remaining
numbers (4 5 9 2 7 1), we fill up the child 2, starting in the second point of cut and
considering the string like circular to the first point of cut (see Figure 7):

Auxiliary string [4 5 9 2 7 1]
Child 1 [- - - | 6 8 3 | - - -]
Phase 1 [- - - | 6 8 3 | 4 5 9]
Phase 2 [2 7 1 | 6 8 3 | 4 5 9]

 11

Father 1

Father 2

Child 1

Child 2

1 2 5 6 8 3 7 4 9

9 2 6 7 3 1 4 5 8

7 3 1

6 8 3

 4 5 8 9 2 6 7 3 1

 1 2 5 6 8 3 7 4 9

 9 2 6 7 3 1 4 5 8

5 6 8 7 3 1 4 9 2

2 7 1 6 8 3 4 5 9

Figure 7: OX operator

Next, the GA applies the mutation over each child created with the crossover operation.
The mutation permits to search new areas in the solution space and to recover lost
characteristics in the evolutionary process. As for crossover operators, there are many
mutation operators. We must select the most suitable to the code. The first developed
mutation operator was the applied only to the binary codification, where each bit of the
string can mutate with a probability pm. Thus, if the bit is a 0, the process will change it
to a 1, and if it is a 1, it will be mutated to a 0.

For the permutation code, we have selected the OBM (order based mutation). This
mutation operator is based in the order of the sequence: Two positions of the string are
randomly selected and the integer numbers of these positions are exchanged (see Figure
8).

1 2 5 4 6 8 7 9 3

1 2 9 4 6 8 7 5 3
Figure 7: OBM operator

In this case of permutation codification, the probability of the mutation process is pm
over the string, in contrast to the binary code where is also pm but for each bit of the
string. The range of the values of the pm is different to each codification, for the binary
one is 0.1-1%, and the permutation one is 1-20%.

Thus, we have the children population formed from (see Figure 8):
 The couples of parents that have not been crossed.
 The children created with the crossover process but not muted.
 The children created with the crossover and mutation process.

The last process of the GA algorithm selects the individuals that will form the initial
population of the next generation (the final population, in Figure 8). The most used
system is the elitist replacement. The best individual of initial population survives and it
is directly selected to be one of the children (it replaces to the worst individuals of the
children population). In this way, the evolutionary process always maintain the best
solutions found to the moment.

 12

Initial Population (N individuals)
Generation G

Selection Process

Parents Population

Couple Process (N/2 pairs)
p=1

r = random numberr < pc

Yes

Crossover Process

p=+1

r* = random numberr* < pm

Yes

Mutation Process

Children Population

No

No

p > N/2
No

Replacement Process

G > Gmax

Final Population

No

Yes

Final Solution

Yes

G=+1

Figure 8: Total process of a standard GA

3.2. The Deterministic Crowding Genetic Algorithms

In the last years, new versions of GAs methods have been developed that lead to
increasing performance in efficacy and efficiency of the GAs. They are based on the
biological concept of niche. In nature, a niche is the subdivision of the environment
according to the common characteristics that define it. Within a niche, individuals of the
same species coexist and struggle among each other for limited resources. This division
allows us to decrease the competition among individuals of different species and

 13

maintaining the necessary diversity in the search, avoiding the premature convergence
to poor solutions. Moreover, this division allows surviving different types of solutions
with the same fitness (multimodal optimization). This last characteristic justifies our
decision to select the deterministic crowding GA.

There are different niching GA, such as:

1. Sharing method: Goldberg and Richardson (1987); Oei et al., (1991) and
Pétrowski (1996).

2. Crowding method: Mahfoud (1992 and 1995).
3. Sequential method: Beasley et al., (1993).

In this work, we have implemented the deterministic crowding method since it is very
fast, simple and with the higher levels of efficacy, Pérez (2001).

The crowding method was proposed by Mahfoud in 1992, Mahfoud (1992). The basic
idea is to form groups of couples in a totally random way from the population to apply
the crossover and mutation operators, eliminating the selection process. For the
replacement process each child competes in a tournament against one of his parents to
obtain what individual dies and what survives. Mafhoud based his ideas on the
observation done by Cavichio in 1970, Mahfound (1992), that the children should
replace their parents since they were the most similar individuals to them. Therefore a
distance measure between individuals should be used that gives an idea of the closeness
that exists between them.

The main element of the deterministic crowding is the distance comparison between
parents and children in the replacement process. This distance can be defined on the
codified string or on the decoded solution. For example, considering two individuals
with a binary code:

 Codified solutions Decoded solution Fitness [f(x)=x2]
Ind1 [1 0 0 0 1 1 1] 71 712 = 5041
Ind2 [1 0 1 1 1 1 1] 95 952 = 9025

The distance will be the number of different bits between both strings. In this case, there
are two different bits; thus the distance is two. On the other hand, if we suppose that
these individuals are solutions to the problem: maximize the objective function (x2),
then their decoded solutions will be, (71) and (95) respectively, going the traditional
decoding of binary code. Then, the distance between these two decoded solutions will
be: () 249571d 2

2Ind,1Ind =−= .

The generic form, the distance between decoded solutions to parametric problem will
be:

() parametreofnumberthepwithxxd
p

1k

2
j,ki,kj,i ∑

=
−=

With this simplest example, we have can verify that the most realist distance is the
defined on the decoded solutions. The first distance between these other two individuals
is the same that previously calculated: 2. However, the distance on the decoded
solutions is: () 36871d 2

4Ind,3Ind =−= (see individuals 3 and 4 for this example).

 14

 Codified solutions Decoded solution Fitness [f(x)=x2]
Ind3 [1 0 0 0 1 1 1] 71 712 = 5041
Ind4 [1 0 0 0 1 0 0] 68 682 = 4624

Therefore, the same distance on the codified strings leads to very different distance on
the decoded solutions. Following these ideas, we need to define the distance measure
between individuals, taking account the characteristic of the specific problem. The
distance for the permutation flow shop problem will be the number of elements that are
in different position between the two solutions. See an example on Table 2.

Solutions Distance

1 3 2 5 4 9 8 7 6
9 3 1 5 4 2 8 7 6

3

Table 2: Example of decoded distance for permutation flow shop problem

In this case, the distances in the decoded and codified solution are the same since we are
considering a direct codification. That is, the codified solution indicate directly the
solution of the problem, there is not a decoding process. In our case, the main thing is
the number of sleepers scheduled in different positions.

Once the distance is defined, we can described the method. In the deterministic
crowding GA (DCGA), there is not a selection process, in its place, the individuals of
the population are randomly grouped in couples. Then, each couple goes over the
crossover and mutation process following the probability functions, as in original GA.
This is the main difference between GA and DCGA. Now, the each group in the process
has four individuals: the two parents and the two new children, and the replacement
process must select two of these four individuals to next population. This replacement is
based in the distance between these four individuals. In first place, the process search
which parent is the nearest to each child (that is: father 1 with child 1 and father 2 with
child 2, or father 1 with child 2 and father 2 with child 1). The next comparison it is
based on the fitness between the nearest individuals, the winner is the individual with
the highest fitness (see Figure 9). The process will go on with the next couple.

 15

Initial Population

Random Couple Process
(N/2 pairs) p=1

r = random numberr < pc

Yes

Crossover Process

p=+1

r* = random numberr* < pm

Yes

Mutation Process

Final Population

No

No

p > N/2No

Yes

Evaluation Process

The new individuals are evaluated
In this point we have:

Two parent: pi, pj and their fitness fpi, fpj
Two children: ci, cj and their fitness fci, fcj

if [(dpi,ci)+(dpj,cj)]<[dpi,cj)+(dpj,ci)]
Yes

if [(fpi)<fci)] if [(fpj)<fcj)]

ci pi cj pj

if [(fpi)<fcj)] if [(fpj)<fci)]

cj pi ci pj

No

No No No NoYesYesYesYes

G > Gmax

Yes

Final Solution

G=+1
No

Figure 9. Deterministic crowding method

4. The DCGA for the Concrete Sleepers Production Scheduling Problem

In this section, we will describe the details of the Deterministic Crowding Genetic
Algorithm (DCGA) implementation for the Concrete Sleepers Production Scheduling
Problem. The optimization process has been divided into two phases: in the first phase
we pretend to optimize the sequence of sleepers on the manufacturing lines (plank
moulds), and in the second phase, we will optimize the sequence of the plank mould on
different series.

 16

In the first phase, the plank moulds are considered all together in only one sequence of
sleepers. The objective is to obtain a permutation of the sleepers just that, after dividing
this sequence in plank moulds, we obtain their maximum utilization. Therefore, in the
second phase we consider the plank moulds that we have obtained in the previous
phase. The DCGA must find the order of the plank moulds within the series to minimize
the number of changes of mould between consecutive plank moulds and to maximize
the utilization of the manufacturing lines.

98 129 130 162 163 2311 45 46 ... 97

Series 1 Series 2 Series 3

1 45

46 ... 97

98 129

130 162

163 231

Second Phase: The integer numbers are the plank mould obtained in the first phase
1 2 3 4 5

1 3 5

2 4

129 130 231 1 2 128

Plank mould
 nº 1

Plank mould
 nº 2

A possible solution
(coding string)

Siding 1 with 64 sleepers
 1 2 3 4 64

65 66 67 68 146
Siding 2 with 82 sleepers

Siding 3 with 70 sleepers
 147 148 149 150 216

217 218 219 220 231
Siding 4 with 15 sleepers

Plank mould
 nº 3

Plank mould
 nº 4

Plank mould
 nº 5

First Phase: The integer numbers represents sleepers

A possible final solution

(decoded)

Figure 10: Total process of the implementation.

In the Figure 10, we show a small example with five siding and 231 sleepers to be
manufactured. In the first phase, the codified string will be formed to 231 integer
numbers, and the solutions will be all possible permutations of these integer number.
One of these solutions is shown in the phase one of the figure. In the second phase, it is
realized a division of this solution in plank moulds. This division depends of the length
of the sleepers on the previous sequence. Begging with the first sleeper on the solution,
sleepers will add to the same plank mould until the total length would be bigger than
104 meters, then we remove this last sleepers and so, we have the first plank mould. The
removed sleeper will be the first sleeper of the next plank mould. The process will go on
until all sleepers will be in plank mould.

4.1. The First Phase of the DCGA

The codification is permutational, where each integer number corresponds with a
sleeper to produce. Associated with each feasible solution, we must calculate its fitness
or the value of the objective function. In this case, the main objective function is the

 17

average percentage utilization of the manufacturing lines. The highest is this value the
better is the solution.

The initial population will be generated in a random process and we consider the size of
the population, say N, as a parameter of the algorithm. The process is quite simple,
suppose we need to produce in this period m sleepers, so N random permutations of the
integer numbers from 1 to m will be created. Note that not all permutations of the m
number is a feasible solution to our problem, since we must take into account the
resource capacity constraints associated with the number of existing moulds for each
sleeper. During the generation process of the initial population, we check the solution
feasibility and if this constraint is not accomplished, a new solution must be generated.
To check if a solution is feasible we proceed as follows: divide the solution (list of
sleepers) in sub-list of sleepers whose length sum less than the length of the
manufacturing lines, in our cases 104 meters; then, within each plank mould, check that
there is no more moulds than the ones available, i.e. the resource constraint. If the
solution accomplishes this constraint is feasible, if not, generate another one.

The iterative process will go on G times, where G is the number of generations or
iterations that we intend to repeat. When the process finishes, we can obtain N different
solutions as maximum and 1 as minimum. But due to the big size of the problem (m!
possible solutions), the multimodality of the scheduling problems and the diversity
process of the DCGA, we will obtain more than one different solutions with the highest
fitness. That is, with the maximum average percentage utilization, therefore we must
study the second phase with all ones.

However, we can not only take account the solutions of the last generation (G) because
we do not know how the filling percentage affects the placing in the series. At first
sight, the relation will be inverse, if the filling of the plank moulds is higher, then the
allocation could be harder than with others less filling plank moulds. Perhaps, with
worse solutions of the first phase, we can obtain best results in the second phase.
Therefore, in the second phase, the process takes the x best solutions in different
iterations of the first phase. For example, if we use 10.000 generations in the first
DCGA, the process can keep in reserve from 1 to 50 (x) best solutions in the 1000,
3000, 5000, 7000 and 10000 generations, that is, for the second phase we have 5x
starting point for the second DCGA.

4.2. The Second Phase of the DCGA

To solve the assigning problem of the plank moulds to production series, we have
implemented a very similar DCGA. Each different solution of sleepers sequence
obtained in the previous phase constitutes a starting point for this current phase. In this
way the process will go on with as many genetic algorithms as different solutions
suggested in phase 1.

Following this strategy, the method can propose to the final user different final solutions
with different fitness so he or she can make a final decision based on his/her experience
and evaluation of other production constraints not included in the method as breakdown
machine or others non-quantifiable objectives (see Figure 11).

 18

Initial Population

Deterministic
Crowding

N individuals

Solutions
5x

G generations

Solution t
+

(N-1) modifications
=

Initial Population

Deterministic
Crowding

Final
Population

G’ generations

t = t+1

t = 0

y best
solutions

t = 5x

First
GA

Second
GA

Figure 11: Global process of the two concatenated DCGAs

The codification process implemented in this phase is similar to the one of the previous
crowding genetic algorithm. The main difference is that in this phase each integer
number represents a plank mould, that is, the set of sleepers that forms a manufacturing
line (see Figure 10).

To each DCGA, corresponding to a xi obtained in phase 1, an initial population is
generated, which consists in the solution xi (say, with K plank moulds) and (K-1)
possible permutations of the plank moulds. For example, in the Figure 10, we obtained
5 plank moulds [1 2 3 4 5] at the end of phase 1, within each of them the sleepers are
already ordered and this order will not be changed. In the second phase, the objective is
to group these plank moulds in production series. An example of an initial population
will be [1 2 3 4 5] or [2 1 3 4 5] or [3 1 2 4 5].

The objective function of this phase is the movements of the moulds between series and
the utilization factor of all manufacturing lines. As mentioned, the mould movements
are complicated and time-consuming operations that must be avoided. Therefore, the
number of movements of moulds between series is a measure of the quality of the
solution. To calculate this value for each solution in this phase, we group the plank
moulds in production series taking into account the maximum number of available
manufacturing lines. Afterwards, we calculate the number of necessary moulds of each
type for each series. If this number is higher than the existing number of moulds, the

 19

solution will be not considered since it is not feasible. Another solution will be
generated as in the previous phase. Finally, the number of moulds movements between
production series is calculated and the value of the first objective function, or fitness,
will be obtained as the percentage of common existing moulds between production
series. The lower is this value the better is the solution.

Moreover, we must use a second objective related with the utilization of all
manufacturing lines expressed as a percentage: (total number of occupied/total available
manufacturing lines). In the example of the Figure 10, this percentage will be 5/6.

The final objective will be the sum of these two objectives.

5. Computational experiment

To test the performance of the proposed optimization method and to study the
characteristics of the obtained solutions, a computational experiment was performed.
This experiment was designed to reflect the real practical situation of the PRECON S.A.
company, and done with collaboration of production director and production planner of
the company. However, given the agreements with the company, we are only allowed to
explain and publish a limited number of instances and results that we will explain next.
This instances were selected in a way that represent the type of instances faced by the
production planner in the real situation.

The heuristics were implement in C and the test were run in a Pentium 3-1000Mhz. In
our experiments we used N equal to 50 individuals and G equal to 10.000. The Order
Crossover and Order Based Mutations operators have probability 80% and 20%
percentage, and the replacement process based on the distance measure as described
previously (see Figure 9). The user can choose between 1 to 50 solutions of the first
phase to initiate the second phase.

Next, we describe in detail the characteristics and data of two instances, and afterwards
we will comment on the results obtained. Note that both instances are obtained from the
company and we use all the time real data.

The first instance considers a set of sleepers that must be manufactured for a certain
month (in this case May, 2000). This instance is composed of three different
configurations of sleepers. See Tables 3 and 4 for the description of the data of the
instance. The dark shaded rows indicate the sleepers that have a mould constraint.

In the Table 4, the first column shows the number of different sleepers with the
characteristics: number of available moulds (constraint) and number of necessary units
of each one of these sleepers. For example, the first row shows us that we must fabricate
2 units of each one of these 12 different sleepers which have only 1 available mould of
them, that is, there exist a constraint to manufacture these 12 sleepers.

 20

Type (Configuration) 1 2 3
Meters 286.42 1554.18 913.60
Sleepers Number 89 461 352

Table 3: Total meters and number of sleepers of each configuration

 Sleepers Number of available moulds Units of each sleeper
12 1 2
18 1 3

1 5 2
1 2 4

Type 1

1 5 5
96 1 1

103 1 2
3 1 3

31 1 4
2 2 2
1 10 20
1 3 1

Type 2

1 2 1
1 5 1 Type 3
1 78 351

Table 4: Characteristic of the first instance

The second instance is a very specific problem that the enterprise has to face many
times since this instance is related with the construction of railway siding for AVE. In
this case, the sleepers are only of type 3 (AVE). See Table 5 and 6 for the description of
the data of this instance.

Type (Configuration) 3
Metres 7591.19
Sleepers Number 3095

Table 4: Total meters and number of sleepers for the AVE problem

 Sleepers Number of available moulds Number of necessary sleepers

1 1 20
338 1 5

1 2 10
1 2 20
1 4 85
1 5 50
1 5 70
1 6 55
1 15 165
1 17 125

Type 3

1 78 805

Table 5: Characteristic of the AVE instance

 21

6.1. Results for the First Instance

In Table 6, we present a summary of the results for the first instance. As we can see, for
the sleepers of type one and two, the planner did not ever used the four available
manufacturing lines at any time. Due to the moulds constrains, the planner used three
series with only one manufacturing line, and ten series with two manufacturing lines,
that is, 13 series and 23 plank moulds. For the third configuration of the AVE, the real
needs are 351 units of the same sleeper of which we have 78 moulds. To fill up one
plank mould with this sleeper is needed 38 moulds, that is, in each plank mould we can
produce 34 equals sleepers, so we can produce these 351 sleepers in 9 plank moulds.
The different sleeper can be contained in any of these 9 plank moulds.

Manufacturing lines for 1 and 2 types Manufacturing lines for AVE Dates
L1 L2 L3 L4 L1 L2 L3 L4

25-4-2000 X X
27-4-2000 X X
28-4-2000 X
2-5-2000 X
3-5-2000 X X
4-5-2000 X X
5-5-2000 X X
8-5-2000 X X
9-5-2000 X X

11-5-2000 X X
12-5-2000 X X
13-5-2000 X
15-5-2000 X X X X
17-5-2000 X X
18-5-2000 X X
19-5-2000 X X X

Table 6: Real dates of the first instance

The convergence for the third configuration (AVE) was obtained in the 3 or 4
generation in the first phase (for the 12 runs performed). However, the convergence for
the one and two configurations was more slow due to the moulds constrains, being
needed the 10.000 iterations for the first phase and 300 iterations for the second phase.

For the first phase, the plank moulds are filled up with the objective of maximizing their
utilization. The average best percentage obtained for 12 replicas is shown in the Table 7.
We remember that the four best solutions obtained by the first phase after 1000, 3000,
5000, 7000 and 10000 generations will be used as start point of the second phase, where
the plank moulds will be allocated in the series. For this, we will consider the best 20
solutions for the second phase.

 22

Type 1 Type 2 Type 3 Number Generations
Av. Var. Av. Var. Av. Var.

100 0.5458 0.0002 0.9406 0.0001 0.99 0.000
200 0.6031 0.0004 0.9615 0.0000 0.99 0.000
400 0.6681 0.0005 0.9762 0.0000 0.99 0.000
600 0.7219 0.0015 0.9815 0.0000 0.99 0.000
800 0.7617 0.0019 0.9841 0.0000 0.99 0.000

1000 0.7960 0.0020 0.9854 0.0000 0.99 0.000
1200 0.8176 0.0015 0.9864 0.0000 0.99 0.000
1400 0.8345 0.0014 0.9872 0.0000 0.99 0.000
1700 0.8552 0.0015 0.9880 0.0000 0.99 0.000
2000 0.8698 0.0018 0.9886 0.0000 0.99 0.000
3000 0.8954 0.0022 0.9897 0.0000 0.99 0.000
4000 0.9087 0.0026 0.9904 0.0000 0.99 0.000
5000 0.9155 0.0028 0.9909 0.0000 0.99 0.000
6000 0.9190 0.0029 0.9912 0.0000 0.99 0.000
7000 0.9218 0.0030 0.9915 0.0000 0.99 0.000
8000 0.9242 0.0031 0.9917 0.0000 0.99 0.000
9000 0.9263 0.0032 0.9919 0.0000 0.99 0.000

10000 0.9284 0.0033 0.9921 0.0000 0.99 0.000
Table 7: Average best percentages of filling for each type of configuration (12 replicas)

The results for the 1 and 2 types are summarized in table 8.

Generation
Number

Average
Percentage

Average
moulds Group 1 Group 2 Group 3 Group 4 Series

1000 46.35 74.73 3.54 5.28 1.75 0.16 10.73
3000 45.51 77.01 3.80 5.14 1.60 0.17 10.71
5000 45.32 77.79 3.87 5.07 1.60 0.17 10.71
7000 44.99 74.80 4.06 4.93 1.58 0.20 10.77

10000 44.70 74.33 3.93 5.30 1.47 0.13 10.82

Table 8: Average results of all solutions (20 solutions for 12 replicas), first instance

The column of average percentage shows the average occupation of the used series. The
column of average moulds shows the average number of common moulds between
series. The groups show the number of series with: only one occupied manufacturing
line (group 1); two occupied manufacturing line (group 2); three (group 3); and four, all
occupied manufacturing lines (group 4). The column of series shows us the number of
different necessary series to fabricate all plank moulds obtained in second phase.

Just as we have commented before, if the percentage of utilization within each plank
mould is higher, then the difficulty to fill the four available manufacturing lines in each
series will be higher. Thus, with the obtained solutions after the 5000 generation the
results are better than with the last solutions (10.000 generations). The number of
manufacturing lines that are used within each series is lesser and therefore, the number
of common moulds also decreases.

 23

However, as the second phase of the DCGA is directed by two objectives, it seems more
reasonable to consider only the non-dominated 20 best solutions. In this case, the results
are shown in the Table 9.

Generation
Number

Average
Percentage

Average
moulds Group 1 Group 2 Group 3 Group 4 Series

1000 49.39 85.97 2.76 5.07 2.01 0.26 10.10
3000 47.66 89.94 3.16 5.02 2.04 0.09 10.30
5000 47.98 87.88 2.81 5.47 1.75 0.16 10.16
7000 47.16 85.61 3.64 4.49 2.00 0.24 10.37

10000 46.57 84.47 2.98 5.84 1.67 0.00 10.43
Table 9: Average results of non-dominated solutions (12 replicas), first instance

As we can see, if we take only into account the non-dominated solution, the average
quality will be higher, and the number of series will be lesser.

For example, in the table 10 we show one solution with the quality similar to the
average in the 5000 generation of the first phase of the DCGA and 300 average
generation in the second phase of the DCGA, other solution with the lesser number of
series and plank mould used (Best), and others two with only two manufacturing lines
used as in the real dates (Two lines):

Solution Average
Percentage

Average
moulds Group 1 Group 2 Group 3 Group 4 Series Plank

mould
Average 47 93 5 1 4 0 10 19
Best 52 108 2 4 3 0 9 19

50 65 0 10 0 0 10 20 Two lines
47 104 1 9 0 0 10 19

Table 10: Results of a representative solution.

The number of necessary days to manufacture all sleepers obtained from the solution of
the DGCA is 9, against the 13 that the enterprise needed before the implementation of
the method. the official salary of the different works in the plant is:

Category Number of
persons Salary

Specialized unskilled 2 10.9 €/h.
Assistant of plant 1 12.0 €/h.
First Officer 1 12.9 €/h.

Table 11: Salary of the works

In this way, the cost of the daily salary is 373.6 €. Therefore, the results of the DCGA
proposed to solve the Concrete Sleepers Production Scheduling Problem allow us an
approximate salary saving of 1500 €. However, this is not the only saving possible. We
must take into account that the decrease of the number of realized plank moulds is
associated to the decrease of the number of used steel bar. In our case, the steel has a
diameter of 55 mm and a cost per lineal meter of 0.75 €. As in each plank mould we use
9 or 12 bar of the 104 metres, the real fixed cost in steel bar is about 13600 €. With the
solution proposed my the DCGA method the fixed cost will be about 12000 €. That
represents a saving of 1600 €. Therefore the total saving of salary and steel bar is about
3100 €.

 24

6.2. Results for the Second Instance

In this case, the problem is a very common one in the company, it consists on five units
of the same siding.

The convergence of the evolution in this instance is very fast (Table 12). After 1000
generations the filling percentage is of the 90.4% and the increase after 6000
generations is the 0.97%. For this, the fixed generation number is less than for the first
instance.

The enterprise expects about to obtain less than 78 plank moulds for this problem. In
this case, the second optimization phase (allocating these plank moulds in series) is not
necessary, and so, we have only to run the first phases, i.e. the first DCGA. The number
of solutions, which number of plank moulds is 77, 76 and 75 for each 1000 generations
is shown in the table 13.

Type 3 Number
Generations Av. Var.

1-1000 0.9042 0.0738
1001-2000 0.9087 0.0745
2001-3000 0.9106 0.0748
3001-4000 0.9051 0.0812
4001-5000 0.9122 0.0751
5001-6000 0.9126 0.0752
6001-7000 0.9130 0.0752

Table 12: Filling percentage for the second instance

 Generations
Plank Moulds 1000 2000 3000 4000 5000 6000 7000

75 11.50 15.58 26.41 33.41 37.33 40.50 42.08
76 36.50 33.91 23.50 16.58 12.66 10.36 8.63
77 8.45 1.50 0.50 0.00 0.00 0.00 0.00
Av. 75.94 75.72 75.48 75.33 75.25 75.20 75.17

Table 13: Average number of necessary plank moulds (12 replicas)

We can see that after 1000 generations the need of the enterprise has been
accomplished. All of the solutions in the population have a number of plank moulds less
than 78, being very important the evolution of the number of solutions with 75 plank
moulds. These solutions have never been obtained before in the company with the old
scheduling system.

In last row, the average number of necessary plank moulds for the 50 solutions of the
1000, 2000, ..., 7000 generations are shown. We see as this number decreases according
the process evolves.

The main cost saving is refereed to the number of steel bar used in the fabrications of
the plank moulds. The salary saving is not known since we do not obtain how many
series are necessary to do for this solution.

 25

7. Concluding Remarks

In this work, a complex real production problem from the concrete industry is
described. The problem consists in scheduling the concrete sleepers production of a
large Spanish company, PRECON S.A., where the basic constraints are related with the
quantity of available moulds. The main objectives of the company when scheduling are
the maximization of manufacturing lines utilization and the minimization of the moulds
movements.

We propose a heuristic solution method based on the Deterministic Crowding Genetic
Algorithms. Given the good results obtained by this technique to other scheduling
problems, the complexity of the problem and the presence of multiobjective functions,
we believe that the genetic algorithms can be an appropriate technique to solve the
concrete sleepers production scheduling problem. The DCGAs can also handle in a
simple way different constraints that can be imposed by the company, as well the
introduction of new resources and products.

The results obtained by the crowding genetic algorithm improve the obtained with the
previous scheduling system of the company. Therefore, the production director of
PRECON was very satisfied with the approach developed and explained in this paper.
We could also proved that this improvement arises at cost saving of salary and utilized
resources that allow increasing the profit of the enterprise and accomplishing the global
strategy of rise and quality of PRECON.

References

Bagchi, T.P. (1999). Multiobjective scheduling by genetic algorithms. Kluwer Academic Publishing.

Baker, J.E. (1985). “Adaptive selection methods for genetic algorithms”. Proceedings of the first
International Conference on Genetic Algorithms and their applications. John J. Gefenstette (Ed.).
Lawrence Erlbaum. New Jersey, (101-111).

Beasley D., D.R. Bull, R.R. Martin (1993). “A sequential niche technique for multimodal function
optimization”. Evolutionary Computation, 1:2 (101-125).

Brucker (1998). Scheduling Algorithms. Springer-Verlag.

Chrétienne P., E.G. Coffman, Jr., J.K. Lenstra and Z. Liu, editors (1995). Scheduling Theory and its
Applications, John Wiley & Sons.

Davis L. (1989). “Adapting operator probabilities in genetic algorithms”. Proceedings of the third
international conference on Genetic Algorithms. J. David Schaffer (Ed.). Kaufmann. San Mateo (375-
378).

Davis L. ed. (1991). Handbook of Genetics Algorithms, Van Nostrand, (New York).

K. Deb, D.E. Goldberg, “An investigation of niche and species formation in genetic function
optimization”, Proceedings of the Third International Conference on Genetic Algorithms, J. David
Schaffer, Ed., Kaufmann, San Mateo, (1989), 42-50.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley.

Escalada-Imaz G., R. Torres-Velázquez (1997). “Algoritmos genéticos genéricos y basados en orden.
Conceptos fundamentales y mecanismo de base”, Inteligencia Artificial 3.

Fang H. (1994). Genetic Algorithms in Timetabling and Scheduling, Doctoral dissertation, Department
of Artificial Intelligence, University of Edinburg.

 26

Fogel D.B. ed. (1998). Evolutionary computation. The fossil record. (Selected readings on the history
of evolutionary computation), IEEE Press.

French S. (1982). Sequencing and scheduling: and introduction to the mathematics of the job shop.
Ellis Horwood.

Glover F. and M. Laguna (1997). Tabu search. Kluwer Academic.

Goldberg D. and J. Richardson (1987). “Genetic algorithms with sharing for multimodal function
optimization”. Proceedings of the second international conference on Genetic Algorithms.
Grefensette, J. (Ed.). Lawrence Erlbaum. (41-49).

Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley.

Grefenstette J., R. Gopal, B. Rosmaita, D.V. Gucht (1985). “Genetic algorithms for the traveling
salesman problem”, Proceedings of the First International Conference on Genetic Algorithms and
Their Applications, John J. Grefenstette (ed.). Lawrence Erlbaum, New Jersey (160-168).

Horn J., N. Nafpliotis, and D. Goldberg (1994). ”A niched pareto genetic algorithm for multiobjetive
optimization”. Proceedings of the first IEEE Conference on Evolutionary Computation, 1 (82-87).

Lourenço H.R., O.C. Martin, and T. Stützle (2003) Iterated Local Search. in the Handbook of
Metaheuritics book, F. Glover and G. Kochenberger (eds), Kluwer (321- 353).

Kirkpatrick S., C.D. Jr. Gelatt, and M.P. Vecchi (1983). “Optimization by simulated annealing”.
Science, 220 (671-680).

P.J.M. Van Laarhoven, E.H.L. Aarts, J.K. Lenstra (1992). “Job shop scheduling by simulated
annealing”, Operations Research, 40 (112-129).

Mahfoud S.W. (1992). “Crowding and preselection revisited”, Parallel Problem Solving from Nature
II, R. Männer, B. Manderick, (eds.), Elsevier, Amsterdam (27-36).

Mahfoud S.W. (1995). Niching methods for genetic algorithms. Ph. D. Dissertation, Univ. of Illinois,
Urbana-Champaign.

Mattfeld D.C. (1995). Evolutionary search and the job shop. Investigations on genetic algorithms for
production scheduling. Springer.

Morton and Pentico (1993). Heuristic Scheduling Systems, John Wiley & Sons.

Michalewicz Z. (1995). Genetic Algorithms + Data Structures = Evolution Programs, Springer,
(Berlin).

Oei C.K., D.E. Goldberg and S.J. Chang (1991). Tournament selection, niching and the preservation
of diversity. IlliGAL Report Nº 91011. University of Illinois at Urbana-Champaign.

Pérez, E., Herrera, F. and Hernández, C. (2001). “Finding multiple solutions in job shop scheduling by
niching genetic algorithms”. Technical Report #DECSAI-010110, Dept. of Computer Science and
Artificial Intelligence, University of Granada, Spain.

Pétrowski A. (1996). “Clearing procedure as a niching method for genetic algorithms. In Proc. 1996
IEEE Int. Conf. Evolutionary Computation, Nagoya, Japan (798-803).

Pinedo M. and X. Chao (1999). Operations Scheduling with Applications in Manufacturing and
Services. McGraw Hill.

Van Laarhoven P.J.M., E.H.L. Aarts, and J.K. Lenstra (1992). “Job shop scheduling by simulated
annealing”. Operations research 40 (112-129).

Whitley L.D., T. Starkweather, D’A. Fuquay(1989). “Scheduling problems and travelling salesmen:
The Genetic Edge Recombination”, Proceedings of the Third International Conference on Genetic
Algorithms, J. David Schaffer (ed.), Kaufmann, San Mateo (133-140).

Wang, L., and Zheng, D-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling
problems. Computers & Operations Research, 28 (585-596).

