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Pricing and Trading European Options by Combining 

Artificial Neural Networks  
and Parametric Models with Implied Parameters 

 
 

Abstract 
 

We compare the ability of the parametric Black and Scholes, Corrado and Su models, 
and Artificial Neural Networks to price European call options on the S&P 500 using daily 
data for the period January 1998 to August 2001. We use several historical and implied 
parameter measures. Beyond the standard neural networks, in our analysis we include 
hybrid networks that incorporate information from the parametric models. Our results are 
significant and differ from previous literature. We show that the Black and Scholes based 
hybrid artificial neural network models outperform the standard neural networks and the 
parametric ones. We also investigate the economic significance of the best models using 
trading strategies (extended with the Chen and Johnson modified hedging approach). We find 
that there exist profitable opportunities even in the presence of transaction costs.    
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1. Introduction 
 

 In this paper we compare parametric option pricing models (OPMs) -- Black 

and Scholes (1973) (BS) and the semi-parametric Corrado and Su (1996) (CS) -- with 

several artificial neural network (ANN) configurations. We compare them with respect 

to pricing the S&P 500 European call options, and trading strategies are 

implemented in the presence of transaction costs. 

Black and Scholes introduced in 1973 their milestone OPM. Despite the fact 

that BS and its variants are considered as the most prominent achievements in 

financial theory in the last three decades, empirical research has shown that the 

formula suffers from systematic biases (see Black and Scholes, 1975, MacBeth and 

Merville, 1980, Gultekin et al., 1982, Rubinstein, 1985, Bates, 1991 and 2003, 

Bakshi et al., 1997, Andersen et al., 2002, and Cont and Fonseca, 2002). The BS 

bias stems from the fact that the model has been developed under a set of simplified 

assumptions such as geometric Brownian motion of stock price movements, 

constant variance of the underlying returns, continuous trading on the underlying 

asset, constant interest rates, etc.  

Post-BS research (e.g. stochastic volatility, jump-diffusion, stochastic interest 

rates, etc.) has not managed to either generalize all the assumptions of BS or provide 

results truly consistent with the observed market data. These models are often too 

complex to implement, have poor out-of-sample pricing performance and have 

implausible and sometimes inconsistent implied parameters (see Bakshi et al., 

1997). This justifies the severe time endurance of BS1. Together with the BS model, 

we also consider the semi-parametric CS model that allows for excess skewness and 

kurtosis, as a model that can proxy for other more complex parametric ones.  

 Nonparametric techniques such as Artificial Neural Networks are promising 

alternatives to the parametric OPMs. ANNs do not necessarily involve directly any 

financial theory because the option’s price is estimated inductively using historical 

or implied input variables and option transactions data. Option-pricing functions are 

multivariate and highly nonlinear, so ANNs are desirable approximators of the 

empirical option pricing function. Parametric models describe a stationary nonlinear 

relationship between a theoretical option price and various variables. Since it is 

known that market participants change their option pricing attitudes from time to 

time (i.e. Rubinstein, 1985) a stationary model may fail to adjust to such rapidly 

changing market behavior (see also Cont and Fonseca, 2002, for evidence of 

noticeable variation in daily implied parameters). ANNs if frequently trained can 

                                                 
1 According to Andersen et al., (2002), “the option pricing formula associated with the Black and Scholes 
diffusion is routinely used to price European options, although it is known to produce systematic biases”. 
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adapt to changing market conditions, and can potentially correct the aforementioned 

BS bias (Hutchison et al., 1994, Lajbcygier et al., 1996, Garcia and Gencay, 2000, 

Yao and Tan, 2000).  

Beyond the standard ANN target function we further examine the hybrid ANN 

target function suggested by Watson and Gupta (1996) and used for pricing options 

with ANNs in Lajbcygier et al. (1997). In the hybrid models the target function is the 

residual between the actual call market price and the parametric option price 

estimate. In previous studies the standard steepest descent backpropagation 

algorithm is (mostly) used for training the feedforward ANNs. It is shown in 

Charalambous (1992) that this learning algorithm is often unable to converge rapidly 

to the optimal solution. Here we utilize the modified Levenberg-Marquardt (LM) 
algorithm which is much more sophisticated and efficient in terms of time capacity 

and accuracy (Hagan and Menhaj, 1994). In contrast to most previous studies, 

thorough cross-validation allows us to use a different network configuration in 

different testing periods.  

The data for this research come from two dominant world markets, the New 

York Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago Board of 

Options Exchange (CBOE) for call option contracts, spanning a period from January 

1998 to August 2001. To our knowledge, the resulting dataset is larger than the ones 

used in other published studies. We also (similarly to Rubinstein, 1985, Bates, 1996, 

Bakshi et al., 1997; see discussion in Bates, 2003) reserve option datapoints that in 

several ANN studies were dropped out of the analysis. Note that in order to check the 

robustness of the results we repeated the analysis using a reduced dataset following 

Hutchison et al. (1994). We examine more explanatory variables including historical, 

weighted average implied and pure implied parameters. Also, instead of constant 

maturity riskless interest rate, we use nonlinear interpolation for extracting a 

continuous rate according to each option’s time to maturity.   

Lastly, although previous researchers have exploited BS or ANNs, little has 

been reported for the case of CS2 and nothing for the hybrid ANNs that use 

information derived by CS. To investigate the economic significance of the alternative 

option pricing approaches, trading strategies without and with the inclusion of 

transaction costs are utilized. These trading strategies are implemented with the 

standard delta-hedging values implied by each model, but also with the corrected 

values according to the (widely neglected) Chen and Johnson (1985) methodology.   

 In the following we first review the BS and CS models, and the standard and 

hybrid ANN model configuration. Then we discuss the dataset, the historical and 

                                                 
2 An exception is the paper by Sami Vahamaa (2003) that examined the hedging performance of the CS 
model without including transaction costs.  
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implied parameter estimates we derive, and we define the parametric and ANN 

models according to the parameters used. Subsequently we review the numerical 

results with respect to the in- and out-of-sample pricing errors; and we discuss the 

economic significance of dynamic trading strategies both in the absence and in the 

presence of transaction costs.  The final section concludes. In general, our results 

are novel and significant. We identify the best hybrid ANN models, and we provide 

evidence that (even in the presence of transaction costs), profitable trading 

opportunities still exist. 

 
 
2. Option pricing: BS, CS and ANNs 
 

2.1. The parametric models 
 

The Black Scholes formula for European call options modified for dividend-

paying underlying asset is: 

 

1 2( ) ( )BS T rTc Se N d Xe N dδ− −= − ,           (1) 

where, 

- 2

1
ln( / ) ( ) ( ) /2S X r T Td δ σ

σ
+ +

=
Τ

,    (1.a)   

and 

2 1d d Tσ= − .  (1.b) 

 
BSc ≡premium paid for the European call option; S ≡ spot price of the underlying asset; 

X ≡ exercise price of the option; r ≡ continuously compounded riskless interest rate; 

δ ≡ continuous dividend yield paid by the underlying asset; T ≡ time left until the 

option expiration; 2σ ≡yearly variance rate of return for the underlying asset; (.)N ≡ the 

standard normal cumulative distribution. 

The standard deviation of continuous returns (σ) is the only variable in 

Equations 1.a and 1.b that cannot be directly observed in the market. For this study, 

we use both historical and implied volatility forecasts. For the Historical Volatility we 

use the past 60 days. The Implied Volatility (IVL) calculation involves solving 

Equation 1 iteratively for σ  given the values of the observable mrkc  (the most 

recently observed market price of a call option), and the relevant values of S, X, T, r 
and δ . Contrary to historical volatility, IVL has desirable properties that make it 
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attractive to practitioners: it is forward looking, and avoids the assumption that past 

volatility will be repeated.  

 If BS is a well-specified model, then all IVLs on the same underlying asset 

should be the same, or at least deterministic functions of time. Unfortunately, many 

researchers have reported systematic biases. For example, Rubinstein (1985) has 

shown that IVL derived via BS as a function of the moneyness ratio (S/X) and time to 

expiration (T) often exhibits a U shape, the well known volatility smile. Bakshi et al. 

(1997) report that implicit stock returns’ distributions are negatively skewed with 

more excess kurtosis than allowable in the BS lognormal distribution. This is why we 

usually refer to BS as being a misspecified model with an inherent source of bias 

(see also Latane and Rendleman, 1976, Bates, 1991, Canica and Figlewski, 1993, 

Bakshi et al., 2000, and Andersen et al., 2002). For the aforementioned reason we 

include in our analysis the Corrado and Su (1996) (see also the correction in Brown 

and Robinson, 2002) model that explicitly allows for excess skewness and kurtosis. 

The CS model is a semi-parametric model since it does not rely on specific 

assumptions about the underlying stochastic process. Corrado and Su define their 

model as: 

  

3 3 4 4( 3)CS BSc c Q Qμ μ= + + − ,     (2) 

2
3 1 1 1

1 ((2 ) ( ) ( ))
3!

TQ Se T T d n d T dδ σ σ σ−= − − Ν ,  (2.a) 

2 3 3/2
4 1 1 1 1

1 (( 1 3 ( )) ( ) ( ))
4!

TQ Se T d T d T n d T N dδ σ σ σ σ−= − − − + ,  (2.b) 

)2/exp(
2
1)( 2z
π

zn −= ,  (2.c) 

 

where cBS is the BS value for the European call option adjusted for dividends, and 3μ  

and 4μ  are the coefficients of skewness and kurtosis of the returns.  

 

2.2. Neural networks 
 

 A Neural Network is a collection of interconnected simple processing elements 

structured in successive layers and can be depicted as a network of 

arcs/connections and nodes/neurons. Fig. 1 depicts a fully-connected ANN 

architecture similar to the one applied in this study. This network has three layers: 

an input layer with N input variables, a hidden layer with H neurons, and a single 
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neuron output layer. Each connection is associated with a weight, kiw , and a bias, 

kb , in the hidden layer and a weight, kv , and a bias, 0v , for the output layer (k = 

1,2,…,H, i = 1,2,…,N). A particular neuron node is composed of: i) the vector of input 
signals, ii) the vector weights and the associated bias, iii) the neuron itself that sums 

the product of the input signal with the corresponding weights and bias, and finally, 

iv) the neuron transfer function. In addition, the outputs of the hidden layer 

( (1) (1) (1)
1 2, ... Hy y y ) are the inputs for the output layer. Since we want to approximate the 

market options pricing function, ANNs operate as a non-linear regression tool: 

 

( ) ANNY G x ε= +% ,    (3) 

 

that maps the unknown relation, G(.), between the input variable vector, 

1 2[ , ,..., ]Nx x x x=% , the target function, Y , and the error term, ANNε . Inputs are set up 

in feature vectors, 1 2[ , ..., ]q q q Nqx x x x=%  for which there is an associated and known 

target, qY t≡  (in our case, /mrk
q q qt c X≡ ), with 1,2,...,q P≡ , where P is the number of 

the available sample features. According to Fig. 1, the operation carried out for 

estimating output y  (in our case, /q
ANN

q qy c X≡ ), is the following: 

 

0 0
1 1

[ ( )]
H N

k H k ki i
k i

y f v v f b w x
= =

= + +∑ ∑ .    (4) 

[Figure 1 here] 
 

For the purpose of this study, the hidden layer always uses the hyperbolic tangent 

sigmoid transfer function, while the output layer uses a linear transfer function. In 

addition, ANN architectures with only one hidden layer are considered since they 

operate as a nonlinear regression tool and can be trained to approximate most 

functions arbitrarily well (Cybenko, 1989). High accuracy can be obtained by 

including enough processing nodes in the hidden layer.  

 To train the ANNs, we utilized the modified LM algorithm. According to LM, 

the weights and the biases of the network are updated in such a way so as to 

minimize the following sum of squares performance function: 

 

2 2 2
0 0

1 1 1 1 1
( ) ( ) ( [ ( )] )

P P P H N

q q q k H k ki iq q
q q q k i

F W e y t f v v f b w x t
= = = = =

= ≡ − ≡ + + −∑ ∑ ∑ ∑ ∑ ,                             (5) 

 



 
7

where, W  is an n-dimensional column vector containing the weights and biases: 

1 11 0[ ,..., , ,..., , ,..., ]TH HN HW b b w w v v= . Then, at each iteration τ of LM, the weights 

vector W is updated as follows: 

 

)()(])()([ τττττττ μ WeWJIWJWJWW TT 1
1

−
+ +−= ,                                                     (6) 

 

where I is an n n identity matrix, ( )J W  is the P n Jacobian matrix of the P-

dimensional output error column vector ( )e W , and τμ  is like a learning parameter 

that is adjusted in each iteration in order to secure convergence. Further technical 

details about the implementation of LM can be found in Hagan and Menhaj (1994) 

and Hagan et al. (1996). In addition to the standard use of ANNs where /mrk
q q qt c X≡ , 

we also try hybrid ANNs in which the target function is the residual between the 

actual call market price and the BS or CS call option estimation:  

 

/ /mrk k
q q q q qt c X c X≡ − ,                (7) 

 

with k defining inputs from a parametric model. To avoid neuron saturation, we 

scale input variables using the mean-variance transformation (z-score) defined as 

follows: 

 

( )/i i i iz x sμ= −% % ,    (8) 

 

where ix%  is the vector containing all of the available observations related to a certain 

input/output variable for a specific training period, iμ  is the mean and is  the 

standard deviation of this vector. Moreover, we also utilize the network initialization 

technique proposed by Nguyen and Windrow (see Hagan et al., 1996) that generates 

initial weights and bias values for a nonlinear transfer function so that the active 

regions of the layer’s neurons are distributed roughly evenly over the input space.  

 In this study for each input variable set of each training sample, all the 

available networks having two to ten hidden neurons are cross-validated (in total 

nine). Moreover, since the initial network weights affect the final network 

performance, for a specific number of hidden neurons the network is initialized, 

trained and validated many times. Each network is estimated and optimized using 

the Mean Square Error (MSE) criterion shown in Equation 5 for no more than two-

hundred iterations. The dataset is divided into three sub-sets. The first is the 

training (estimation) set. The second is the validation set where the ANN model’s error 
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is monitored and the optimal number of hidden neurons and their weights are 

defined, via an early stopping procedure (MSE fails to decrease in 10 consecutive 

iterations). Given the optimal ANN structure, its pricing capability is tested in a third 

separate testing dataset.  
 
 

3. Data, parameter estimates (historical and implied), and model 
implementation 
 

 Our dataset covers the period January 1998 to August 2001. To our 

knowledge, the resulting dataset is larger than the one used in other published 

studies and reserves option data points that in most of the previous studies were 

dropped out of the analysis. After implementing the filtering rules, our dataset 

consists of 76,401 data points, with an average of 35,000 data points per 

(overlapping rolling training-validation-testing) sub-period (see Fig. 2). Hutchison et 

al. (1994) have an average of 6,246 data points per sub-period. Lajbcygier et al. 

(1996) include 3,308 data points, Yao et al. (2000) include 17,790 data points, and 

Schittenkopf and Dorffner (2001) include 33,633 data points. The S&P 500 Index call 

options are considered because this option market is extremely liquid and one of the 

most popular index options traded on the CBOE. This market is the closest to the 

theoretical setting of the parametric models. Along with the index, we have collected 
a daily dividend yield, δ , provided online by Datastream.  

 

3.1. Observed and historically estimated parameters 
 
 Moneyness Ratio (S/X): The moneyness ratio may explicitly allow the ANNs to 

learn the moneyness bias associated with the BS (see also Garcia and Gencay, 

2000). The dividend adjusted moneyness ratio ( )/TSe Xδ−  is used in this study with 

ANNs because it is more informative. The simple moneyness ratio S/X is used in 

order to tabulate results as in Hutchison et al. (1994). We adopt the following 

terminology: very deep out of the money (VDOTM) when S/X<0.85, deep out the 

money (DOTM) when 0.85≤S/X<0.90, out the money (OTM) when 0.90≤S/X<0.95, just 

out the money (JOTM) when 0.95≤S/X<0.99, at the money (ATM) when 

0.99≤S/X<1.01, just in the money (JITM) when 1.01≤ S/X <1.05, in the money (ITM) 

when 1.05≤S/X<1.10, deep in the money (DITM) when 1.10≤S/X<1.35, and very deep 

in the money (VDITM) when S/X≥1.35.   

  Time to maturity (T ): For each option contract, trading days are computed 

assuming 252 days in a year. In terms of time length, an option contract is classified 
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as short term maturity when its maturity is less than 60 days, as medium term 
maturity when its maturity is between 60 and 180 days and as long term maturity 
when it has maturity longer than (or equal to) 180 days.   

 Riskless interest rate (r ):  Most of the studies use 90-day T-bill rates (or 

similar when this is unavailable) as approximation of the interest rate. We use 

nonlinear cubic spline interpolation for matching each option contract with a 

continuous interest rate, r , that corresponds to the option’s maturity, by utilizing 

the 3-month, 6-month and one-year T-bill rates collected from the U.S. Federal 

Reserve Bank Statistical Releases. 
 Historical Volatilities (σ ): The 60-day historical volatility is calculated using all 

the past 60 log-relative index returns and is symbolized as 60σ . 

 CBOE VIX Volatility Index: It was developed by CBOE in 1993 and is a 

measure of the volatility of the S&P 100 Index3. VIX is calculated by taking the 

weighted average of the implied volatilities of eight S&P 100 Index call and put 

options with an average time to maturity of 30 days. This volatility measure can only 

be used with BS and is symbolized as BS
vixσ .  

 Skewness and Kurtosis: The 60-day skewness ( 3,60
CSμ ) and kurtosis ( 4,60

CSμ ) 

needed for the CS model are approximated from the sixty most recent log-returns of 

the S&P 500.      

 

3.2. Implied parameters 
 
 We adopt the Whaley’s (1982) simultaneous equation procedure to minimize a 

price deviation function with respect to the unobserved parameters. As with Bates 

(1991), market option prices (cmrk) are assumed to be the corresponding model prices 

(ck, k defining input from a parametric model) plus a random additive disturbance 

term. For any option set of size Nt (Nt refers to the number of different call option 

transaction datapoints available on a specific day), the difference: 
 

k
N

mrk
N

k
N ttt

cc −=ε     (9) 

 

between the market and the model value of a certain option is a function of the 

values taken by the unknown parameters. To find optimal implied parameter values 

we solve an unconstrained optimization problem that has the following form: 

                                                 
3 The S&P 100 Index and S&P 500 Index exhibit 30 day log-return average correlations for the period 
January 1998 to August 2002 of about 0.98. 
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∑
=

=
t

k

N

l

k
l )(min)t(SSE

1

2ε
θ

,  (10) 

 

where t represents the time instance, and kθ  the unknown parameters associated 

with a specific parametric OPM ( { }BSθ σ= , 3 4{ , , }CSθ σ μ μ= ). The SSE is minimized via 

a non-linear least squares optimization based on the LM algorithm. To minimize the 

possibility to obtain implied parameters that correspond to a local minimum of the 

error surface (see also Bates, 1991, and Bakshi et al., 1997), with each model we use 

three different starting values for the unknown parameters based on reported 

average values in Corrado and Su (1996).       

 A difference of our approach compared to previous studies is that the above 

minimization procedure is used daily to derive four different sets of implied 

parameters for each parametric model. The first optimization is performed by 

including all available options transaction data in a day to obtain daily average 

implied structural parameters. Alternatively, for a certain day we minimize the SSE 

of Equation 10 by fitting the BS and CS for options that share the same maturity 

date as long as four different available call options exist. We thus get daily average 

per maturity parameters. In a third step, for every maturity each available option 

contract is grouped with its three nearest options in terms of the moneyness ratio in 

order to minimize the above SSE function, deriving thus parameters average per the 

4 closest contracts; such estimates are ignored in previous research. We finally 

calibrate the implied structural parameters, by focusing on the Brownian volatility 

for each contract so as to drive the residual error to zero or to a negligible value. In 

the case of BS this is quite simple and we can easily obtain a contract specific 

volatility estimate. For CS we need three structural parameters, so for each call 

option we minimize Equation 10 with respect to the Brownian volatility after fixing 

the skewness and kurtosis coefficients to the values obtained from the previous 

procedure that gave the average per the 4 closest implied parameters. Two kinds of 

constraints are included in the optimization process for practical reasons: 

nonnegative implied volatility parameters are obtained by using an exponential 

transformation; and the skewness of CS4 is permitted to vary in the range [–10, 5] 

whereas kurtosis is constrained to be less than 30. Unlike previous studies, we 
                                                 
4 If not somehow constrained, skewness and kurtosis can take implausible values (i.e. Bates, 1991) due 
to model overfitting that will lead to enormous pricing errors on the next day (especially for deep in the 
money options). In our case these constraints were binding in less than 2% of the whole dataset. 
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include contract specific implied parameters since these are widely used by market 

practitioners (i.e. Bakshi et al., 1997, pg. 2019).   

 For notational reasons, implied parameters obtained from the first step are 

denoted by the subscript av, from the second step by the subscript avT, from the 

third step by the subscript avT4, and from the fourth step by the subscript con. The 

four different implied BS volatility estimates are symbolized as: BS
jσ , 

},4,,{ conavTavTavj = , whilst the four different sets of CS parameters as: 

3, 4,{ , }CS CS CS
j j jσ μ μ . For pricing and trading reasons at time instant t, the implied 

structural parameters derived at day t-1 are used together with all other needed 
information (S, T, X, r, and δ ).  

 It is known that ANN input variables should be presented in a way that 

maximizes their information content. When we price options, the parametric OPM 

formulas adjust those values to represent the appropriate value that corresponds to 

an option’s expiration period. According to this rationale, volatility measures for use 

with the ANNs are transformed by multiplying each of the yearly volatility forecast 

with the square root of each option’s time to maturity ( j j Tσ σ=% , where j={60, vix, 

av, avT, avT4, con}). We denote these volatility measures as BS
jσ%  and CS

jσ% ; and we 

name them as maturity (or expiration) adjusted volatilities. Additionally, for the case 

of CS, skewness 3,
CS
jμ , {60, , , 4, }j av avT avT con= , is transformed by multiplication 

with Q3 that represents the marginal effect of nonnormal skewness. Similarly, 4,
CS
jμ  

is multiplied with Q4. We denote these adjusted parameters as 3,
CS

jμ%  (adjusted 

skewness), and 4,
CS

jμ%  (adjusted kurtosis).  

 

3.3. Output variables, filtering and processing 

  

 The BS ( BS
qc ) and CS ( CS

qc ) outputs, are used as an estimate for the market 

call option, mrk
qc . For training ANNs, the call standardized by the striking price, 

/mrk
q qc X , is used as the target function to be approximated. In addition, we 

implement the hybrid structure where the target function represents the pricing 

error between the option’s market price and the parametric models estimate, 

/ /mrk k
q q q qc X c X− .  

  Before filtering, more than 100,000 observations were included for the period 

January 1998 – August 2001. The filtering rules we adopt are: i) eliminate an 
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observation if the call contract price, mrk
t,mc , m defining each traded contract, is greater 

than the underlying asset value, tS ; ii) exclude an observation if the call moneyness 

ratio is larger than unity, St/Xm>1, and the call price, mrk
t,mc , is less than its lower 

bound, , , , ,m t m t m t m tT r T
t mS e X eδ− −− ; iii) eliminate all the options observations with time to 

maturity less than 6 trading days. The latter filtering rule is adopted to avoid extreme 

option prices that are observed due to potential illiquidity problems; iv) price quotes 
lower than 0.5 index points are not included; v) maturities with less than four call 
option observations are also eliminated, vi) in addition, to remove impact from thin 

trading we eliminate observations according to the following rule: eliminate an 

observation if the mrk
t,mc  is equal to mrk

1t,mc −  and if the open interest for these days stays 

unchanged and if the underlying asset S has changed.  
[Table 1, here] 

 

 Our final dataset consists of 76,401 datapoints. Table 1 exhibits some of the 

properties of our sample tabulated according to moneyness ratio and time to 

maturity forming 27 different moneyness/maturity classes. We provide the average 

values for cmrk and BS
conσ , and the number of observations within each moneyness and 

maturity class. The implied volatility, BS
conσ , presents a non-flat moneyness structure 

when fixing the time to maturity and vice versa revealing the bias associated with 

BS. Moreover, we should notice that DITM and VDITM options dominate in number 

of datapoints all other classes, so unlike studies that ignore these options we choose 

to include them in the dataset. For the training sub-periods, the observations vary 

between: 19,852-22,545; for the validation sub-periods between: 10,372-10,916; and 

for the testing sub-periods between: 3,797-4,264.  
 In order to check the robustness of the results, in addition to the full dataset 

just described, we repeat the analysis using a reduced dataset. In this reduced 

dataset we follow Hutchison et al. (1994), and we neither use long maturity (longer 

than 180 trading days) options, nor the VDOTM (S/X<0.85) or the VDITM (S/X≥1.35) 

options. The excluded observations (because of considerations of thin trading) 

comprise about 21% of the full dataset resulting in a total of 60,402 observations. 

The training-validation-testing splitting dates are the same as in the original dataset. 

For the training sub-periods, the observations vary between: 15,851-18,053; for the 

validation sub-periods: 7,728-9,638; and for the testing sub-periods: 2,689-3,983. 

To be consistent with Hutchison et al. (1994), in using the reduced dataset we 
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retrain the ANNs. Our discussion will focus on the full dataset. In order to save 

space, we will only show selected results using the reduced dataset. 

 
3.4. Validation and testing, and pricing performance measures 
 

 Since a practitioner is faced with time-series data, it was decided to partition 

the available data into training, validation and testing datasets using a chronological 

manner, and via a rolling-forward procedure. Our dataset is divided into ten different 

overlapping training (Tr) and validation (Vd) sets, each followed by separate and non-

overlapping testing (Ts) sets as exhibited by Fig. 2. The ten sequential testing sub-

periods cover the last 25 months of the complete dataset. 

[Figure 2, here] 
 

There are M available call option contracts, for each of which there exist mΞ  

observations taken in consecutive time instances t, resulting in a total of P 

(
1

M

m
m

P
=

= Ξ∑ ) available call option datapoints. To determine the pricing accuracy of 

each model’s estimates kc  (k defining the model), we examine the Root Mean Square 

Error (RMSE) and the Mean Absolute Error (MAE): 
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where p indicates the number of observations. The error measures are computed for 

an aggregate testing period (AggTs) with 39,831 datapoints by pooling together the 

pricing estimates of all ten testing periods. For AggTs we also compute the Median of 

the Absolute Error (MeAE). Of course, since ANNs are effectively optimized with 

respect to the mean square error, the out-of-sample pricing performance should be 

similarly based on RMSE and in a lesser degree on MAE and MeAE. 

 

 
3.5. The alternative BS, CS and ANN models 
 
 With the BS models we use as input S, X, T, r, δ , and any of the six different 

volatility measures: 60σ , BS
vixσ , BS

avσ , BS
avTσ , 4

BS
avTσ  and BS

conσ . Using P in the superscript 
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to denote the parametric version of BS, the six different models are symbolized as: 

60
PBS , P

vixBS , P
avBS , P

avTBS , 4
P
avTBS , and P

conBS . In a similar way there are five different 

CS models according to the kind of parameters used: 60
PCS , P

avCS , P
avTCS , 4

P
avTCS , and 

P
conCS .  

 With ANNs, we also use three standard input variables/parameters: 

( )/TSe Xδ− , T  and r . Additional input parameters depend on the parametric model 

considered. There are six ANN models that use as an additional input the above BS 

volatility measures to map the standard target function cmrk/X. There are six more 

versions that utilize the maturity adjusted parameters. Each of the previous input 

parameter sets is also used with the hybrid target function. The ANNs that use the 

untransformed BS volatility forecast are denoted by N in the superscript, the 

transformed versions by N*, while the corresponding hybrid versions by Nh and Nh* 

respectively. For instance, N
conBS  ( Nh

conBS ) is the ANN model that uses as additional 

input BS
conσ  and maps the standard (hybrid) target function, whilst *N

conBS  ( *Nh
conBS ) the 

ANN model that uses as additional input BS
conσ%  and maps the standard (hybrid) target 

function. In total there are 24 different versions of ANNs related to the BS and 20 

related to the CS model. 

 

 

5. Pricing results and discussion 
 

 We briefly review the observed in-sample fit of the parametric models as well 

as the in-sample characteristics of the various implied parameters. Then we discuss 

the out-of-sample performance of the alternative OPMs. When we do not explicitly 

refer to the dataset, we imply the full one. The insights derived were not affected by 

the choice of dataset. When noteworthy differences exist, we state them explicitly. 

 

5.1. BS and CS in-sample fitting performance and implied parameters 
  
 Based on our (not reported in detail for brevity) statistics for the whole period 

(1998-2001) we have observed that CS is producing smaller fitting errors than the 

BS. The contract specific fitting procedure reduces the fitting errors so as to almost 

eliminate the residuals and obtain fully calibrated implied parameters. The in sample 

RMSE measures using the overall average set of implied parameters (av), the average 

per maturity (avT), and the closest four contracts (avT4), are: 11.63, 11.31, and 7.00 
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for the BS model; and 9.52, 8.52, and 5.35 for the CS model5. From unreported 

statistics we can also attest that the S&P 500 average BS
conσ  in 1998 was about 33%, 

in 1999 about 30%, in 2000 about 26% and in 2001 about 27%. It seems that the 

in-sample fitting error of the models (diminishing in time) is positively correlated 

with the market volatility.    
 We can also provide some statistics about the implied parameter values for 

the whole period. The Brownian volatility varies between 22% and 30% in BS and 

between 27% and 31% in CS. For the BS model, the average implied volatility ( BS
avσ ) 

estimates are smaller in magnitude (both in mean and in median values) from the 

contract specific implied volatility, BS
conσ , although similar volatility estimates do not 

necessarily lead to similar pricing and hedging values (Bakshi et al., 1997). 

Regarding implied skewness and kurtosis, the implicit distributions are negatively 

skewed with excess kurtosis in almost all days, something that is probably 

attributed to the crash fears of the market participants after the Black Monday of 

1987. Implied average skewness does not change significantly (from -1.19 to -1.20) if 

we move from {av} to {avT} but there is a shift in implied average kurtosis (from 6.91 

to 6.19).  

 

5.2. Out-of-sample pricing results 

 

 Table 2, exhibits the performance of all parametric and ANN models 

considered in this study in terms of RMSE, MAE and MeAE for the AggTs (aggregate) 

period. In Table 3 we tabulate statistics for a pairwise comparison of the (statistical 

significance of) pricing performance of a selection of models. Since the ten testing 
periods are disjoint and because we have pricing estimates coming from different 

OPMs we can assume (similarly to Hutchison et al, 1994 and Schittenkopf and 

Dorffner, 2001) that the pricing errors are independent and standard t-test can be 

applied. Similarly to the previous authors we need to report that these tests should 

be interpreted with caution. The upper diagonal of Table 3 reports the t-values taken 

by a two-tail matched-pair test about the MAE of the alternative models whilst the 

lower diagonal exhibits the two-tail matched-pair t-test values about the MSE of the 

compared OPMs. Table 4 provides (as a robustness check) the performance of the 

models when using the reduced dataset. 

[Table 2, 3 and 4, here] 

                                                 
5 The RMSE for CS in the fourth step (con) is 1.82 (caused by a tiny part of the dataset less than 0.1%) 
due to binding constraints on skewness and kurtosis. For this step, the MeAE is more appropriate, and 
is effectively zero. The RMSE and the MeAE for BS in the fourth step are effectively zero. 
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 By looking at Tables 2 and 4 we can see that the use of implied instead of 

historical parameters improves performance, both for parametric and ANN models 

(in both datasets). Note that the 60-day historical volatility performed better than 

VIX with the parametric BS model, but the VIX volatility measure performed better 

with the ANN models. Using time adjusted parameters in the ANNs or using contract 

specific parameters {avT4, con} usually improves performance. The combination of 

time adjusted parameters and contract specific parameters always provided the best 

model within each class of ANNs (standard or hybrid, BS or CS based) in both 

datasets. 

 In comparing the parametric models and again looking at Tables 2 and 4, it is 

noteworthy that CS outperforms BS when average implied parameters are used. BS 

still works better with contract specific parameters. The overall best among the 

parametric models is the contract specific BS model. In other more complex 

parametric models that include jumps and stochastic volatility components (i.e. 

Bakshi et al., 1997), deriving implied parameters may lead to model overfitting. The 

contract specific approach we adopt in this study seems not to lead to model 

overfitting, retaining thus good out-of-sample properties. For the ANN models, the 

CS based may outperform the BS based in some cases, but when the best 

combinations are used (time adjusted parameters and contract specific parameters), 

the best model always is BS based in both the standard and hybrid networks. 

 In comparing the parametric models with the standard ANNs, in the full 

dataset the ANNs never outperform the equivalent parametric ones. Apparently, the 

standard ANNs cannot perform well in the extreme data regions. In the reduced 

dataset (see Table 4), we observe the opposite since the standard ANNs always 

outperform the equivalent parametric ones. 

 In comparing the hybrid with the standard ANNs, in the full dataset the 

hybrid are always better. In the reduced dataset this may not always be the case, but 

the best combinations (time adjusted parameters and contract specific parameters) 

give as the best model always a hybrid one.  

 In both the full and the reduced dataset, the hybrid always outperform the 

equivalent parametric ones. Finally, in both the full and the reduced dataset, the 

overall best model is the BS based hybrid with time adjusted and contract specific 

volatility. 

 

 From Table 3, we can confirm the statistical significance of the best models. 

The comparative results we discuss with tests using the full dataset, and they also 

hold for the reduced dataset (statistics not reported for brevity). We can see that 
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*Nh
conBS  outperforms all other models. Specifically, *Nh

conBS  is producing a RMSE equal 

to 6.01 and a MAE equal to 2.61, pricing measures that are smaller that any other 

model at the 5% significance level.  

 The BS based hybrid ANNs even with historical or the VIX volatility measure 

are considerably better than the equivalent parametric alternatives at a statistically 

significant level. Specifically, *
60
NhBS  is producing 1.23 (1.25) times smaller MSE 

(MAE) compared to 60
PBS . Also *Nh

vixBS  produces 1.52 (1.90) times smaller MSE (MAE) 

compared to P
vixBS .  

 Comparing the out-of-sample pricing performance of *Nh
conBS  to *Nh

conCS  we 

observe that the extra ANN flexibility of the latter due to the two additional input 

parameters does not lead to increased accuracy. The *Nh
conBS  is better than the *Nh

conCS  

model at 1% significance level. 

 We can similarly see the statistical significance of the superiority of the BS 

based models with contract specific volatility versus the equivalent CS based models 

(both parametric and hybrid); and the superiority of the models using the implied 

volatility versus the equivalent ones using the historical volatility measures.  
 

5.3. Other statistics 

 

 We tabulate in Table 5 the MSE of a selective (but representative) choice of 

models, according to the various moneyness and maturity classes for the aggregate 

(AggTs) period. We demonstrate results for the two best performing parametric 

models which serve as benchmark ( P
conBS , P

conCS ,) and the two best performing (in 

their respective class) hybrid ANN models ( *Nh
conBS , *Nh

conCS ). We also demonstrate 

results for the reduced dataset ( *Nh
conBS , *Nh

conCS ). The relevant information for the 

parametric models in the reduced dataset can be taken from the information 

concerning the full if we ignore the long maturities, and the VDOTM and the VDITM 

classes. Very briefly, what can be seen is that P
conBS  has a smaller RMSE in all data 

classes compared to P
conCS . The same holds for *Nh

conBS  over *Nh
conCS . If we compare the 

BS and CS based hybrid models with the equivalent parametric ones, the hybrid 

ANN models rarely underperform the parametric ones, and they do so only in some 

classes far away from ATM. This we attribute to the scarcity of such call option 

datapoints in the training samples compared to other moneyness and maturity 

classes.  

[Table 5, here] 
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 We should finally comment on the complexity of each neural network 

configuration. Since we have a constant number of inputs within each model class, 

the larger the number of hidden neurons the more complex the ANN model 

architecture, and the more complex the target function to be approximated. Firstly, 

we observe that the number of hidden neurons changes significantly between sub-

periods. This contradicts many previous studies that employ the assumption that 

the market’s options pricing mechanism is the same for all periods examined and 

that a constant ANN structure is sufficient. Secondly, the standard target function is 

more complex compared to the hybrid one, hence this hybrid category of networks 

can perform better in out-of-sample pricing. Thus, it is not surprising that the best 

performing ANN model, *Nh
conBS , demonstrates the simplest structure with an average 

of 3.2 hidden layer neurons, compared to the 8 hidden layer neurons in the case of 

the equivalent standard ANN ( *N
conBS ). Similarly for the CS-based ANNs, we have 4.9 

(for *Nh
conCS ) and 7.7 (for *N

conCS ) hidden layer neurons respectively. Similar network 

complexities (not reported) were observed in the reduced dataset. 

 

 

6. Delta neutral trading strategies 
 

 We now investigate the economic significance of the best performing models in 

options trading. In order to save space we discuss the parametric versions of BS and 

CS which are usually the benchmark, and the hybrid ANN models which provided 

the overall best performance. Other studies usually restrict their analysis only to a 

hedging investigation of various alternative OPM models (i.e. Hutchison et al., 1994, 

Garcia and Gencay, 2000, Schittenkopf and Dorffner, 2001) and avoid exploiting 

trading strategies. It is known from previous studies that the best OPM in terms of 

out-of-sample pricing performance does not always prove to be the best solution 

when we consider delta hedging, since ANNs are optimized based on a pricing error 

criterion. Instead, and following the spirit of Black and Scholes (1972), Galai (1977), 

and Whaley (1982), we investigate the economic significance of the OPMs by 

implementing trading strategies. “A model that consistently achieves to identify 

mispriced options and within a time period produces an amount of trading profits 

will always be preferred by a practitioner” (Black and Scholes, 1972). The trading 

profitability that we will document, indirectly also hints to potential option market 

inefficiencies, although testing market efficiency is beyond the scope of our study. 

We implement trading strategies based on single instrument hedging, as for example 

in Bakshi et al. (1997). In addition, we consider various levels of transaction costs, 
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and we focus on dynamic strategies that are cost-effective. We later extend the 

analysis by implementing a modified approach for trading using hedging ratios 

obtained via the (widely neglected) Chen and Johnson (1985) method. To our 

knowledge, this is the first effort to validate this modified trading strategy using both 

parametric and ANN OPMs.  

 In the trading strategy we implement,  we create portfolios by buying (selling) 

options undervalued (overvalued) relative to a model’s prediction and taking a delta 

hedging position in the underlying asset. This (single-instrument) delta hedging 

follows the no-arbitrage strategy of Black and Scholes (1973), where a portfolio 

including a short (long) position in a call is hedged via a long (short) position in the 

underlying asset, and the hedged portfolio rebalancing takes place in discrete time 

intervals (in an optimal manner, not necessarily daily). At time t, if according to the 

model the mth call option contract is overvalued (undervalued) relative to its market 

value, ,
mrk
m tc , we go short (long) in this contract and we go long (short) in ,

k
m tΔ  “index 

shares6”, where k denotes the relevant model. Then we invest the residual, ,m tB , in a 

riskless bond. Note that ,
k
m tΔ  is the partial derivative of the option price with respect 

to the underlying asset, , /k
m t tc S∂ ∂ , depending on the OPM under consideration. ,

ANN
m tΔ  

can be calculated by differentiating Equation 4 via the chain rule. The expression for 

,
BS
m tΔ   is 1( )Te N dδ−  and is derived from Equation 2.1. The expression for ,

CS
m tΔ  includes 

,
BS
m tΔ  and is: 

 

, , 3 3 4 4( 3)CS BS
m t m t μ μΔ = Δ + Φ + − Φ ,  (13) 

 

where 3
3

Q
S

∂
Φ =

∂
 and 4

4
Q
S

∂
Φ =

∂
 are given below: 
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e T N d n d T d n d T n d T

d n d T d n d d n d

δ σ σ σ σ

σ
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+ −
 (13.b) 

 

 In general we avoid a naive (expensive) trading strategy with daily rebalancing, 

since in the presence of transaction costs this would become prohibitively expensive. 
                                                 
6 Similarly to Bakshi et al. (1997) we assume that the spot S&P 500 index is a traded security. 
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Instead, the position is held as long as the call is undervalued (overvalued) without 

necessarily daily rebalancing. Then the position is liquidated and the profit or loss is 

computed, tabulated separately and a new position is generated according to the 

prevailing conditions in the options market. This procedure is carried out for all 

contracts included in the dataset. We rebalance our position in the underlying asset 

to keep the appropriate hedge ratio. Rebalanced positions in the index, ,m t tV +Δ , and 

the bond, ,m t tB +Δ , are according to: 

 

, , ,( )m t t t t m t t m tV S+Δ +Δ +Δ= ± Δ − Δ , and , , ,
r t

m t t m t m t tB B e VΔ
+Δ +Δ= + ,  (14) 

 

where the positive sign is considered when we treat undervalued and the negative 

sign when we treat overvalued options. Note that in all trading strategies, when we 

need to invest money we borrow and pay the riskless rate; similarly we do for as long 

as a strategy provides losses. Thus, when we present profits they are always above 

the dollar return on the riskless rate. 

 Computed statistics include the total profit or loss (P&L), the number of 

trades (# Trades), the total profit or loss at 0.2% transaction costs, P&L (0.2%), and 

0.4% transaction costs, P&L (0.4%). The (proportional) transaction costs are paid for 

both positions (in the call option and in the “index shares”)7. We also implement 

strategies with enhanced cost-effectiveness by ignoring trades that involve call 

options whose absolute percentage mispricing error, | |/k mrk kc c c− , is less than a 

mispricing margin d = 15%, found as P&L (d = 15%). In addition, for these strategies, 

we also calculate P&L under aggregate transaction costs for the “index shares”. With 

such aggregation, transactions in the underlying assets are paid on the net 

(aggregate) exposure of ,m t tV +Δ  and not on each position individually. Under this 

strategy, we expect additional cost savings that may provide profits even at rather 

high transaction cost levels. We use the prefix Agg. in front of P&L to indicate this 

strategy. The following observations refer to the full dataset, but they also hold for 

the reduced one (unreported due to brevity considerations). 

 The results for the parametric BS and CS models are tabulated in Panel A of 

Tables 6 and 7 respectively. We observe that all models before transaction costs 

produce significant profits, implying that both BS and CS can successfully identify 

mispriced options. Within BS models the magnitude of P&L is larger for P
conBS  that 

                                                 
7 For example, assume that the index is at 1300 and a call option has a market price equal to 25 index 
points and a delta value of 0.60. Under 0.4% transaction costs the total commissions paid (for a single 
trade) will be 3.22 index points. In the AggTs period the S&P 500 was in a range from about 1100 to 
1500. This level of transaction costs is low but attainable by professional traders and market makers. 
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employs a more sophisticated implied volatility forecast. Note though that the more 

sophisticated volatility forecast that is used with BS, the larger the number of trades. 

So, when 0.2% transaction costs are taken into consideration, all models produce 

significant losses and the previous profit dominance of P
conBS  over 60

PBS  reverts 

because the latter model incurs less transaction costs (since it engages in a smaller 

number of trades). Similar results hold for the CS models although 4
P
avTCS  generates 

slightly higher profits compared to P
conCS . Realizing that our simpler trading strategy 

does not discriminate between high or low expected trading profits, we compute P&L 

when trades occur only when an expected profit of at least d = 15% is expected. Now 

we observe that all models can be profitable even under 0.4% transaction costs. 

 Overall we may conclude the following. First, without transaction costs, the 

CS models produce higher P&L than their counterpart BS models.  This is expected 

since the delta values generated by CS models are consistently higher than those of 

BS models (for example the median delta values of P
conBS  for AggTs is 0.632 whilst 

for P
conCS  is 0.697), making CS based trading more aggressive. Moreover, CS with {av} 

and {avT} volatility measures, outperforms significantly the equivalent BS models 

since it generates more than twice the number of trades; this may happen because 

unlike the BS models whose implied volatility changes more smoothly, CS models 

implied skewness and kurtosis can change more erratically. Secondly, and for the 

same reason, CS models under 0.2% or 0.4% transaction costs become inferior to 

their BS counterparts. Thirdly, from unreported calculations we have seen that as d 
increases we generally observe P&L to increase in a diminishing fashion indicating 

that there is an optimal d for maximizing trading profits. Finally, trading “in 

aggregate” positions leads to significant further savings on transaction costs.  

[Tables 6-8, here] 
 

 In Table 8 we present results for the trading strategies based on ANNs (only 

for the hybrid models with time adjusted parameters). In general we observe similar 

results to those of the parametric models. Contrary though to the parametric OPMs, 

the ANNs offer significant improvement in the cases of less sophisticated parameter 

estimates. For example, *Nh
avBS  produces a P&L equal to 32,908 compared to a P&L 

equal to 14,088 in the case of P
avBS . The best models provide profits in 77%-82% of 

transactions (detailed figures not reported for brevity) using both the full and the 

reduced dataset. Finally, in the presence of transaction costs the BS based hybrid 

model with contract specific volatility is not only the best performing ANN model, but 

also the overall best. A final observation is that the ability to generate profits even 
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under a considerable level of transaction costs (we do not report here, but the best 

strategies retained profitability even up to a level of 0.5% of transaction costs) 

provides some evidence of inefficiency in these options markets. Our study however 

is not intended to be a test of market efficiency.  

  

6.1. Improving trading performance with the Chen and Johnson (1985) modified 
hedging approach 
 

 We now extend the trading strategies by utilizing with all models the improved 

hedging scheme suggested by Chen and Johnson (1985). This is a widely neglected 

(see Roon et al., 1998 for a rare exception in the use of parametric models) approach 

that deals with deriving hedge parameters under the assumption of mispriced 

options. According to this hedging scheme and when an option is mispriced, the 

delta hedge parameter, ,
k
m tΔ , should be derived in a different way. If a mispriced 

option has been identified, then the riskless hedge will not earn r, the riskless rate, 

but some other rate, r*. Chen and Johnson obtain the expression for a European call 

option that is the same as BS presented in Equations 1, 1.a and 1.b, by replacing r 
with r*.  In order to derive the correct hedge ratio, Equation 1 must be solved 

numerically for r* using the observed market price of cmrk (like retrieving the implied 

interest rate). We implement this approach with the parametric BS and CS models, 

and the ANNs.  

 Finding the implied interest rate, r*, for the case of BS or CS is a simple 

numerical task and we employ the repeated cubic interpolation technique according 

to Charalambous (1992). Finding the implied interest rate, r*, for ANNs is a more 

involved task, since in the case of hybrid models we need to jointly optimize with 

respect to the interest rate input to the neural networks and to the interest rate in 

the parametric model that is used to create the hybrid target function; this 

introduces many jagged ridge regions in the optimization surface. Thus, in the case 

of hybrid ANNs we adopt a more computationally intensive methodology according to 

which we again use the cubic interpolation technique with ten different initial 

starting points. 

 After finding r* for all models considered we rerun the trading strategies. 

Results for the parametric BS and CS models appear in Panel B of Tables 6 and 7. 

The most important observation is that before transaction costs are accounted for, in 

all BS models under consideration there is a slight (only) improvement in their 

profitability (P&L). Under aggregate 0.4% transaction costs and for d = 15%, the 

improvement in 60
PBS  is about 19%, in P

vixBS  is surprisingly about 164% and for the 
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more sophisticated P
conBS  model only 1.67%. We remind that P

vixBS  exhibited both, 

the poorest out-of-sample pricing performance and only a modest profitability (under 

0.4% transaction costs) among the BS models. Under the adjusted deltas, this seems 

to be partly alleviated. Somewhat similar results we observe for the semi-parametric 

CS model. For both parametric models, the modified hedging approach under 

transaction costs gave the best results when using the average (not contract specific) 

parameters. In the case of ANNs (results unreported for brevity) and under no 

transaction costs, we also observe a slight tendency for increased performance, but 

the results are mixed. With transaction costs the technique was unable to improve 

the profitability of ANNs. The above observations refer to the full dataset, but they 

also hold for the reduced one (again not reported due to brevity). 

 A general observation for the use of the modified hedging approach in trading 

strategies is that it significantly improves trading performance when it is applied 

with OPM models under assumptions consistent with the assumptions under which 

this approach was developed. Thus, it performs well with the parametric models 

when either historical, or average implied parameters are used. The use of this 

approach did not reverse our previous findings about the best performing models 

when trading in the presence of transaction costs. Still, it demonstrated that simple 

models can be efficient alternatives to the more sophisticated and computationally 

intensive hybrid ANN methods. 

 

6.2. Delta hedging 
 

We have also considered hedging as a testing tool. Our results here coincide 

with previous literature – model ranking may differ if testing is based on hedging 

instead of pricing. Bakshi et al. (1997) compare alternative parametric models and 

state that the hedging-based ranking of the models is in sharp contrast with that 

obtained based on out-of-sample pricing. They also state that (delta-hedging) 

performance is virtually indistinguishable among models. Quite similar results are 

reported in papers where non-parametric methods were used, like Garcia and 

Gencay (2000), and Gencay and Qi (2001). Schittenkopf and Dorffner (2001) find the 

results (marginally) better for the parametric models, but practically 

indistinguishable. Hutchison et al. (1994) also report that the learning networks they 

use have a better hedging performance compared to BS but they find it difficult to 

infer which network type performs best. We attribute this difference of model ranking 

to the fact that models are usually optimized with respect to pricing. An exception is 

Carverhill and Cheuk (2003) who focus more on hedging performance by optimizing 
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with respect to the hedge parameters. Optimizing the “hedging performance” is 

beyond the scope of our paper. Furthermore, hedging performance is not a 

substitute for trading performance, since hedging tests fail to account for the 

difference between overpriced and underpriced options. 

 We have calculated the mean hedging error (MHE) and the mean absolute 

hedging error (MAHE) of a standard hedging strategy with daily rebalancing. For 

brevity we do not report the full results here, but we have found according to MHE 

that the best parametric model is the P
conCS . Among the ANN models the best 

performing one is *Nh
conCS , with an identical error for the parametric CS model (equal for 

both models to 0.26). In addition, the error equals 0.30 for both the P
conBS  and the 

*Nh
conBS  models. In general, from the MHE we cannot tell which OPM is the best since 

their difference in this measure is practically indistinguishable. Continuing with the 

MAHE we have the same picture, and we find it hard to observe a certain OPM that 

dominates in this measure since many models have “almost identical” MAHE values. 

It is true that P
conBS  and P

avTBS 4  are the overall best models (with MAHE equal to 

2.57 for both) and perform relatively better than the ANN models (their hybrid ANN 

counterparts both having an error equal to 2.63).  

 In general, we can conclude that the hedging error performance is not in line 

with the models’ pricing performance. That is, our best model in pricing accuracy, 
*Nh

conBS , does not produce the smallest hedging errors. But again, it is truly hard to 

differentiate among models. The above discussion pertains to the full dataset, but we 

have observed that ranking models using hedging performance is not affected by the 

choice of dataset. 

 

 
7. Conclusions 
 

 Our effort has focused in developing European option pricing and trading 

tools by combining the use of ANN methodology and information provided by 

parametric OPMs (the BS and the CS model). For our empirical tests we have used 

European call options on the S&P 500 Index from January 1998 to August 2001. In 

our analysis we have included historical parameters, a VIX volatility proxy derived by 

weighting implied volatilities (for the case of BS only), and implied parameters (an 

overall average, an average per maturity, the 4-point closest in moneyness, and a 

contract-specific parameter set). Neural networks are optimized using a modified 

Levenberg-Marquardt training algorithm. We include in the analysis simple ANNs 

(with input supplemented by historical or implied parameters specific either to BS or 
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the CS model), and hybrid ANNs that in addition use pricing information derived by 

any of the two parametric models. In order to check the robustness of the results, in 

addition to our full dataset we repeat the analysis using a reduced dataset (following 

Hutchison et al., 1994). The economic significance of the models is investigated 

through trading strategies with transaction costs. Instead of naive trading strategies 

we implement improved (dynamic and cost-effective) ones. Furthermore, we also 

refine these strategies with the Chen and Johnson (1985) modified hedging 

approach. Our results can be synopsized as follows:  

  

 Regarding the in-sample pricing, CS performs better than the BS model (with 

the exception of the case of the contract specific implied parameters that practically 

eliminate the pricing error). 

 Regarding out-of-sample pricing, CS outperforms BS with the use of average 

implied parameters, but BS is still a better model when the contract specific implied 

parameters are used; in general, implied parameters lead to better performance than 

the historical ones or the VIX volatility proxy; the simple neural networks cannot 

outperform the parametric models in the full range of data, but we verified 

allegations to the contrary found in the literature with the use of a reduced data set; 

hybrid neural networks that combine both neural network technology and the 

parametric models provide the best performance, especially when contract specific 

and adjusted parameters are used.  The BS based hybrid ANN (with contract specific 

parameters) is the overall best performer, and the equivalent CS hybrid often a good 

alternative. 

 In trading and before transaction costs, models using contract specific implied 

parameters provide the best performance. But they also lead to the highest number 

of trades. In trading when transaction costs are accounted for in a naive manner, 

profits practically in all cases disappear. In trading and even with 0.4% transaction 

costs, when dynamic cost-efficient strategies are implemented, profits are still 

feasible hinting thus to potential market inefficiencies. The parametric BS with 

contract specific volatility is the best among the parametric models. The hybrid ANN 

based on BS with contract specific volatility is the overall best. 

 Implementing the widely neglected Chen and Johnson (1985) modified 

hedging approach, improves significantly the profitability of trading strategies that 

are based on the parametric models with average implied parameters (the models 

more consistent with the assumptions behind the modified hedging approach). This 

approach did not affect the choice of the overall best model in terms of trading with 

transaction costs. But it did demonstrate that reasonable alternatives for trading do 

exist without the need to resort to the extra sophistication of ANN technology. 
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Fig. 1. A single hidden layer feedforward neural network 
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Fig. 2. The rolling-over training/validation/testing procedure 

 

Training set Validation set Testing set 

Period under examination 



 
31

Table 1  
Sample descriptive statistics  

 VDOTM DOTM OTM JOTM ATM JITM ITM DITM VDITM 

S/X <0.85 0.85-
0.95 

0.90-
0.95 

0.95-
0.99 

0.99-
1.01 

1.01-
1.05 

1.05-
1.10 

1.10-
1.35 ≥1.35 

Short Term Options  <60 Days 
Call 3.61 1.63 5.15 15.70 32.40 56.58 99.55 199.77 470.38 

volatility 0.36 0.21 0.19 0.19 0.20 0.22 0.27 0.38 0.99 
# obs 399 1,361 4,815 7,483 3,964 6,548 4,970 7,990 2,103 

Medium  Term Options  60-180 Days 
Call 4.38 8.29 23.58 46.06 64.51 90.35 131.10 227.41 493.18 

volatility 0.22 0.18 0.20 0.21 0.21 0.23 0.25 0.30 0.54 
# obs 1,412 1,727 2,578 3,147 1,780 2,901 3,038 8,100 3,999 

Long Term Options   ≥ 180 Days 
Call 9.65 42.09 74.03 106.24 126.03 150.99 185.87 267.12 495.82 

Volatility 0.18 0.21 0.22 0.23 0.24 0.25 0.26 0.28 0.40 
# obs 332 333 575 603 343 660 812 2,695 1,733 

Sample characteristics for the period January 5, 1998 to August 24, 2001 concerning the average call 
option value, the average Black and Scholes contract specific implied volatility and the number of 
observations in each moneyness/maturity class. 
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Table 2  
Pricing error measures in the aggregate testing period (AggTs) 

 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

RMSE 11.18 12.57 9.72 9.47 8.03 7.04 11.25  8.89 8.87 8.11 7.71 
MAE 6.83 8.60 5.32 5.00 3.10 2.70 6.89  3.86 3.72 3.27 3.10 
MeAE 4.48 6.38 3.74 3.37 1.52 1.43 4.61  2.26 1.94 1.69 1.68 

             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
RMSE 13.06 12.65 10.97 12.48 10.74 9.06 14.68 12.76 12.30 11.69 9.33 7.86 
MAE 7.58 6.65 5.91 7.04 6.04 4.68 7.68 6.70 6.67 6.55 5.04 3.81 
MeAE 5.13 3.83 3.65 4.11 3.69 2.88 4.71 3.65 3.99 3.94 2.94 2.44 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
RMSE 15.22  11.28 11.59 9.87 11.83 14.35  11.42 11.96 9.47 9.76 
MAE 9.13  5.80 6.14 5.73 5.81 7.71  5.39 5.56 4.67 4.87 
MeAE 6.43  3.48 3.96 3.65 3.65 4.27  3.26 3.15 2.93 3.03 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

RMSE 9.05 8.35 8.57 8.29 7.79 6.38 9.03 8.27 8.87 7.84 7.68 6.01 
MAE 5.40 4.55 4.35 4.09 3.30 2.68 5.46 4.53 4.35 3.91 3.17 2.61 
MeAE 3.73 2.98 2.83 2.51 1.80 1.60 3.98 3.00 2.69 2.53 1.67 1.58 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

RMSE 10.33  8.68 8.63 7.97 7.60 9.68  8.83 8.66 7.60 7.39 
MAE 6.38  4.12 3.84 3.42 3.14 6.20  3.95 3.94 3.39 3.11 
MeAE 4.46  2.42 2.17 1.93 1.77 4.56  2.33 2.35 1.96 1.82 

RMSE is the Root Mean Square Error, MAE the Mean Absolute Deviation and MeAE the Median of the Absolute 
Error. The superscripts refer to the kind of the model: P refers to parametric models, N to the simple neural networks 
and Nh to the hybrid neural networks. The asterisk (*) refers to neural network models that use transformed 
variables. The subscripts refer to the kind of historical/implied parameters used.    
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Table 3 
Matched-pair student t-tests for square and absolute differences 

 PBS60
 P

vixBS  P
conBS  PCS60

 P
conCS  *NBS60

 *NCS60
 *NhBS60

 *Nh
vixBS  *Nh

conBS  *NhCS60
 *Nh

conCS  
PBS60

  -27.74 75.12 -0.94 65.72 -11.07 -11.72 23.90 40.83 81.22 10.80 66.92 
P
vixBS  7.17  104.84 26.74 94.84 11.84 11.71 53.72 70.71 112.32 40.52 96.53 
P
conBS  -16.13 -25.08  -75.91 -8.43 -70.51 -72.82 -56.94 -38.56 2.12 -70.87 -8.76 
PCS60

 0.34 -6.72 16.31  66.53 -10.28 -10.91 24.85 41.74 82.02 11.78 67.74 
P
conCS  -13.38 -21.60 2.14 -13.58  -63.58 -65.63 -46.76 -28.85 11.11 -60.38 -0.10 

*NBS60
 7.24 4.64 13.37 7.09 12.48  -0.34 30.64 43.94 74.23 20.23 64.28 

*NCS60
 7.77 4.67 15.19 7.59 14.09 -0.62  31.84 45.50 76.80 21.15 66.39 

*NhBS60
 -9.55 -18.30 7.57 -9.81 4.95 -10.83 -12.15  18.64 63.30 -14.28 47.82 

*Nh
vixBS  -12.54 -21.61 4.48 -12.75 2.02 -11.91 -13.46 -3.25  43.70 -32.87 29.50 

*Nh
conBS  -21.16 -32.03 -3.45 -21.26 -5.62 -14.65 -16.83 -12.27 -8.78  -78.03 -11.58 

*NhCS60
 -6.86 -15.36 10.42 -7.15 7.65 -9.84 -10.96 2.97 6.24 15.52  61.73 

*Nh
conCS  -14.98 -23.78 1.15 -15.16 -1.04 -12.95 -14.69 -6.34 -3.26 4.73 -9.18  

Reported matched-pair t-tests concerning the absolute differences are in the upper diagonal, whilst the 
matched-pair t-tests concerning the square differences in the lower diagonal. Both tests compare the MAE 
and MSE between models in the vertical heading versus models in the horizontal heading. In general, a 
positive t-value larger than 1.645 (2.325) means that the model in the vertical heading has a larger MAE or 
MSE than the model in the horizontal heading at 5% (1%) significance level. 

 



 
34

Table 4 
Pricing error measures in the aggregate testing period (AggTs) for the reduced dataset 

 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

RMSE 9.83 11.82 8.41 8.25 7.08 7.06 9.74  7.56 7.55 7.55 7.52 
MAE 6.35 8.43 4.82 4.54 2.65 2.65 6.32  3.38 3.12 2.99 3.04 
MeAE 4.50 6.57 3.63 3.27 1.48 1.46 4.59  2.17 1.83 1.69 1.71 

             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
RMSE 8.05 6.56 7.34 6.94 6.64 6.69 7.14 6.60 6.82 6.91 6.25 6.12 
MAE 5.07 3.34 4.02 3.72 3.42 3.37 4.11 3.43 3.46 3.59 3.01 3.00 
MeAE 3.80 2.32 2.99 2.56 2.33 2.24 3.09 2.41 2.44 2.56 1.99 2.02 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
RMSE 9.05  7.18 6.93 6.94 6.88 8.35  6.97 6.59 6.50 6.77 
MAE 5.74  3.95 3.61 3.73 3.62 4.94  3.68 3.26 3.23 3.45 
MeAE 4.25  2.74 2.41 2.60 2.55 3.43  2.62 2.22 2.25 2.36 

             

 NhBS60
 Nh

vixBS  Nh
avBS  Nh

avTBS  Nh
avTBS 4

 Nh
conBS  *NhBS60

 *Nh
vixBS  *Nh

avBS  *Nh
avTBS  *Nh

avTBS 4
 *Nh

conBS  

RMSE 8.45 6.70 7.29 7.01 6.58 6.78 7.35 6.40 7.05 6.83 5.94 5.64 
MAE 5.11 3.58 3.62 3.38 2.62 2.69 4.27 3.21 3.32 3.30 2.45 2.44 
MeAE 3.44 2.59 2.55 2.35 1.55 1.65 3.13 2.26 2.30 2.33 1.51 1.54 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

RMSE 7.80  7.29 6.83 7.31 7.35 7.69  6.90 6.80 6.51 6.46 
MAE 4.65  3.20 3.08 3.03 3.03 4.58  3.13 2.92 2.83 2.87 
MeAE 3.41  2.13 2.02 1.82 1.80 3.23  2.03 1.80 1.79 1.81 

RMSE is the Root Mean Square Error, MAE the Mean Absolute Error and MeAE the Median of the Absolute Error. 
The superscripts refer to the kind of the model: P refers to parametric models, N to the simple neural networks and 
Nh to the hybrid neural networks. The asterisk (*) refers to neural network models that use the transformed 
variables. The subscripts refer to the kind of historical/implied parameters used.    
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Table 5  
Root Mean Square Errors for selected models (clustered by moneyness and maturity) 

 Short Medium Long Short Medium Long 
 Results for the full dataset 
  P

conBS    P
conCS   

VDOTM 3.60 4.91 0.56 8.34 10.61 0.66 
DOTM 2.27 4.50 2.82 3.02 5.24 4.47 
OTM 5.78 8.37 3.97 6.29 9.68 5.08 
JOTM 7.81 6.68 6.15 8.13 7.64 7.65 
ATM 6.67 9.46 5.86 7.30 10.14 7.29 
JITM 6.71 9.41 4.34 7.29 9.21 5.97 
ITM 7.70 7.13 4.43 8.24 7.59 5.18 

DITM 7.07 7.93 7.27 7.20 8.50 7.50 
VDITM 8.26 9.46 8.74 8.29 10.05 9.05 

 *Nh
conBS  *Nh

conCS  

VDOTM 3.60 4.97 1.15 6.13 10.22 6.04 
DOTM 2.46 4.83 2.32 2.96 5.28 5.03 
OTM 5.50 7.75 3.98 6.19 9.41 5.36 
JOTM 5.89 5.36 5.78 7.83 7.30 7.66 
ATM 4.73 8.18 5.38 6.94 9.86 7.13 
JITM 5.59 7.39 4.10 6.89 8.68 6.64 
ITM 6.24 6.05 3.95 7.58 7.16 5.69 

DITM 5.80 7.15 6.74 6.64 8.04 7.17 
VDITM 8.03 9.29 8.46 8.96 10.33 9.26 

 Results for the reduced dataset 
 *Nh

conBS  *Nh
conCS  

VDOTM n.a. n.a. n.a. n.a. n.a. n.a. 
DOTM 2.36 4.07 n.a. 2.54 5.22 n.a. 
OTM 5.08 7.25 n.a. 5.69 8.74 n.a. 
JOTM 5.82 5.59 n.a. 6.76 7.09 n.a. 
ATM 4.65 8.37 n.a. 5.68 9.53 n.a. 
JITM 5.50 7.68 n.a. 6.20 8.16 n.a. 
ITM 5.98 5.84 n.a. 6.73 6.75 n.a. 

DITM 5.45 6.59 n.a. 5.95 7.67 n.a. 
VDITM n.a. n.a. n.a. n.a. n.a. n.a. 
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Table 6 
Trading strategies for the Black and Scholes models 

 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  

 Panel A: Black and Scholes trading strategy with standard delta values  
P&L 7,447 13,518 14,088 13,069 32,040 35,026 

# Trades 3,361 3,878 4,858 5,477 13,539 15,644 
P&L 0.2% (d=0%) -6,829 -6,847 -5,348 -7,512 -17,911 -23,307 

Agg P&L 0.2% (d=0%) -1,861 -266 737 -1,394 -5,638 -8,437 
P&L 0.2% (d=15%) 3,320 4,134 7,527 6,841 7,907 7,369 

Agg P&L 0.2% (d=15%) 5,003 5,019 8,344 7,657 8,384 7,873 
P&L 0.4% (d=0%) -21,105 -27,211 -24,785 -28,093 -67,863 -81,640 

Agg P&L 0.4% (d=0%) -11,170 -14,049 -12,614 -15,858 -43,316 -51,899 
P&L 0.4% (d=15%) -1,468 -508 3,241 2,269 4,691 4,212 

Agg P&L 0.4% (d=15%) 1,897 1,262 4,875 3,901 5,645 5,221 
 Panel B: Black and Scholes trading strategy with modified delta values 

P&L 7,916 14,367 14,232 13,441 32,281 35,229 
# Trades -6,169 -5,599 -4,958 -6,946 -17,788 -23,080 

P&L 0.2% (d=0%) -1,392 1,342 1,225 -778 -5,534 -8,259 
Agg P&L 0.2% (d=0%) 4,044 5,534 8,182 7,546 8,306 7,713 

P&L 0.2% (d=15%) 5,515 6,558 9,115 8,524 8,815 8,198 
Agg P&L 0.2% (d=15%) -20,254 -25,564 -24,148 -27,334 -67,858 -81,390 

P&L 0.4% (d=0%) -10,700 -11,682 -11,782 -14,998 -43,348 -51,748 
Agg P&L 0.4% (d=0%) -685 1,284 4,143 3,180 4,883 4,339 

P&L 0.4% (d=15%) 2,257 3,333 6,007 5,137 5,900 5,308 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades. P&L (d=0 
and 15%) represents the P&L at 0.2% or 0.4% transaction costs when we ignore trades whose 
absolute percentage of mispricing error between model estimates and market values is at least 0% and 
15% respectively. Agg. refers to aggregating the position on the underlying asset to reduce transaction 
costs. Panel A tabulates results with standard delta values whilst Panel B tabulates results with Chen 
and Johnson modified delta values.    
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Table 7 
Trading strategies for the Corrado and Su models 

 PCS60
  P

avCS  P
avTCS  P

avTCS 4
 P

conCS  

 Panel A: Corrado and Su trading strategy with standard delta values  
P&L 7,603  28,816 32,803 37,072 36,777 

# Trades 3,430  11,178 13,306 14,911 15,219 
P&L 0.2% (d=0%) -7,658  -15,867 -19,045 -22,750 -24,414 

Agg P&L 0.2% (d=0%) -2,532  -4,495 -5,641 -6,685 -6,909 
P&L 0.2% (d=15%) 2,868  7,960 6,791 6,606 6,422 

Agg P&L 0.2% (d=15%) 4,533  8,739 7,483 7,418 7,311 
P&L 0.4% (d=0%) -22,919  -60,550 -70,894 -82,572 -85,604 

Agg P&L 0.4% (d=0%) -12,667  -37,805 -44,085 -50,441 -50,595 
P&L 0.4% (d=15%) -1,949  2,797 1,935 1,371 1,124 

Agg P&L 0.4% (d=15%) 1,383  4,355 3,319 2,993 2,901 
 Panel B: Corrado and Su trading strategy with modified delta values 

P&L 7,837  29,208 33,219 37,044 37,097 
# Trades 3,430  11,178 13,306 14,911 15,219 

P&L 0.2% (d=0%) -7,209  -15,317 -18,610 -22,828 -24,203 
Agg P&L 0.2% (d=0%) -2,332  -3,843 -5,186 -6,708 -6,615 

P&L 0.2% (d=15%) 3,512  8,685 7,322 6,740 6,778 
Agg P&L 0.2% (d=15%) 4,943  9,539 8,024 7,594 7,720 

P&L 0.4% (d=0%) -22,255  -59,841 -70,439 -82,700 -85,503 
Agg P&L 0.4% (d=0%) -12,501  -36,893 -43,590 -50,460 -50,328 

P&L 0.4% (d=15%) -1,218  3,521 2,303 1,172 1,074 
Agg P&L 0.4% (d=15%) 1,646  5,229 3,707 2,881 2,958 

P&L is the total profit and loss without transaction costs; # Trades is the number of trades. P&L (d=0 
and 15%) represents the P&L at 0.2% or 0.4% transaction costs when we ignore trades whose absolute 
percentage of mispricing error between model estimates and market values is at least 0% and 15% 
respectively. Agg. refers to aggregating the position on the underlying asset to reduce transaction costs. 
Panel A tabulates results with standard delta values whilst Panel B tabulates results with Chen and 
Johnson modified delta values.    
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Table 8 
Trading strategies for the hybrid ANN models 

 *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

 Panel A: Black and Scholes based hybrid ANNs 
P&L 27,024 29,529 32,908 33,514 35,774 37,281 

# Trades 5,675 8,246 8,907 9,457 11,995 12,650 
P&L 0.2% (d=0%) 1,694 -4,193 -2,435 -4,134 -11,484 -12,939 

Agg P&L 0.2% (d=0%) 10,552 6,053 7,871 7,086 837 1,066 
P&L 0.2% (d=15%) 6,593 5,147 8,162 8,579 7,910 8,427 

Agg P&L 0.2% (d=15%) 8,247 6,977 9,890 9,957 8,689 9,237 
P&L 0.4% (d=0%) -23,637 -37,914 -37,778 -41,782 -58,741 -63,158 

Agg P&L 0.4% (d=0%) -5,920 -17,424 -17,166 -19,343 -34,100 -35,148 
P&L 0.4% (d=15%) 1,804 -277 2,232 3,156 4,364 4,812 

Agg P&L 0.4% (d=15%) 5,112 3,382 5,687 5,911 5,922 6,432 

 *NhCS60
  *Nh

avCS  *Nh
avTCS  *Nh

avTCS 4
 *Nh

conCS  

 Panel B: Corrado and Su based hybrid ANNs 
P&L 26,691  32,915 31,943 34,907 37,975 

# Trades 5,140  10,043 10,377 12,537 12,947 
P&L 0.2% (d=0%) 3,590  -8,721 -12,019 -17,527 -16,084 

Agg P&L 0.2% (d=0%) 11,032  3,734 898 -1,586 735 
P&L 0.2% (d=15%) 7,337  6,653 5,601 6,052 7,826 

Agg P&L 0.2% (d=15%) 8,861  8,231 7,114 7,439 8,960 
P&L 0.4% (d=0%) -19,511  -50,356 -55,980 -69,962 -70,143 

Agg P&L 0.4% (d=0%) -4,626  -25,446 -30,146 -38,078 -36,505 
P&L 0.4% (d=15%) 2,433  724 457 612 2,605 

Agg P&L 0.4% (d=15%) 5,481  3,879 3,484 3,387 4,873 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades. P&L (d=0 
and 15%) represents the P&L at 0.2% or 0.4% transaction costs when we ignore trades whose absolute 
percentage of mispricing error between model estimates and market values is at least 0% and 15% 
respectively. Agg. refers to aggregating the position on the underlying asset to reduce transaction costs. 
Panel A tabulates results for the hybrid BS based ANN model whilst Panel B tabulates results for the 
hybrid CS based ANN models.    
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