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Abstract

Utility maximization problems related to optimal advertising under
uncertainty are considered. In particular, we determine the optimal
strategies for the problem of maximizing the utility of goodwill at
launch time and minimizing the disutility of a stream of advertising
costs that extends until the launch time. We also consider some gen-
eralizations such as problems with constrained budget, optimization
under partial information, and discretionary launching.
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1 Introduction

We consider the optimization problem faced by a firm that, while advertising
a product prior to its introduction into the market, wants to determine the
optimal advertising policy for the maximization of the product image (also
called goodwill), and the minimization of the total discounted cost. We shall
also consider the problem of optimizing the launching time, thus allowing
the firm to decide at its discretion to stop the advertising campaign and
start selling the product.

This type of problems can be traced back at least to Nerlove and Arrow
[20], who proposed to model the stock of advertising goodwill X (¢) at time
t >0 as '

X () = ult) — pX (1),

where u(?) is the rate of advertising expenditure, p > 0 is a factor of deteri-
oration of product image in absence of advertisement, and X := ‘fi—)t(. Then
the optimization problem for the firm could be formulated as

s (o) - [P ar).
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where T > 0 is the planned launching time, 8 > 0 a discount factor, Uy
represents the utility from the product image at launch time, and Us ac-
counts for the regret from advertisement spending until product launching
(Us is of course assumed to be such that e #'Us(u(t)) is integrable over
[0,77). This deterministic optimal control formulation has been extended
by many authors, to account for delay effects, non-linearity in the response
to advertisement, and many other factors. For a very recent work on the
subject, which also contains a list of related references, we refer to Buratto
and Viscolani [6].

On the other hand, less work has been devoted to the case of stochastic
evolution of goodwill level (for a few examples of works in this direction, we
refer to the review article by Feichtinger, Hartl and Sethi [I2] and references
therein. See also the monographs by Tapiero [24] and by Sethi and Thomp-
son [23]). The emergence of randomness in the dynamics of goodwill is quite
natural for several reasons: one may think, for example, that random fluc-
tuations in the goodwill level are the effect of external factors beyond the
control of the firm. It is also natural to assume that noise enters through
the control, since the effect of advertisement may be partly uncertain.

In this work we concentrate on some simple but hopefully still interesting
cases of optimal control of the goodwill in the stochastic setting. We do
not aim at maximum generality, instead we focus on models whose special
structure allows us to obtain explicit solutions.

The paper is organized as follows: first we formulate the problem of de-
termining the optimal advertising policy as a stochastic control problem in
continuous time, we fix assumptions and notation, and recall the tools of the
general theory of stochastic control problems for linear diffusions with quad-
ratic costs. Then we consider several optimization problems under specific
assumptions on the form of the stochastic differential equation modeling the
dynamics of the goodwill, and on the utility functions. In some cases the
solution is completely explicit, in others it is explicit modulo the solution of
first order nonlinear ordinary differential equations. In the case of quadratic
utilities we can also explicitly solve problems of optimal control under partial
observation and optimal stopping of the controlled diffusion. We conclude
suggesting some problems that we did not address here.

2 Problem formulation

Let X (t) be the level of product image at time ¢, 0 < ¢ < T, with X (0) =
x > 0 given. We postulate a dynamics for X of the type

dX(t) = (—pX(t) + u(t))dt + b(X(t),u(t)) dW (t), (1)

where W is a standard Brownian motion on a filtered probability space
(0, F,F,P), F = (Ft)tepo,1], with T' a fixed time for introduction of the adver-



tised product into the market. We shall assume b(z,u) = o, or b(z,u) = o,

or b(x,u) = ox — du, with ¢ and & positive constants, depending on the

problem at hand. The control process u models the rate of advertisement

spending by the firm, and is assumed to be measurable, adapted, and non-

negative. We will denote by U the set of controls satisfying these properties.
We are interested in the following types of problems:

1. The maximization of an objective function that weights the utility
from goodwill at launching time 7" and the total discounted disutility
from advertisement until time 7'

Sup e [Ul(X(T)) - /0 ! e P (u(t)) dt] .

2. The minimization of an objective function obtained by summing the
disutility from not reaching a target level of goodwill £ > 0 at time T
and the total discounted disutility from advertisement until time T

T
inf E[U1(X(T) ~ k) + /0 Py (u(t)) dt].

3. The maximization of the utility from goodwill at launching time T
with constrained advertisement policies:

sup E[U1(X(T))],
ueM

where M is a subset of U composed by controls u such that
T
E[/ e PUy(u(t)) dt] < M
0

for a fixed positive M.

4. The mixed problem of optimal advertisement policy to meet a goal
and optimal launching time

sup E[Ua(X, k) - / AUy (u(t)) dt,
ueU,TeS 0

where S is the set of all stopping times with respect to the filtration
F.

Remark 1 Problem 1 in the above list can be interpreted as the single-

objective optimization problem corresponding to a multi-objective program
of the type

sup <E[U1(X(T))], —E[ /0 ! e P Uy (uft)) dtD ;
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where the objective is a weighted average (modulo rescaling by constants of
Uy or Us) of the two original criteria. The same could be said, mutatis mu-
tandis, for problems 2-4. For more details on multi-objective optimization
theory, see Zeleny [26].

3 Preliminaries

3.1 Notation

Given a function ¢ : [0,7] x R, we shall adopt the following notation for
partial derivatives:

de(t,z) = %(t,x),
O (t,x) = %(t,x),
82
Guz(t,x) = 8—x¢25(t,m).

We denote by CP9([0,T],R) the space of functions (¢,x) — ¢(t,z) whose
partial derivatives with respect to ¢ of order up to p, and with respect to
x of order up to g, are continuous. Moreover, C3° will denote the space of
infinitely differentiable functions with compact support.

We indicate by L" the generator of the controlled diffusion (), i.e. L"
is the differential operator defined by

L": f(x) = (—px+u)f (z) + %b%x,u)f”(m), € CyP(R).

Given a stochastic process X and a function f, we shall use the following
notation for conditional expectations

E>Yf(X ()] := E[f (X (#)X(s) = y].

3.2 General linear-quadratic regulator problems

We shall extensively use the results of Ait Rami, Moore, and Zhou [1] (see
also Yong and Zhou [25]) on the connection between stochastic linear quad-
ratic (LQ) control problems and a certain class of generalized Riccati equa-~
tions (GRE). Here we simply recall their setup and results.

Consider the following LQ problem in a finite horizon 7: minimize the
objective functional

T
S (s, m;3u) = E> [/ (QE)X(2), X(£)) + (R()u(t), u(t))] dt

+(HX(T), X(T))



over all u € L?([s,T];R™) adapted to the filtration generated by W, subject
to

dX () = (A(t)X(t) + B(t)u(t)) dt + (C(t)X(t) + D(t)u(t)) dW (t),
X(s) = zeR", 0<s<t<T,

where (-,-) denotes the inner product in R", the matrices A, B, C, D, Q,
and R belong to L*([s,T]; L(R™)), and @, R and H are symmetric. All
matrices may depend on t, except for H. Here L£(R™) denotes the space of
linear mappings of R™ into itself, and L*° is the space of essentially bounded
functions.

Define the generalized Riccati equation associated to this LQ problem
as the constrained differential equation

P+PA+AP+C'PC—(PB+C'PD)R+DPD)#(BP+DPC)

+Q =0, (2)
P(T)=H, (3)
(R+ D'PD)(R+ D'PD)#(B'P+D'PC)— (B'P+D'PC)=0, (4)
R+ D'PD >0, (5)

where -/ and -# denote, respectively, the transpose and the Moore pseudoin-
verse of a matrix.
Then, if the GRE admits a solution P, the corresponding LQ problem is
well posed, and the value function V(s,z) := inf,ecr, J(s,x;u) is uniquely
determined by

V(s,z) = (P(s)x, z).

Moreover, if R(t) + D(t)P(t)D(t) > 0 for all ¢ € [s,T], then the optimal
control is uniquely determined by the linear feedback law

un(t) = — (R(t) + D(t)’P(t)D(t)) o (B(t)’P(t) + D(t)’P(t)O(t))X(t).

A converse result also holds, namely, assuming that the LQ problem is well
posed, if P exists such that (2)—(4) are satisfied for all ¢ € [s,T], then P
must satisfy

R+D'PD >0 Vtels,T).

A stronger result actually holds, i.e. the solvability of the GRE is equivalent
to the existence of an optimal feedback control for the LQ problem.

Remark 2 It would be interesting to allow some of the coefficients in the
LQ problem (in particular the decay factor p) to be random. Then the
corresponding Riccati equation becomes a backward stochastic differential
equation (BSDE). The problem of characterizing the finiteness and solv-
ability of a stochastic LQ problem with random coefficients in terms of the



solution of an associated Riccati equation is, in its full generality, still open.
However, for partial results in this direction see Chen and Yong [7], and
Bismut [B] for the first work on this issue.

4 Linear utilities

In this section we assume that the goodwill level X follows a stochastic
differential equation (SDE) of the type () with b(x,u) = o € Ry, and that
Ui(z) = ~x, Us(z) = x, with v a positive constant. Then the problem
becomes

T
su - e Pl
supE[yX(7) — [ e (e de], (©

and it is easy to see that one has to restrict the control space to allow only
bounded controls, to avoid meaningless situations like infinite spending. For
simplicity we assume u € [0,m], m € Ry.

The Hamilton-Jacobi-Bellman (HJB) equation associated to this prob-
lem is given by

Yo+ sup (L' —e Plu) =0, P(T,z) =z (7)

u€[0,m)]
Note that one has

— 1.2 < —[t
sup (Luw _ e—ﬁtu) — { Pm/Jz + 20 1/1m, 1/}96 S e€

w€[0,m] —pathy + m(y — e P + LoPpy, > el

Let us consider first the case 1, > e . The HIB equation can be written
as

1
e — (pZL‘ - m)¢w + §U2¢rr —me P = 0, w(Tv:L‘) =x.
We guess a solution of the form (¢, z) = v(t)x + by (t), obtaining
27 () + ¥, (8) — (p — m)y(2) — e = 0,

with terminal conditions v(T') = ~, b1(T) = 0. Then this equation splits
into
V() —py(t) =0, AT)="r,

T=t) and

with solution ~(t) = ye =
bi(t) = —mA(t) + me P, by(T) =0,

with solution



—Bt i3 completely similar: Let t, be the solution of the

The case 9, < e
=e Pt je. t, = pr—Tl%gv' Let us now solve the equation

equation ~y(t)

Y= e 50 =0, (te,7) = ()2 + ba(t),

where the terminal condition is such that a global solution of the HJB equa-
tion is at least continuous. It is immediate that the solution of this equa-
tion is ¢ (t,z) = y(t)x + by (ts), so that the global solution of the HJB is
P(t,x) = y(t)x + b(t), where b(t) = by(t,) for v(t) < e P, and b(t) = by(t)
for y(t) > =Pt It is also easy to see that b is continuously differentiable on
(0, 7). In fact, one only needs to check whether there is smooth fit at ¢,.
But since b (t) = —m~y(t) +me~Pt, by definition of , it immediately follows
V| (t.) = 0. This also proves that ¢» € C12([0,T],R), hence the solution of
the HJB equation is the value function of the corresponding control prob-
lem (as follows by standard verification theorems, see e.g. Yong and Zhou
[25]), and we can conclude that the optimal control is given by the following

bang-bang policy:
0 t<t,,
us(t) = { mot>t,. ®)

That is, it is optimal to do nothing until a certain point in time t,, after

which it becomes optimal to advertise at the maximum rate. Note that,

depending on 7, it could well be that t, > T, i.e. it would never be optimal

to advertise. This situation arises if the reward for improving the image of a

product is small compared to the value of resources spent on advertisement.
We collect the findings of this section in the following proposition.

Proposition 3 The optimal control problem (@) is solved by a control of the
type ([8), with t, = %, and the corresponding value function is given
by V(t,z) = v(t)x + b(t), where

i) t <ty
b(t) = { bi(t) t > t,.

Remark 4 It is worth noting that the same result holds for quite general
diffusion coefficients b(x,u). In fact, guessing a solution v of () linear in
x, so that ¥,, = 0, we can carry out exactly the same calculations. An
alternative explanation of this fact can be given as follows: assume

AX () = (—pX (t) + u(t)) dt + b(X (t), u(t)) dW (¢),

with v and b such that the integrals below are well defined. Then a simple
calculation yields

T T
X(T)=e""Xy + / e PT =0 (t) dt + / e PT=p(X (), u(t)) dW (t),
0 0
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and if b(-,-) is such that the stochastic integral is a martingale (e.g. b is
bounded), then taking expectations on both sides we get

T
E[X(T)] = e Tz + / e PT=DEu(t)] dt,
0
where the interchange of the order of integration follows by Fubini’s theorem
using the assumption u > 0. It is now clear that the functional form of b
will not influence the optimal control.

5 Linear utilities with constrained budget

In the same framework as in the previous section, let us now consider the
constrained stochastic control problem

sup E[X(T], (9)
ueM

where M is the set of admissible controls u(-) € [0, m] satisfying the integral

constraint -
E [ / e Plu(t) dt] < M,
0

for a given constant M > 0. In order for the constrained problem to be non-
trivial, it is also necessary to assume that M < m fOT e Pt dt. We actually
only need to consider controls u for which the constraint is binding, i.e.
advertising policies that use the whole budget M. In fact, denoting by
X*%(T) the controlled goodwill at time 7', it is clear that u; > wo implies
E[X"(T)] > E[X"2(T)], so it is never optimal to leave resources unused.

Let us introduce a Lagrange multiplier A > 0, and consider the (uncon-
strained) problem

sup B [X(T) 1 ( /0 " Bty de — Mﬂ . (10)

u€l[0,m

Then one has

sup E[X(T)] = sup E [X(T) -\ < /0 ! e Plu(t)dt — M)]
< HSB%E [X(T) —A </OT e Plu(t) dt — M)] .

If the unconstrained problem () admits a solution uy for all A > 0, and a
A, exists such that E fOT e‘ﬁtuA* (t)dt — M = 0, then u, := u), is an optimal
control for the constrained problem (for a proof of this simple fact, in a



slightly different setting, see @Oksendal [21], chap. 11). So we proceed to
solve
1 T
sup E[—X(T)— / e_ﬁtu(t)dt},
u€[0,m] A 0

whose solution is

1
with v(t) = Xe_p(T_t).
The starting point for advertisement ¢, is given by the solution of the
equation y(t) = e~# so that

_ pT' +1log A

ts 11
p+08 (1)
We now need to show that A > 0 exists such that
T
me Ptdt = M. (12)

t*
The solution of such an equation is given by

_ptB
B

M
A =T (ﬁ— + e_BT) ;
m

which is clearly positive. It is now clear how to associate to such a A, the
optimal solution for the constrained problem. Namely, given A, we obtain
the optimal switching time ¢, by (), and hence the optimal control as
ux(t) = mlfysy,y, where I is the indicator function.

We have then proved the following result.

Proposition 5 The optimal advertising policy for the constrained mazi-
mization of goodwill (@) is given by

<
U*(t):{ 0 bty

m t> iy,
with 5 1
P -BT
ty=—T— —(e + BM/m).
o+B B fm)
Remark 6 It follows from (2) that the time to start advertising is given
by

M
e_ﬁt* - e_BT = 5_7
m

and therefore we cannot simply consider unbounded controls with cumu-
lative discounted cost less or equal than M, otherwise the optimal policy
would be to “do infinite advertising at time 717 .



6 Linear utility of goodwill and CRRA disutility
of investment
Let X be described by the controlled diffusion
dX(t) = (—pX(t) +u(t))dt + cdW(t), X(0)=z>0.
Consider Uy(z) = vz, v > 0, and Us(z) = 2%/a, a €]0,1[. Then the

problem we are considering is

T o
t
sup E [’yX(T) = / e‘ﬁtﬂ dt] , (13)
uel 0 o
and its associated HJB equation can be written as
(07
Y+ sup(Li — e P ) =0, §(T,2) = e (14)
u>0 a

Assuming 9, > 0, the supremum is attained by

1
Uy = (¢z66t> T (15)
Substituting into (I4]) we obtain
a—1

L
P — pry + ea=Tahy —I—§O' Yz = 0.

If we conjecture a solution of the type

P(t,z) =)z + C(),

then we would have 1, > 0, and the HJB equation separates into the fol-
lowing two ODEs:
V() =), T) =",

and

C'(t) + L= ety ()7, C(T) = 0.

The solution of the first one is simply v(t) = ~ve~P(T=1) and the second

one follows explicitly as well by integration. The solution 1 of the HJB
equation is of class C12(]0,7],R), hence by standard verification theorems
it coincides with the value function of the associated control problem, and
by (&) we obtain the optimal policy in closed form as

ux(t) = (fye_p(T_t)eﬁt> ﬁ

It is worth noting that because of the special structure of the utility func-
tions, the optimal control is an open-loop policy, i.e. it does not depend on
the state X.

Summarizing, the following holds.
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Proposition 7 The optimal advertising policy for the problem ([I3) is the
open-loop control

uy(t) = (’ye_p(T_t)eﬁt) ﬁ

7 Quadratic utilities

In this section we assume that both U; and U, are quadratic. In particular,
we assume Uy (x) = yz?, with v > 0, and Uz (z) = 22. Then we consider the
problem

T
supE[X(T)” - / e Phu(t)? di].
ueU 0

or, equivalently,

T
infE[ / e‘ﬁtu(t)2dt—fyX(T)2}, (16)
uel 0

where X follows the controlled dynamics ([l), under special choices of the
diffusion coefficient b, and U is the set of adapted, square integrable controls.
The problem at hand is a linear quadratic regulator problem with indefinite
costs, which can be solved by the methods of Ait-Rami, Moore and Zhou
[T] recalled earlier.

We shall study the following three cases:

e The noise is additive, i.e. b(z,u) = o € R;.
e The noise is multiplicative, i.e. b(z,u) = oz, with o € Ry.

e The control affects the (instantaneous) variance of the noise in a linear
fashion, i.e. b(x,u) = ox — du, with o, 6 € R,

More generally, one could replace the constants ¢ and § with deterministic
functions o(t) and 6(t), and the LQ technique would still hold. However,
explicit solutions to the corresponding Riccati equations, and hence explicit
feedback formulae, will be most likely lost.

Remark 8 We have removed the positivity assumption on the set of ad-
missible controls in order to obtain explicit results. In some cases we shall
be able to prove that the optimal control is also positive, and in others that
it is positive on some “rich enough” set.

Before we begin with the stochastic case, let us briefly recall what the
solution would be in the deterministic case. More precisely, if the goodwill
evolves according to the controlled linear system

—pX (t) + u(t)
X(0) = =,

—N—
S
-
N—
Il

11



then the optimal control for the deterministic optimal control problem

T
inf Bty dt — v X (T)?
el [ €=

is given by
uy(t) = —eP'P(t) X (1),

where P solves the Riccati equation
P(t) = 2pP + P PX(t), P(T) = —. (17)

Moreover, the value function is given by

The Riccati equation for this problem is identical to the Riccati equation
for the problem with additive noise. We refer to the following subsection for
details about global solvability and explicit solution of (7).

7.1 Additive noise

In this subsection we study the stochastic optimal control problem ([IH)
subject to the dynamics ([{l) with b(x,u) = o, o > 0.
The Riccati equation associated to the problem is given by

P(t) =2pP + " P*(t), P(T)=—~,
which admits the explicit solution

P(t) = V(B + 2p)e*”

Ty (e(B+20)T — e(B+20)t) — (B + 2p)e2eT (18)

By theorem 3.1 in [I] it follows that the L(Q problem is well posed if and
only if P is finite. By ([¥) it follows that the problem is well posed on the
whole interval [0, 7] if and only if

2
AT — b2 < e 2T,
Y

Under this assumption, since e #* > 0, corollary 3.2 in [T implies that the
optimal control is unique and is given by

uy(t) = —ePP(8) X (¢). (19)

Moreover, the value function can be written as

V(s,z) = P(s)2® + 02 / " i), (20)

S

12



where the second term on the right hand side accounts for the effect of the
additive noise (in fact P does not depend on o).
From ([U), the optimal trajectory solves the SDE

dX(t) = —(p+ P P() X (t) dt + o dW (t)

with X (0) = z, that is, by the variation of constants formula,

. t t
X(t) = e hor@)dsy 4 / e JeT@d g (e, (21)
0
where a(s) := p + e P(t). Note that, at any time ¢t < T, the optimally
controlled goodwill level is normally distributed with mean u; and variance
1 given by
n o= e fot a(s) ds .

)

t )
m o= /6_2'/ga(s)d802d£.
0

From the expression for the value function V it is immediate to derive
its sensitivity (at time zero) with respect to the “size” of the noise. In fact,
let us consider the SDE

dXe(t) = (—pX°(t) + u(t)) dt + Ve o dW (t),

with ¢ € [0,1]. It is clear that for ¢ = 0 we recover the deterministic
dynamics. Let us call V¢ the value function for the problem with scaled
noise, and u§ the corresponding optimal feedback control. Then from (Z0)
we can write

T
Ve(s,2) = P(s)a? + e0? / P(t) dt,
S
where P is again given by ([[§]). Therefore it is clear that

lim V(s,z) = VO(s,z) = P(s)z?,

e—0
where VO(s, z) is the value function of the deterministic problem. One can
also write the sensitivity of V¢(x) with respect to ¢ as

OVE(z) _ 2/T
5 —C ; P(t)dt,

i.e. the value function is linear with respect to “intensity” of the noise.
Moreover, the optimal control u: is completely independent of the noise
components, since the Riccati equation associated to the stochastic problem
is the same as the Riccati equation in the deterministic setting, hence u; =
us. One can say that the optimal control policy is robust with respect to

13



additive noise.
One can also obtain immediately the sensitivity of the value function with
respect to the initial value of goodwill as

oV (s,x)

———= =2P(s)x.

e (s)
Moreover, from (ZI), it is easy to see that there is continuous and differ-
entiable dependence of the optimal trajectory with respect to the initial
condition, with
aX(t§ l‘) — e fot a(s) ds7
Oox

and in particular 0,E[X(T;z)] = eIy als) s which gives the sensitivity
of the average level of goodwill at launch time with respect to the level of
goodwill at the beginning of the advertising period.

Remark 9 In fact Ait Rami, Moore and Zhou [I] consider only the case
of b(z,u) linear in = and wu, so their methods are not directly applicable to
our situation. However, by repeating their arguments with b(x,u) = o, one
sees that their results hold in this case as well.

Remark 10 Assuming that the problem is well posed at s = 0, then
P(t) < 0 for all t € [0,T], therefore the sign of the control agrees with the
sign of the state X. This does not guarantee that w is always non-negative,
but at least assures that while the goodwill does not reach zero, the control
will be positive. The solution is still not satisfactory from a mathematical
point of view, but should be acceptable in applications. Moreover, if we had
to insist on enforcing the non-negativity requirement, we would certainly
loose closed-form solutions. The same considerations apply to some of the
cases we shall treat in the sequel.

7.2 Multiplicative noise

The solution in the case of multiplicative noise b(x,u) = ox is quite similar,
at least as far as the calculations goes, to the case of additive noise. In fact,
the GRE can be written as

P(t) = (2p — 0®)P + " P*(t), P(T)= -7, (22)
and its solution is given by

(B +2p — o))

P(t) = fy(e(ﬁ+2p—a2)T _ e(5+2p—02)t) —(B+2p— 0-2)6(2p—02)T'

(23)

In analogy to the previous case, the optimal control is given by

uy(t) = —ePP(t) X (1),

14



on the subinterval of [0, 7] where the problem is well posed. Since the weight
on the control is always positive, it is enough to determine the interval where
P does not explode. If 34 2p — 0% # 0, then the problem is well posed in
the interval [s, T, with

(20 — o*)T +log(e” — (B+2p — %) /7)
B+ 2p— o2

s = ,
provided the inequality
+2p—o?
ST B2 —0”
Y
is satisfied, otherwise the problem is nowhere well posed.
We can now state the following proposition, whose proof is an immediate
consequence of the above discussion and of general results on stochastic LQ
control.

Proposition 11 Assume that 2p + 3 # o2 and
(2p — 0T +log(e”" = (B+2p—0%)/7) <0.

Then the problem (1) with b(z,u) = ox is well posed at s = 0 and admits
the optimal control in feedback form

uy(t) = —eP'P(t) X (1),

where P is the unique (negative) solution of the Riccati equation (Z3). More-
over, the corresponding value function is given by

V(s,x) = P(s)x>.

Since the optimal control is linear with respect to X, then one can see
that X** is always positive. In fact, the closed-loop equation can be written
as

dX(t) = —(p+ P P()X(t) + o X (t) dW (),

whose explicit solution is given by

¢
X(t) = xexp ( —(p+0%/2)t — / P P(s)ds + JW(t)).
0

In particular, since P is negative on the whole interval [0, T, this also proves
that the optimal control u, is positive on the same interval, hence eliminat-
ing a shortcoming of the model with additive noise, where optimal control
policies, in general, are not guaranteed to be positive.

Let us now study the system in the small noise limit, that is, we study
the optimal control problem on a dynamics of the type

dXe(t) = (—pX°(t) + u(t)) dt + Ve o X°(t) dW (¢),
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where ¢ € [0,1]. For € = 0 the problem reduces again to deterministic
control. The value function V¢ for this case can be written as

VE(z) = P*(0)a?,

with

V(B +2p —ed?)
7(6(5+2p—502)T _ 1) _ (/3 +2p— 60-2)6(2p—502)T'
It clearly holds P£(0) — PY(0) as ¢ — 0, where P is the solution of the
Riccati equation for the deterministic case, hence

lim Ve(z) = VO(z).
e—0

PE(0) =

(24)

The sensitivity of the value function with respect to the noise intensity can
again be computed explicitly as

oVe(xz)  OP(0) ,

9 0=

which is nonlinear with respect to e, in contrast to the case of additive
noise. An explicit expression for 9.P¢(0) is easily found from 4)), but it
is rather cumbersome. Here we limit ourselves to writing the expression for
the sensitivity of P*(0) at € =0, i.e. to

0% (7 = 20+ BT (2 + BT — e A7)
0 (7 + (20 + B — 7eT)eT)? |

The optimal feedback policy is clearly sensitive to the noise, as it follows
from

0P=(0)
Oe

us(t) = —ePPE(H) XE(2).

Since P¢ — P%(0) as ¢ — 0, we can still say that the functional specification
of the optimal control in the small noise limit converges to the corresponding
functional specification for u? in the deterministic limit, i.e.

ui(t, ) = X' PE(t)e — P PO () = u(t, )

as e — 0.
In complete analogy to the case of additive noise, the sensitivity of the
value function with respect to the initial goodwill level is given explicitly by

aV (s,
Wis,2) _, P(s)z.
x
Moreover, the optimal trajectory X depends regularly on the initial condi-

tion. In particular, we can write

M:exp(—(p+a2/2)t—/(;te’BSP(S)—i-UW(t))
and
%f;x)]:exp(—l)t—/o 66813(3))-
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7.3 Control-dependent diffusion coefficient

Suppose now that the control affects the diffusion term as well, namely that
advertisement spending reduces variability in a linear way, i.e. b(z,u) =
ox — éu. Then the GRE for this problem becomes

. P2
_ 2 52
P=(2p—0“)P+ (1 —09) P £ 2P’ (25)
e P+ 52P >0
P(T) = —~.

Using again corollary 3.2 in [II, if e % + 2P > 0 and the problem is well
posed, then the optimal control is unique and is given by

1—06)P
u*(t) = _E(_BT(;P((?) (t),

with associated value function
V(s,z) = P(s)z>.
The optimal trajectory is given by the closed-loop equation

dX (1) = a(t) X (1) dt + c(t) X (t) AW (2),

with
(1 - 08)P(t)
W= T ey
(1 - 00)P(t)

C(t) = J+5m,

which admits the explicit solution

X(t) = zexp ( /0 t(a(s) - %c(sﬁ)ds + /0 t o(s) dW(s)). (26)

In analogy to the case of multiplicative noise, the optimal trajectory is always
positive.

Unfortunately, the Riccati equation for this case does not seem to admit
an explicit solution, hence one has to resort on numerical methods to solve
it. However, this does not present great difficulties, as it is only a first-
order nonlinear equation with terminal condition. Under the assumption
e BT — 524 > 0, the problem is locally well posed, i.e. there exists tg < T
such that the Riccati equation ([20) admits a solution in [to, T]. In practice,
given a certain set of numerical values for the parameters, one would try to
solve (Z8) numerically, and correspondingly determine in what time interval
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P is finite and e 5% 4+ §2P > 0, which coincides with the region where the
original problem is well posed.

If we assume that the problem is well posed at s, and hence that the
Riccati equation (23) has a solution P defined on the whole interval [s, T
(and in particular e Pt 4 §2P(t) > 0 for all ¢ € [s,T]), then P(t) is negative
for all t € [s,T], as demonstrated in the following lemma.

Lemma 12 If P solves the Riccati equation ([Z3) on [s,T], then P(t) < 0
for allt € [s,T].

Proof. Assume, by contradiction, that there exists tg € [s,T] such that
P(tp) = 0. Then P(t) = 0 is a continuous solution of (28 for ¢ > t3. By
Proposition 7.1 in Yong and Zhou [25] it follows that this is also the only
solution. But this contradicts the terminal condition P(T) = —y # 0. O

Since we have proved that the optimal trajectory is positive, then, under
the additional condition oé < 1, the optimal control u, is positive as well.
Note that, because of the interpretation of o and J, the hypothesis 0§ < 1
is not very restrictive.

Let us now consider the small noise limit, i.e. the control problem on
the dynamics

dX®(t) = (—pX°(t) + u(t)) dt + /e (6 X°(t) — du(t)) dW (¢),
where € € [0, 1]. The Riccati equation for this problem can be written as

P2

5 (o 2 _ 2
P=(2p—e0*)P+ (1—¢€09) p oY=

P(T) = —~. (27)
It is clear that local solvability at ¢ = T for the problem with € = 1 implies
local solvability at ¢t = T for all problems with € € [0,1][. Therefore, let
us fix an s such that the Riccati equation (1) is solvable in [s,T] for all
e € [0,1], and let us call its unique solution P¢. We shall now prove that P*¢
is continuous with respect to €. This implies immediately that V¢ converges
to V0 ase — 0.

Proposition 13 There exists a neighborhood Jr of T and a neighborhood
Hy of 0 such that for all € € Hy, there exists a unique solution of (Z7)
in Jp with the properties that P*(T) = —v and (t,e) — P(t,e) is of class
CI(JT X Ho).

Proof. Let us define

x2

oY — (9 o2 _ 2
f(t,z;e) = (2p —eo®)x + (1 — £09) e Gy

Then for any e the mapping (¢,7) — f(t,z;¢) is of class C'. Moreover, f
and 0, f are continuous. Therefore §10.7.1 of Dieudonné [9] applies, and the
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result follows. O

One could also apply results on differential dependence of the solution of
ODEs with respect to parameters to obtain an equation for d.P¢, but this
would be expressed in terms of the solution of equation (27 itself. In par-
ticular, 9. P¢ solves the linear ODE

U' = A(t;e)U + B(t; ),

where
of(t,z;e
ao = Mltma)
xz=P(t;e)
Bre) = 59 .
x=P(t;e)

Once again, the sensitivity of the value function V' with respect to x is
given by
oV (s,x)
ox
and the optimal trajectory X depends regularly on z as follows from (20).
In particular, the dependence of the average level of goodwill at launch time
with respect to x is given by

w :eXp(/O a(s)ds).

= 2P(s)x,

8 Quadratic hedging

We consider in this section a class of problems that can again be solved ex-
plicitly using the linear quadratic regulator, while giving much less difficulty
in terms of well posedness.

Let k a level of goodwill we want to reach by time 7. Then we are
interested in minimizing the distance from the objective, while keeping costs
low, i.e.

T

inf E[U3(X(T) ~ ) + / AU (u(t)) dt],

uel 0
where X follows the controlled dynamics ([Il), and U is the space of square
integrable control processes adapted to the filtration generated by W.
If we assume that both the disutility U; from not meeting the target and
the disutility of advertisement spending Us are quadratic, then we can use
the approach of the linear-quadratic regulator to obtain an explicit solution.

In particular, let us define the process Y (¢) as the distance from the target,
ie. Y(t) =k — X(t). Then one has
(_

{ AV () = (—pY(t) — u(t) + pk)dt — b(k — Y (), u(t)) dW (¢)
Y(0) = yi=k—x>0,
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and we can consider the following stochastic control problem

T
inf EY {/ e Plu(t)? dt + Y (T)?|, (28)
ueU 0

As in the previous section, we will study three cases, corresponding to
b(x,u) =0, b(x,u) = oz, and b(x,u) = ox — du, where o and ¢ are positive
constants. It is clear that this is the standard linear-quadratic regulator
problem with non-negative costs. The main difference with respect to the
case with indefinite costs is that, under mild regularity assumptions on the
coefficients and the weights, the Riccati equation associated to the problem
always admits a solution on the whole interval [0,T] (see, e.g., Theorem 2.1
in Yong and Zhou [25]).

In analogy with the previous section, a deterministic problem is still
meaningful, and its solution (except for the value function) coincides with
the solution of the case with additive noise. In the following subsection we
provide more details.

8.1 Additive noise

In this case the distance from the target Y evolves according to the SDE
dY (t) = (—pY (t) — u(t) + pk) dt — o dW (t),
hence the Riccati equations associated to ([28]) read as

P = 2pP +ePtP? P(T) =7,
¢ = (p+eP)p—pkP,  ¢(T)=0.

The solution is given by
1(2p + B)e*!
(2p + ,8)62PT + 7(@(2P+5)T — 6(294-/3)'5)

3 v(2p + B)k(e”! T — 1)
W) = 2§ BT 4 (e T — (P (30)

P(t) (29)

Note that P is well defined on the whole interval [0, 7], hence the problem
is well defined, and the optimal control is uniquely determined by

u(t) = P (PR)Y () + 6(t)) = ™ (P(t)(k — X (1)) + (1)),

and the value function can be written as
T
Vissy) = P+ 20050y + ok [ oft)ds

o2 / " by — / (e dr, (31)

s
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where the term o2 fST P(t)dt accounts for the effect of the noise in the sys-
tem.
The optimal trajectory can be found by solving the closed loop equation

dX(t) = (—a(t)X(t) + c(t)) dt + o dW (t),
where

a(t) = p+ePP(),
c(t) = PHkP(t) + o(t)).

By an application of the variation of constant formula, the solution can be
written as

" t t

X(t) = e Joal®)dsy 4 / e Je d dse(g) g + / e Je ) g qw(e), (32)
0 0

hence X () is normally distributed for each ¢ with mean p; and variance n;

given by

t

e = e—fga(s)dsx_‘_/ e f;a(s)dsc(g)dg
0

t
n = 02/ e_zfga(s)dsdg.
0

Note that, in analogy to the case of subsection 7.1, the control is always
positive at least where Y > 0, i.e. when the target is not yet met, because
clearly P > 0, ¢ > 0 for all t < T. The analogy continues with the sensitivity
of the value function with respect to the noise, which is given by

€ T
81/86@) = o2 /0 P(t) dt.

Moreover, the optimal control strategy does not depend on the noise com-
ponent, i.e. coincides with the optimal control for the corresponding deter-
ministic problem.

The sensitivity of the value function with respect to the initial distance
from the target level of goodwill is given by

IV (s,y)

5 = 2P()y +20(s),

as follows from (ZII).
From (B2) we also obtain the sensitivities of the optimally controlled

goodwill level:
8X(t7 x) _ 8E[X(t, .’E)] — e f()t a(s) ds.

ox ox
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8.2 Multiplicative noise

If b(x,u) = ox, then the equation for Y (¢) becomes
dY (t) = (=pY (t) — u(t) + pk)dt + (oY (t) — ok) dW (t).
The associated Riccati equations are then:

P = (2p-0*)P+PtP2 P(T) =~
¢ = (p+e"P)p+ (02— p)kP, &(T)=0,

and their solutions can be written as

P(t) _ /Y(/B + 2p — 02)6(2p_02)t (33)
B (5 +2p — 0-2)6(2p—02)T + 7(6(,3+2p—02)T _ e(6+2p—02)t)

(5 + 2p — 02)7kept(e(P_02)T _ e(p—02)t)

ot) = 1+ 2p — 02)e2p=02)T 4 ~(e(B+2p—0)T _ o(B+2p—0?)t (34)
(B+2p—0?) ( )

Since P is well defined for all values of ¢ € [0, T, the unique optimal control
policy is given by

u(t) = (P () + ¢(t)) = ™ (P(t)(k — X (1)) + (1)),

with corresponding value function
T
Visy) = P(s)y+20(5)y + 20k [ o(t)

k202 / " (o) — / o2y dr. (35)

S

Let us write the SDE for the optimal trajectory: defining a(-) and ¢(-) as in
the previous subsection, we can write

dX(t) = (—a(t) X (t) + c(t)) dt + o X () dW (t). (36)

As in the case of additive noise, and in contrast to the case of subsection [Z.2]
we can guarantee positivity of the optimal strategy only for those ¢t where
X(t) <k, as it follows from P and ¢ being positive on [0, T7].

Let us now consider the behavior of the value function and of the optimal
control in the small noise limit, i.e. let us write, for € € [0, 1],

dYE(t) = (—pY=(t) — u(t) + pk)dt + /e (cYE(t) — ok) dW (1),

and denote by V¢ and u$, as usual, the value function and the optimal control
for the problem (¥)). Then one can easily prove that V¢ — V¥ as ¢ — 0.
In fact, by @3) and (B4 follows that P — P and ¢ — ¢° as ¢ — 0, and
one can exchange integration and limit by dominated convergence, since
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Pe(t) < v and ¢°(t) < vk for all ¢t € [0,7] and all € € [0,1]. The same
argument also shows that the optimal control, as a function of ¢t and =,
converges to the deterministic control law in the small noise limit, that is
u®(t,r) — u’(t,z) as ¢ — 0. Moreover, we can again write explicitly the
sensitivity of the value function with respect to ¢ as follows:

OV=(y) oP(0) »  ,09°(0) T o (t)
= 2———= 2
Oe 9z 7 * Oe y+ 20k o Oe dt
T T ope(t)
+0%k? / PE(t) dt + eo?k? / ——dt
0 0 Oe
T £
_2/ eﬁtw dt,
0 Oe

where one can differentiate under the integral sign by the uniform bound-
edness of the integrands.

In contrast to the case of indefinite costs and multiplicative noise of
subsection [Z2 the sensitivity of the value function with respect to noise
intensity depends on P and ¢ on the whole interval [0, 7] and not only at
time t = 0. An explicit expression for 0-V¢ at ¢ = 0 could again be given,
although in a very cumbersome form. We omit the tedious but straightfor-
ward details.

The sensitivity of the value function with respect to the initial distance
from the target is easily obtained by differentiating (BHl):

%‘;’y) — 2P(s)y + 26(s).

Using results of regular dependence of the solution of SDEs on the initial
condition (see, e.g., Gihman and Skorohod [I3], [I4]), we can obtain an
explicit representation of X, (t;x) := 0, X (¢t; ). In fact, X, solves the SDE

AX,(t) = —a(t)Xu(t)dt + o X () AW (1)
{ X:c(o) = 17

then
X, (t) = exp ( - /0 a(s)ds — %U2t + UW(t)).

From this expression one can immediately obtain also E[X,(t)]. However,
it is not clear that one can differentiate under the expectation sign. The
following argument shows that in fact 0,E[X(¢;x)] = E[X(¢;z)]. Let us
write the SDE for the optimal trajectory in integral form:

X(t)=x— /Ot a(s)X(s)ds + /Ot oX(s)dW(s)+ /Ot c(s)ds,
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and take expectation on both sides, getting

E[X(t)] ::1:—/0 a(s)E[X (s)] ds+/0 c(s) ds,

where the exchange of integration and expectation is justified by Fubini’s
theorem, and the stochastic integral has expectation zero because X is
square integrable. Define now m(t) = E[X(¢)] and take derivatives with

respect to t. Then m(t) solves the Cauchy problem
m(t) = —a(t)m(t) +c(t), m(0) =z,

that is

¢ t
E[X(t)] = ze~ Jo @) ds 1 / els a9 ds ey ge,
0

and
8E[X(t7 x)] — e s a(s) ds
ox

8.3 Control-dependent diffusion coefficient

If b(z,u) = ox — du, the equation for the dynamics of Y is

dY (t) = (—pY (t) — u(t) + pk) dt + (oY (t) + du(t) — ok) AW (2).

The Riccati equations for this case are

- 9 (1 —06)2P?
P=@r )Pt o p
e P4 6°P >0
P(T) =1,

and
¢ = <P+ (1- 05)%)%5

P p
—i—ak(a +0(1— 05)76_& 5P E)P
o(T) = 0.

(37)

(39)

In analogy to the case with indefinite costs, there does not seem to exist
an explicit solution for these equations. However, Theorem 7.2 in Yong
and Zhou [25] ensures the existence of a solution P € C([0,7];Ry) (and
hence uniqueness, by Proposition 7.1 of ibid.) As a consequence, the linear
equation with bounded coefficients ([BY) admits a unique continuous solution
on [0,7]. Then the associated LQ problem is solvable at any s € [0, T], with

optimal control and value function given respectively by

u.t) = (e + 82P(1)) - (1= 00 P(0)Y (1) + 06k P (1) + 6(0)).
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and
T
Visy) = P(s)y®+26(s)y + 2pk / o(t) dt

T T o 2
o2 / P(t) dt — / wit—)ﬁt++?§1]j((;))) dt.  (40)

as follows by Theorem 6.1 in Yong and Zhou [25].
Unfortunately we cannot prove that the optimal control u, is nonnegative
on {X(t) < k}. We can prove instead the following weaker result.

Proposition 14 If 2p > o2, then the solution P of the Riccati equation

(33) is such that 0 < P(t) <~ for all t € [0,T].

Proof. Suppose, by contradiction, that ty € [s, T| exists such that P(tg) = 0.
Then P(t) = 0 for all ¢t € [s,T] is a solution of the Riccati equation on the
interval [to,T]. By uniqueness of solution, we obtain P(T') = 0 # v > 0.
Then it must be P(s) > 0. Suppose now, again by contradiction, that there
exists to € [s, T[ such that P(to) > . Then P(to) > 0, and P(t) is strictly
increasing for all ¢ > ¢y. Then P(T) > ~. O

The sign of ¢ seems more difficult to determine. In fact, at £ = 7" one has
H(T) = ak(a Yol — o) — 3)7. (41)
e T+ 52y o

Its sign depends on term between parentheses. In particular, if it is positive,
then ¢(t) < 0 in a neighborhood of T', and vice-versa. In general, however,
it seems not possible to determine a priori the sign of the right hand side in
ET) for all t € [0,T7].

Let us now consider the small noise limit, i.e. the control problem on
the dynamics

{ dYe(t) = (—pY=(t) —u(t) + pk)dt + /z (cYE(t) + du(t) — ok) dW (t)
Y¢(0) = k-,

where € € [0, 1]. The Riccati equations for this problem can be written as

P2

P: (2p—€02)P+(1—€a5)2m (42)

e Pt L e52P >0
P(T) =7,

and

. P
o = (o (-0 pap )0
+ (602k‘ + eod0k(1l — eo0d)

&(T) = 0.

e=Bt 4 e52p pk:)P
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As already mentioned, by general results on standard stochastic LQ prob-
lems, we obtain well posedness, as well as existence and uniqueness of solu-
tions for the associated Riccati equations, for all € € [0, 1].

Let us show that V¢ — V° as ¢ — 0. Appealing again to regular
dependence of solutions of ordinary differential equation with respect to
parameters, we obtain, as in subsection [[3 that P°¢ is continuous with
respect to ¢, so that P° — PY as ¢ — 0. Similarly, ¢° — ¢° as ¢ — 0. In the
sequel we shall assume that 2p > o2, so that 2p — 0% > 0 for all € € [0, 1].
The same argument used in the above proposition shows that |P?(-)| < .
Let us write, with obvious meaning of the symbols,

n=—q)n+r )P

where n(t) = P(T' —t), n(0) = 0. Then we have

t
n(t) = e / e " )r¥(s) ds,
0

where .
") <p +£1[%§} 11— 5(75|e_W = O,
and
[re(t)] < ’Y(a?k‘ + pk + ok anea[%,}f] 11— 505|6_%) — O
Then

[6()] < CoT,

and one can take the limit under the integral sign by the dominated conver-
gence theorem in V¢ as € — 0, obtaining the desired result.

An analysis of the sensitivity of the value function with respect to € could
be carried out by “intersecting” results of subsections and

The sensitivity of the value function with respect to the initial distance
from the target level of goodwill is easily obtained by (E0):

OV (s,y)
——2 = 2P(s)y + 2¢(s).
oy (s)y + 26(s)
One can also repeat the same arguments of the previous subsection to
show that the sensitivity of X with respect to the initial level of goodwill is
given by

X, (t) = exp ( - /0 (a(s) + %c(s)z) ds + /0 c(s) dW(s)),
and, on average,
8E[X(t7 x)] — e fot a(s)ds
Ox '
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9 Minimum energy control

We study the problem of determining what is the minimum expected quad-
ratic expenditure to meet a goal “on average” at time T, i.e. we solve the
constrained LQ problem

ng ] [ ]
u 0

where K C U is the class of controls such that E[(X(T) — k)?] = 0, and X
follows the controlled dynamics

{dX(t) = (—pX(t) +u(t))dt + o dW(t)
X(0) = =,

where we shall assume x = 0 for simplicity.

It is intuitively clear that an admissible control that realizes the quad-
ratic hedge always exists. This is proved by the following simple argument.
Consider a feedback control of the form

u(t) = mX(t) + a,
with m, a € R, and let us write the corresponding closed-loop equation

dX(t) = —rX(t)dt+adt+ odW(t)
{ X(0) =0,

where 7 := m — p. Then we have
T
X(T)=e"TaT + e_TTJ/ et dw (t),
0

hence
E[X(T)] = e "aT
and 1
E[X(T)?] = e 2 Ta?T2% + (1= e,
Condition E[(X*%(T) — k)?] = 0 can therefore be written as

1
(e TT?)a? — 2ke ™I T)a + 5(1 —e '+ E? =0.

Solving this quadratic equation for a we get the two solutions

ke—TT + \/k2e—2rTT2 — (e~ TT2) (L (1 — e 2T) 4+ £2)
o2 T2 :

a+ =

Choosing any m > p, both a_ and a4 are real, so that the desired control
is given by u(t) = mX(t) + a4.
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In order to find the control with minimum discounted energy that realizes
the hedge, we first transform the constrained stochastic control problem
into an unconstrained one by the introduction of a Lagrange multiplier. In
particular, let us introduce the distance from the target Y (t) = k— X (¢) and
a Lagrange multiplier \. Then we look for the solution of the unconstrained
problem

T
) 2 Bt 1\2
inf E[AY(T) + /0 ePtu(t) dt},
subject to

{ dY (t) = (u—pY(t) —u(t))dt + o dW(t)
Y(0) = k.

Using the results of the previous section we know that a unique optimal
control u) exists for any A and is given by

up(t) = P PAOY (1) + 7o (t),

where P and ¢* are solutions of the associated Riccati equations. The
optimal trajectory solves the following SDE

Ay (t) = (pMt) — MY (b)) dt + o dW (t),

with

prt) = =N,

ANMt) = p+ePPNY).
We look now for a A such that

E[Y?(T)] = 0.
Let us write then
elo *(s)ds (dY(t) + Y () dt) — elo o) ds (u’\(t) dt + o dW(t)),

hence

r ., T
ef()T cM(s) dSY(T) — Y(O) +/0 efo cA(S)dslu)\(t) dt +0./0 efO cM(s)ds dW(t)

Squaring both sides, taking expectation, using It6’s isometry and recalling
that stochastic integrals are martingales, hence have zero expectation, we
obtain that E[Y(T)?] = 0 is equivalent to the following equation in \:

2 e ds, A 2 2 4 2 [LeM(s)d
k +[/ elo () dsy, (t)dt] +o / e2Jo ) ds gy
0 0

T "t
+2k / elo @ s (1) dt = 0.
0
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This equation is highly nonlinear, and one cannot expect to find an explicit
solution for A. However, it is clear that a solution exists since controls of
the form u(t) = mX(t) 4+ a are admissible, and among such controls one can
find at least one which realizes the hedge. The issue of finding such A by
numerical techniques will be addressed elsewhere.

10 Quadratic utilities and partial information

Assume that the goodwill X evolves according to the controlled Ornstein-
Uhlenbeck dynamics

{ dX(t) = (=pX(t)+u(t))dt +odW(t)
X(0) = =,

and that we cannot observe X directly, but that instead we have only a
noisy observation of it, i.e. we can observe a process Z defined by

{dZ(t) = hX(t)dt + gdWy(t)

Z(0) = 0, (43)

with h and ¢ constants, and W a Brownian motion independent of W.
This assumption is quite realistic, as it is difficult to “measure” the image
of a product, while a firm may have access to marketing data that are good
proxies for the goodwill. Equation (#3)) describes the relationship between
the unobserved goodwill X and its noisy proxy Z.

Then we shall be interested in the following stochastic control problem with
partial observation: to minimize the functional

J(z;u) = E* [—7X(T)2 + /0 ! e Plu(t)? dt}

among all square-integrable controls w that are adapted to the filtration
generated by the observation process Z. Given the special structure of the
problem, we can appeal to the so called separation principle (see, e.g. Davis
8] or Bensoussan [3]), according to which the LQ problem with noisy ob-
servation reduces to linear filtering and deterministic control on the filtered
dynamics. In particular, the optimal control is given by

uy(t) = —eP'P(t) X (¢), (44)
where P is again a solution of the Riccati equation
P =2pP + P2 P(T) = —v,
which admits the explicit solution (), and X is given by the Kalman filter

{df((t) - (—p—S(t)’;é))z(t)dt+u*(t)dt+5(t)g%d2(t) )

X(0) = E[X(0)]
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Recall that it holds X (t) = E[X (t)|.FZ], where FZ is the o-algebra generated
by (Z(s))sef0,- Here S is the solution of the (filtering) Riccati equation

2
S=-2pS— %52 + 02, S(0) = Var(X(0)),

which admits the explicit solution

a1 — Cagexp((ag — a1)g~2h?t)

t) = 4
) = T Cexpl(as —an)g-220) (46)
where
_ —pg’ —9(pPg? + hP0?)'?
a1 = h2 )
_ —pg +9(pPg° + hPa)'
Qo = h2 )
o _ Var(X(0)) — oy

Var(X(0)) — as’

and Var(A) denotes the variance of the random variable A. Substituting the
expression for the optimal control (@) into the SDE for the Kalman filter
(A, and defining

h? Bt
H(t) = —p=S(t) 5 — " P(),

we obtain the following expression for the optimal goodwill estimate

t A t t
X(t) = elo 7 s X (0) +g% / els Hdrg(5)dz (s).
0

Similarly we can solve the hedging type of problem in the case of partial
observation. Let Y the distance from the target k, as before, following the
SDE

dY (t) = (—pY (t) — u(t) + pk) dt + o dW ().

Then we suppose we can observe a process Z which is related to the goodwill
X through
dZ(t) = hX(t)dt + g dWy(t),

or equivalently
dZ(t) = (—hY (t) + hk) dt + g dWy(t).

So we can write

u(t) = " (POY () + (1)),
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where P and ¢ are solutions of the Riccati equations

P(t) = 2pP(t)+ %' PYt), P(T)=~,
¢ = (p+e"P)p—pkP, ¢(T)=0,

given explicitly by (Z9)-(@0), and Y is solution of the SDE (see Liptser and
Shiryaev [18])

Ay (t) = (—p — Z—isu))f/(t) dt — u,(t)dt + (p — h)k dt — g%S(t) dZ(t),

where S solves the Riccati equation

2
S=-2pS— %52 + 02, S(0) = Var(X(0)),

whose solution is given by (EH]).

11 Quadratic hedging with optimal stopping

Problems of mixed optimal stopping and control have recently attracted
attention in works of applied probability, see for instance Karatzas and Wang
[16] for applications to portfolio optimization, Duckworth and Zervos [10],
[I1] and Zervos [27] for problems of investment decisions with strategic entry
and exit, and Karatzas, Ocone, Wang and Zervos [I5] for a singular control
problem with finite fuel. For the theory, see, e.g., Krylov [I7], Bensoussan
and Lions [, @ksendal and Sulem [22], and Morimoto [T9]. One of the first
works addressing the issue of finding explicit results was Benes [2].

In this section we find an explicit representation for the optimal control
and the optimal stopping strategy for the case of minimizing an objective
function that is the sum of the quadratic distance of the goodwill from a
target at the (discretionary) launch time 7 and of the cumulative quadratic
cost until 7, assuming that the goodwill dynamics is of Ornstein-Uhlenbeck
type. For simplicity we also assume § = 0, i.e. we consider the case without
discounting. In order to discourage long waiting before launching the prod-
uct, we also introduce an extra term in the objective function depending on
the time of launching.

So let Y be the distance from a desired target k. We shall find the
solution to the problem

inf E®|Y? 21 di =V 47
i B [eOd | v, )

where Y is such that

AY () = (1 — pY () + u(t)) dt + dW (1),
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with p := pk and we have assumed, without loss of generality (in the setting
of constant b), o = 1. Let F be the filtration generated by W. Then U is
the space of F-adapted square integrable control processes, and S is the set
of all F-stopping times.

The quasi-variational inequality associated to the mixed problem of op-
timal control and optimal stopping ([#7) can be written as

min (a;2 - V(x), muin(L“V +mu® + 72)) =0,

T

where L* is the generator of the controlled diffusion Y, i.e. L" is the differ-
ential operator defined by

LUf (@) = 3 ") + (0~ pr = u)f(z).

We guess a continuation region D of the type D = {x : © > z¢}, where one
must have
Inuin(L“V + yu? +49) = 0.
We have 1
min(L'V + o’ + y2) = AV — — V72 + 7,
u 4y

where A is the generator of the uncontrolled diffusion, i.e.

Af(z) = 31" (@) + (n = pr)f'(2).

Then we get
1
AV — — V244 =0, x>
dm

In order to linearize this ODE, we apply the Hopf-Cole transformation
1
U(x) =e™ V(x), obtaining

1
§Um+(u—px) x_%U:07 T > @

In order to obtain solutions that are ordinary functions, we restrict ourselves

to the special case % = p. However, one can solve the linear equation for U
without this assumption, obtaining solutions that can be expressed in terms

of special functions. Two linearly independent solutions are

Ui(x) = e~ 2natpe’ Us(z) = eP(@—1/p)? /OO o—P(s=1/P)? g

xT

Then the general solution can be written as U = a1U7 + aolUs, with a; and
o arbitrary real constants.
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Guided by the observation that U; is unbounded in the continuation
region, we set a; = 0, and impose C' fit of U(x) = asUs(z) to the Hopf-
Cole transformation of 22 at the point zg, that is

I
U(IL’()) = e 210
U'(zg) = —@e_ﬁmg.
71

We solve now the following system of equations for the unknowns agy and
xZo:

2 > 2 I
QgeP@0=H/P) / e P=1/P) gs = ¢ T
xX
[o¢]
s 2p(g — B)ep@o-n/n? / o—pls—i/p)? ds—1] _ o had
p 20 o

Therefore g is given by the solution of the following equation

((2p+ i):J: — ZM)GP(x_“/p)Q / e‘p(s_“/p)2 ds = 1.
il

xT

In fact the solution, if it exists, is unique, because the left hand side, as a
function of z, is increasing. Now one can also find as in terms of xg, so
that we have a candidate continuation region (or equivalently an optimal
stopping region), and a candidate value function.

We need to show that AV (x)— ﬁ(V’(w))2 +72 > 0 in the region z < xq,

for V(x) = 22. That is, we want to show that
1
(2p + 7—)# —2px — (1 +72) <0. (48)
1

The expression on the left hand side takes its maximum either at x = 0
or at x = xg. Therefore, if z,,4, = 0, condition ) is trivially verified.
Otherwise, if x4 = To, We have

1 1
— = ( ) > )
(2p + 71 )z — 21 pyo + /P28 + 2p

where yg := xg — %, and the inequality follows by standard estimates on the
error function. Therefore we get

(20 + 71 Do — 21 < pyo + 1/ P2YE + 2p.

After some algebraic manipulations, one finds

1 1
(20 + a)mg - 2Maﬂﬂo < 2p71 = 2.
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Therefore, HS)) is verified if, e.g., 1 > 1. We shall assume that in the
following, but note that this condition can be weakened.

Finally, we need to prove that V(z) > 22 in the continuation region
_L
x > xg, or equivalently that U(zx) > e 2 e for x > x9. In order to
2
prove this, let us consider their ratio f(z) = U(x)e 2% and prove that it is

increasing. One has
, 1.2 1
J'(@) = aze™n ™ (20 + — )z — 20)Ua(2) — 1),
st

and since we have that ((2p + o )a: —21)Us () is increasing in x and ((2p +
%)xo —2u)Us(x) = 1, it follows ((2p + 71)3} —2u)Us(x) > 1 for = > z.
Therefore we have verified all conditions for optimality, and we summarize
our findings in the following proposition.

Proposition 15 The optimal control policy us and optimal stopping time
T« for the problem {{4), with v1 > 1 and % = p, are given by
. V(Y (¢
(Y (1)) = argmin(LV (¥ (1) + 00+ 70) = o)
1

and
=inf{t>0: Y(t) <0}

12 Further problems

In the same spirit of the hedging type of problem addressed above, it would
be interesting to compute the strategy that maximizes the “probability of
perfect hedge”, i.e. to solve the problem

supP(X“(T') > k). (49)
uel

In particular, one could consider U as the set of controls satisfying an inte-
gral constraint of the type fOT e Ptu(t)dt < M. Obviously problem @) is
equivalent, I being the indicator function, to

supE[]I(X(T) > k)],

which suggests that we could also consider other performance criteria of the

type
sup Ele(X(T) - k)],

with ¢ a general loss function. In the special case of a quadratic loss function,
a possible approach would be to use a constrained version of the linear
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quadratic regulator, in analogy with the Lagrange multiplier method that
we adopted in section 5.

The optimal control problems studied in this paper are limited to the case
of “smooth” disturbances, that is, the driving noise process has continuous
paths. It is meaningful to relax this assumption and consider also jump
components in the noise, to take into account possible shocks to the image
of the advertised product, due, for instance, to bad news on the product
itself or similar ones, or to the introduction of superior technologies.

One could also try to study different type of controls, namely impulse
controls, or even combinations of classical and impulse controls. This is
particularly meaningful for our problems, since impulse controls correspond
to the so-called “pulsing advertising” policies that have been studied in the
management and marketing literature (see [I2] and references therein).
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