Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

Velume 179, lssue 3, 16 June 2007 ISGN 0377-2217

~UROPEAN . OURNAL OF
OPERATIONAL ~“ESEARCH

Available online at
-;'l " N
*." ScienceDirect

www.sciencedirect.com

Feature Clusters:
Applications of Metaheuristics )
Guest Editors: W, Dullaert, M, Sevaux, K. Sorensen and J, Springae!
Advance in Location Analysis

Guest Editors: M. Dimepoulou and 1. Giannkos

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial


http://www.elsevier.com/locate/permissionusematerial

Available online at www.sciencedirect.com

ScienceDirect

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 179 (2007) 11601176

www.elsevier.com/locate/ejor

Placing a finite size facility with a center objective
on a rectangular plane with barriers

Avijit Sarkar, Rajan Batta, Rakesh Nagi *

Department of Industrial Engineering, 420 Bell Hall, University at Buffalo (SUNY), Buffalo, NY 14260, USA

Received 15 December 2003; accepted 15 August 2005
Available online 4 April 2006

Abstract

This paper addresses the finite size 1-center placement problem on a rectangular plane in the presence of barriers. Bar-
riers are regions in which both facility location and travel through are prohibited. The feasible region for facility placement
is subdivided into cells along the lines of Larson and Sadiq [R.C. Larson, G. Sadiq, Facility locations with the Manhattan
metric in the presence of barriers to travel, Operations Research 31 (4) (1983) 652-669]. To overcome complications
induced by the center (minimax) objective, we analyze the resultant cells based on the cell corners. We study the problem
when the facility orientation is known a priori. We obtain domination results when the facility is fully contained inside 1, 2
and 3-cornered cells. For full containment in a 4-cornered cell, we formulate the problem as a linear program. However,
when the facility intersects gridlines, analytical representation of the distance functions becomes challenging. We study the
difficulties of this case and formulate our problem as a linear or nonlinear program, depending on whether the feasible
region is convex or nonconvex. An analysis of the solution complexity is presented along with an illustrative numerical
example.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction any two points in the plane would be “‘simply com-

municating”, i.e., the minimum travel distance

Location problems which impose restrictions on
locating new facilities and/or travel through are typ-
ically referred to as constrained or restricted location
problems. Such problems have the following two
topographical properties: (1) the new facilities can-
not be located within certain predescribed restricted
areas in the plane; (2) it is not always necessary that

* Corresponding author. Fax: +1 716 645 3302.
E-mail address: nagi@buffalo.edu (R. Nagi).

between any two points in the plane may be made
longer by the presence of the restricted regions.

In real world location problems, situations are
often encountered in which regions neither allow
facility location nor travel through. Such regions
are defined as barriers in the facility location litera-
ture. Examples of barriers would be impassable
areas on the shop floor like machines, subassembly
areas, input—output docks, etc. The available litera-
ture on location problems in the presence of barriers
can be classified according to the following criteria:

0377-2217/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
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shape of barriers (arbitrary, polygonal, circular,
rectangular, etc.),

size of new facility (infinitesimal or finite size),
travel metric used (Euclidean, rectangular, etc.),
type of objective (median or center).

In one the earliest facility location papers dealing
with barriers, Katz and Cooper [8] investigated a
problem with a circular barrier considering the med-
ian objective and the Euclidean distance metric.
Larson and Li [9] developed an efficient algorithm
for determining the shortest feasible rectangular
path between two points in the presence of polygo-
nal barriers. Discretization results for the p-median
problem in the presence of arbitrarily shaped barri-
ers under the rectangular distance metric were
obtained by Larson and Sadiq [10]. The authors
introduced a grid construction procedure that splits
the feasible region into cells. By converting the ori-
ginal problem into an equivalent p-median problem
on a network, the authors proved that an optimal
set of facility locations can be chosen based solely
on the grid points, i.e., the nodes (barrier vertices
and/or demand points) and the points of intersec-
tion of any two node traversal lines.

Batta et al. [2] extended the results of [10] to
include regions that prohibited facility location but
allowed travel through. Anecja and Parlar [1] and
Butt and Cavalier [3] developed heuristics for the
I-median problem in the presence of polygonal bar-
riers under the /, distance metric. Though the center
problem in R? without barriers has been extensively
studied in the literature (e.g., books of Drezner [5],
Love et al. [11] and Francis et al. [6]), very few ref-
erences can be obtained for the corresponding prob-
lem in the presence of barriers. Minimax locations
problems on a network have been studied in the
book by Handler and Mirchandani [7]. p-center
problems on a network have been extensively stud-
ied in the book by Mirchandani and Francis [12].

Nandikonda et al. [14] address the 1-center prob-
lem with arbitrarily shaped barriers under the rect-
angular distance metric. The authors divide the
feasible region into cells as outlined by [10]. To
overcome complications due to the center objective,
they introduce a new concept to classify cells based
on their cell corners. A solution procedure has
been developed for each class of cells. The over-
all complexity of the solution procedure is shown
to be polynomially bounded. Dearing et al. [4]
obtain dominating set results for the 1-center loca-
tion problem in the presence of convex polygonal

barriers under the rectangular distance metric. The
feasible region is decomposed into cells. A bisector
algorithm, that finds bisectors by adapting an algo-
rithm of Mitchell [13], outputs the set of dominated
points. Based on the domination results, the authors
develop a polynomial (in the number of demand
points and number of extreme points of the polygo-
nal barriers) time algorithm to solve the resulting
nonconvex optimization problem. Their work dif-
fers from the work of Nandikonda et al. [14] in its
solution approach as well as the shape of barriers.

In all the above-mentioned literature, the authors
have assumed the new facility to be located as infin-
itesimal in size. However such an assumption is not
always valid. Savas et al. [16] first considered the
finite size ‘“‘placement” problem of an arbitrarily
shaped facility in the presence of arbitrary shaped
barriers with the median objective and rectangular
distance metric. By studying the behavior of the
objective function, the authors identify the candi-
date(s) for optimal placement of a new facility with
a fixed orientation and then for the same facility
with a fixed server location. They also present a heu-
ristic for the case when both facility orientation and
server location are not known a priori. Our work
differs from the work of Savas et al. [16] with respect
to the nature of the objective. Also Nandikonda
et al. [14] consider the same objective with an infin-
itesimal new facility whereas our work addresses the
finite size facility placement problem.

In this paper, we consider the problem of “placing”
a facility in the presence of barriers. This work can be
practically applied to problems in layout analysis,
where the objective, in many cases is to place a new
department in the presence of existing departments
(or to place a new machine in the presence of existing
machines on the shop floor). An existing machine
with its adjoining area comprising of space for asso-
ciated equipment, input buffer, output buffer, scrap
area can be considered to be a barrier.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe and define our prob-
lem. In Section 3, we briefly revisit the grid
construction procedure of [10] and the concept of
“Equal Travel Time Lines” (ETTLs), as established
in [2]. We then study and establish some new prop-
erties of ETTLs in Section 4. Section 5 considers the
facility placement problem with a given orientation;
this section is split into several sub-sections, each
dealing with a different case of the problem. We
analyze the complexity of our solution procedure
in Section 6 for the fixed orientation problem. We
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present an example problem and its detailed analy-
sis in Section 7 to elucidate our solution methodol-
ogy. Conclusions and directions for future research
are outlined in Section 8.

2. Problem description

Let there exist a finite number of barriers where
travel through and facility placement are both pro-
hibited. The existing users are distributed over a
finite set of demand points located anywhere in
the plane outside of or on the boundary of the bar-
riers. A new facility is to be placed. The new facility
communicates with the existing users through a sin-
gle server located on its boundary. The 1-center
facility placement problem is to determine the opti-
mal placement of the facility such that the facility
does not overlap with any of the existing barriers,
and the maximum rectangular travel distance (cir-
cumventing barriers) from the server to any user is
thereby minimized.

2.1. Definitions and notations

We assume that each barrier is a closed and
bounded area in R, with finite area. Let B;(an open
set) denote the set of points (x,y) € R contained
strictly within barrier j. We also define B; =
B; U {boundary of barrier j}, to be a closed set.
Each set B; is called a barrier. Each barrier has a
finite number of horizontal and vertical tangential
lines. We let B=U;B;and B = U;B;. Let H (an open
set) denote the set of points contained strictly within
the new facility that is to be placed and let
H = H U {boundary of the facility}. We note here
that B;N B;=0, i # j and B;N H = (). The distinc-
tion between the inside and the boundary of a bar-
rier/facility is necessary to allow travel on the
boundary of the barrier/facility but not inside. Let
E(B) define the smallest rectangle (bounding rectan-
gle) that encloses all barriers and users and whose
sides are parallel to the x- and y-axes.

For a finite size facility, the coordinates of a sin-
gle point cannot convey full information about the
placement of the facility in R2. Hence, we let
[ =[X,a] denote the placement vector for the facility.
Here, X = (x,y) represents the location, i.e., point
coordinates for the server. The angle 0 < a<2x%
between the +x-axis and the line joining the server
location and a predetermined point P on the facility
(measured in the anti-clockwise direction) specifies
the orientation of the facility. Fig. 1 shows the

Finite Size Facility

o (Orientation Angle)

N

Server X (x,y)

X

Fig. 1. A finite-size facility, its location and orientation.

placement vector. In summary, X is the location
and o is the orientation of the facility. Together they
determine the placement of the facility.

We will now define the feasible region for the
finite-size facility placement problem. Let H (X, )
be the set of points that correspond to the facility
when the server is at X and has an orientation o.
H(X,0)is a closed set. The feasible region is defined
as follows:

F={[X,o]: HX,o)NB = 0}.

We note here that F may be composed of mutu-
ally disjoint sets.

2.2. Problem definition

There is interaction between users and the server.
The extent of interaction between user i and the ser-
ver is denoted by w; = 0. The interaction between
any user and server takes place through a shortest
feasible rectangular distance path that penetrates
no barriers or facilities. Let d/(i, X) represent the
length of such a shortest rectangular path between
the user i and server at X when the facility place-
ment is /. The subscript / signifies that the distance
is a function of the facility placement.

Let D denote the set of all users. For a given
facility placement / =[X,«], we define the function
J(]) as follows:

J (1) = max{wd, (i, X) + 7},
i€

where wd/(i, X) is the weighted travel distance be-
tween user i and the server X of the new facility
and y; is the constant addendum associated with
user i.

Then the weighted 1-center problem with arbi-
trarily shaped barriers can be denoted as follows:

1}161}1J(l).
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3. Background
3.1. Grid construction and cell formation

A grid construction procedure in the presence of
barriers that divides the feasible region F into cells
has been established in the work of Larson and
Sadiq [10]. The same procedure is followed here.
Let O(B;) denote the points of tangency of barrier
B, i.e., points on the boundary of B; through which
a horizontal and/or a vertical line can be passed and
for which all points on the boundary sufficiently
close to this point lie in or either on one side of
the line or the other. The grid construction proce-
dure is outlined as follows:

(i) Draw lines parallel to the x- and y-axes
through all barrier vertices and the users, with each
line terminated at the first barrier interior encoun-
tered (i.e., point in B), else at E(B), as illustrated
in Fig. 2. (i) Exclude from the set of lines in (i)
any line extending from a barrier vertex that is not
a user and where the vertex is the endpoint of the
line. An example of the grid construction procedure
is illustrated in Fig. 2. For further details of the grid
construction procedure, we refer the interested
reader to [10].

The resulting set of lines are called “node tra-
versal lines” in [10]. For simplicity in presentation,
let us refer to these lines as gridlines. We let Ly
denote the set of horizontal gridlines and L, denote
the set of vertical gridlines. We define L =L, U L,
as the set of all gridlines. The barriers and L divide
F into a number of cells, as illustrated in Fig. 2.
Each cell boundary is composed of solely gridlines

E(B)

CellC1

<\ Barrier

Node Traversal Line e User

Fig. 2. Example of the grid construction procedure.

or segments of barrier boundaries and gridlines.
For a given cell C, let us consider the points
(xmin:ymin)a (xmaXaymin), (xmaxaymax)a (xminaymax)a
where Xmin, Vmin» Xmax» Vmax are the respective
bounds on x and y in the cell. Clearly, at least
one of the four points (xmin,ymin)a (xmax,ymin)a
(Xmaxs Ymax)> OF (Xmin» Vmax) 18 contained in C. All
such points contained in C, up to a maximum of
four, are henceforth referred to as cell corners of
C. We will later utilize the following results, as
proved in [10,16].

Result 1 [10]. A shortest feasible rectangular path
from a user to an infinitesimal point located in a cell
C passes through a cell corner of C.

Result 2 [10]. A shortest path in R* between any
(X4 V) and (x, y,) can be found by restricting travel
to nodal paths, i.c., paths containing a sequence of
nodes a —ny —ny —--- — np — b where (a,n;),(ny,
ns),...,(n,b) are pairs of simply communicating
nodes (two nodes communicate simply if the pres-
ence of barriers causes no net increase in the travel
distance between them).

Result 3 [16]. A nodal path between two points
(X4 ya) and (x,,y,) can be represented as a ‘“‘tra-
versal line path” P(a,b), i.e., a path that comes in
contact with a sequence of horizontal and vertical
gridlines, Ay, ho,. .., h, and vy,vs,...,0,.

Cells that do not share a common boundary with
a barrier B are rectangular and have four cell cor-
ners. Cells that share their boundaries with a barrier
may not be rectangular and hence may have less
than four cell corners. Let the subset (¥ denote all
cells with p cell corners. Based on the previous dis-
cussion, we denote by ( a set of all cells, then

(=duulul
3.2. Equal Travel Time Lines and subcells

For a fixed location X € C, we can meaningfully
talk of the assignment of users to cell corners of C.
If the assignment of users to cell corners does not
change upon moving the location X in C, the dis-
tance functions are linear and monotonous over
the cell C. However, any change in the assignment
of users to cell corners necessitates the construction
of “Equal Travel Time Lines” (ETTL). The con-
cept of ETTLs was introduced in the work of Batta
et al. [2] and subsequently utilized in the work of
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0.5(|dj; -d;4 +a+b)

V4 (0,b)

|

\%} (a,b)

ETTL between cell\
coyners V-.a \%

1 2
b

O
45

ETTL between cell

coyners V1 and V3

Rectangular Cell C

v (0,0)

JEN—

a

H(a,0)

1 — 0.5(|dj; -d;, |+a)

Fig. 3. Example of an ETTLs in a rectangular cell.

Nandikonda et al. [14]. Details regarding construc-
tion of ETTLs can be found in [2,14].

Let us consider a cell C with corners Vg,
k=1,2,3,4 as shown in Fig. 3. For the sake of sim-
plicity and without loss of generality, let the corners
Vi, Va, V3, V4 have coordinates (0,0), (a,0), (a,b),
(0,b), respectively. Let the shortest rectangular dis-
tance from user i to cell corner V, be denoted by
dy for k=1,2,3,4. If |d;; — dp| < a, where a is the
length of the edge V,V,, then an ETTL with respect
to i between corners V; and V, is generated such
that it is perpendicular to the edge 7V, at a dis-
tance %{\dﬂ —dp| + a} from the cell corner that is
closest to user i. The cases between other adja-
cent cell corners can be dealt with similarly. If

Cell C
34

|d;i — di| <a+ b, where b is the length of the edge
V,V3, then an ETTL with respect to i between cor-
ners ¥, and V3 is generated that touches the cell
boundary at a distance {{|d; —d;|+a+ b} from
the cell corner that is closest to user . It is pertinent
to mention here that ETTLs generated due to diag-
onally opposite cell corners are inclined at 45° to the
edges of a 4-cornered cell, e.g., the ETTL generated
due to ¥, and V3 makes an angle of 45° with the
edges V,V; and V3V,. After the construction of
ETTLs, which are induced on a cell C by user i,
has been completed, the same procedure is repeated
for all other users k, k # i. ETTLs partition a cell C
into subcells SC. All ETTLs generated by the users
in Fig. 2 are illustrated in Fig. 4. For example, con-

[ ETTL due to demand point | <

e

24
22

ue to
point 4

12 ETTL due to {demar
8
Sp e g E dieto
ETTL due to e N jdemand point,
demand point 3
0 5 10 26

“WIETTL diigto |

Fig. 4. Cells and subcells.
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sider ETTL 4B in cell C in Fig. 4. ABis an ETTL in
the following sense: if X is located at a point on AB,
a shortest rectangular path between X and user 1
goes through either cell corner V; or V, (in other
words, one has to cover equal distance (hence the
name ETTL) to travel from user 1 to X, either
through V; or V5). Clearly ETTL AB helps to
uniquely assign user 1 to cell corner V| or V,
depending on the location of X € C.

It is pertinent to mention here the following
result proved in [14].

Result 4. A demand point generates at most one
ETTL in a 4-cornered cell.

4. Additional properties of ETTLs
4.1. Existing ETTLs may move

As discussed in Section 3.2, an ETTL may be
generated between any pair of cell corners of a
4-cornered cell. Due to the finite size of the new
facility, an existing ETTL may move. In fact, the
following are now possible.

1. Due to its finite size and shape, the length of the
shortest rectangular path between a user i and the
new facility’s server X, d(i, X), may increase. Con-
sider the ETTL generated in the cell C between
adjacent cell corners V; and V>, as illustrated in
Fig. 5a. Due to placement of the new facility as
illustrated in Fig. 5b, d(i, X) increases by 2p (note
that user 7 is uniquely assigned to cell corner V7).
Hence the ETTL moves closer to V; by p. We
conclude that the position of an existing ETTL

V4 (0,b) v_(a,b)

ETTL petween cell
corners V,and V,

9 (x,y)
b

v, (0.0 \ {0.5(]d1-d;,] +a),0} V(2.0
a

Rectangular Cell C

a

may thus move when a finite sized facility is fully
contained in a cell. Similar analysis can be per-
formed for ETTLs between other pairs of adja-
cent as well as opposing cell corners.

2. The finite sized new facility may block cell cor-
ners of cell C through which a user i communi-
cates with X € C. Consequently d(i,X) may
increase and an existing ETTL in C may move.
However unlike the previous case 1, the new
facility now intersects gridlines. The amount of
movement of the ETTL is a function of the incre-
ment of d(i, X). We refer the interested reader for
more details to [15].

Our solution methodology proposed later is
based on a cell decomposition approach. When
the new finite size facility is not fully contained in
a cell, i.e., it intersects gridlines (Section 5.2.2), the
shortest rectangular path between users and the ser-
ver of the new facility is affected. Consequently the
unique assignment of users to cell corners may
change. Accurate distance measurements between
users and the server is central to our solution meth-
odology. Hence it is crucial to consider the move-
ment of ETTLs. Note that this complexity is not
encountered in [14] due to the infinitesimal size of
the new facility.

4.2. ETTL intersections in a cell

We conclude this section with the following
lemma, which helps to simplify our analysis.

Lemma 4.2.1. ETTLs between both pairs of oppos-
ing cell corners in a 4-cornered cell cannot exist.

V4 (0,b) V_(a,b)
I 3

ETTL shifts
closer to V

1
by p

&
¢
v, (0,0) {0.5(]dj1-d;,|+a)-p, 0} v, (a,0)

a

Fig. 5. Movement of ETTLs.
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e
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vy K&

Vg V3
V1 V2
i
|
Barrier Bq
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1
b
2
- 2
I Barrier B, /\
V3
V2
Barrier Bj

Barrier Bq

Fig. 6. Figure for Lemma 4.2.1.

Proof. Consider a 4-cornered cell C with cell corners
Vi, Vo, Vi, V4 Assume that an ETTL, labeled
ETTL1 exists between V; and V5 due to user 1 asso-
ciated with barrier By, as illustrated in Fig. 6a. This
happens when V is not rectangularly visible to 1.
(Otherwise an ETTL would not exist between V;
and V3 and an ETTL could exist between V, and
V5 or V1 and V,.) However V; and V3 may be rect-
angularly visible to 1 if the cell is formed due to bar-
rier traversal lines associated with By, as illustrated
in Fig. 6b.

Let us also assume that user 2, associated with
barrier B, generates an ETTL, labeled ETTL2 in C
between V, and V4, as shown in Fig. 6¢c and d.
Depending on the placement of B,, V7 and V3 (as in
Fig. 6¢c and d) will not be rectangularly visible to 2.
In either case, a shortest rectangular path from
server location 1 to V; (in Fig. 6¢) and to V3 (in
Fig. 6d) must pass through cell corner V>. Hence an
ETTL would exist between (adjacent cell corners)
V, and V3 in the case depicted in Fig. 6¢c and
between (adjacent cell corners) V; and V5 in the case

depicted Fig. 6d, not between (opposite) cell corners
V1 and V3. This contradicts our first assumption.
The lemma follows. [

Lemma 4.2.1 helps to restrict the number of sub-
cells generated, as evident later in solution complex-
ity analysis in Section 6. Based on the previous
background, we now move on to the actual solution
methodology of our problem.

5. Solution procedure
5.1. Introduction

Before a new facility is placed, the gridlines that
are drawn due to the existing barriers and users
were adequate to provide the framework that is
required to obtain the minimum feasible rectangular
distance path between any two users. Placement of a
new facility alters the existing framework. Specifi-
cally, two things happen. Firstly, the facility itself
acts as a barrier to travel. Hence a new set of
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traversal lines parallel to the coordinate axes must
be passed through the vertices of the facility and
the server on the facility as outlined in [10]. Ref.
[16] has referred to these lines as facility traversal
lines. Secondly, some existing gridlines will be termi-
nated as they will encounter the interior of the new
facility. As a result of placing a new facility, a new
grid structure will be obtained.

Savas et al. [16] consider the 1-median problem
of placing a finite-sized facility. The authors take
advantage of the concave property of the distance
functions and the nature of the objective function
which is a positive linear combination of concave
functions. However the objective (minimax) func-
tion of our problem does not help in deducing
any such property. Hence it becomes imperative
in our problem to represent the distance functions
analytically, as shown in Ilater sections. This
becomes challenging especially because of the arbi-
trary shape of the barriers and the new facility to
be placed. Some concepts of Nandikonda et al.
[14] are useful here as their work deals with loca-
tion of an infinitesimal facility under the center
objective. However since our problem addresses
the finite size facility placement problem, we can-
not directly extend the results of [14]. Analogous
to [14], we split up our analysis into different cases.
Unlike [14] due to the finite size of the facility to
be placed, we have to identify a feasible region of
location in each case. Also, in our problem, if
the new facility to be located moves, the assign-
ment of users to cell corners may change (as
described in Section 4).

To facilitate our analysis, we conclude this sec-
tion by defining the smallest enclosing rectangle of
the new facility as E(H). Similar to what we have
previously defined for a cell, let the corners of
E(H) be denoted as Hy, k =1,2,3,4. We note that
as the facility orientation remains fixed, so does
E(H).

5.2. Optimal placement candidates for the facility
with fixed orientation

In this section, we deal with the placement of a
facility with known orientation oy. We split up our
analysis into two cases:

e when the facility placement does not cut off any
element of the set L,

e when the facility placement cuts off at least one
element of the set L.

5.2.1. The facility placement does not cut off any
element of L

We note at the outset that we are concerned with
the location of the server such that the new facility
does not cut off any element of the set L, i.e., the
facility is fully contained within a cell C. This means
that the set of feasible locations for the server
F CC. F CC can be obtained by moving the facil-
ity inside the cell such that it does not cut off any
element of L. Based on the previous background,
we now consider the following cases:

Case 1: The facility is fully contained in a 1-cornered
cell

A 1-cornered cell C can be generated in four ways
by choosing any one of the four possible cell corners
(xmin,ymin)a (xmax:ymin): (xmaxaymax), (xmina ymax)'
Let us consider the new facility to be contained fully
inside C with cell corner V7, as illustrated in Fig. 7.
The following lemma establishes the fact that in
such a scenario, the facility can be moved inside
the cell thereby bringing the server closer to V;.

Lemma 5.2.1. Consider the new facility to be fully
contained in a 1-cornered cell. Its optimal location is
either (1) a unique point lying inside the cell, or (ii) on
the vertical or horizontal tangent passing through the
only cell corner, or (iii) the cell corner itself.

Proof. Let X be the optimal server location such
that it is different from locations (i), (ii), and (iii)
in the lemma statement. If the facility is moved from
X to X along the rectangular path XOX; (such that
/X0X; =90° as illustrated in Fig. 7) until at least
one facility traversal line coincides with the tangent
(horizontal or vertical depending on the shape of the
l-cornered cell) passing through V7, the distance
between the new server location X; and all users
necessarily decreases. This follows from Result 1
[10] mentioned earlier and hence a contradiction is
established. The optimal facility location (i) is thus
obtained. The optimal location mentioned in (ii)
may be obtained if X lies on E(H). Location (iii)
is a special case of locations (ii).

Since similar arguments can be made for any
1-cornered cell formed by choosing any one of the
four pOil’ltS (xminaymin)a (xmaxaymin)a (xmaxaymax)a
(Xmins Ymax)» the lemma follows. [

Note that the optimal location of the new facility
(for the fixed orientation problem) is given by the
optimal location of X, its server. Clearly, the opti-
mal server location for the case illustrated in
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l-cornered cell C

Barrier

New facility with its server X
facility traversal lines

Fig. 7. A 1-cornered cell (used in the proof of Lemma 5.2.1).

Fig. 7 is X;. From Lemma 5.2.1,ina cell C € ¢', the
point X; dominates all other points. Hence it is suf-
ficient to evaluate the 1-center objective function at
Xi.

Case 2: The facility is fully contained in a 2-cornered
cell

A 2-cornered cell C can be generated by choosing
any two of the four possible cell corners (Xmin, Ymin)»
(xmaxaymin)a (xmaxaymax)a (xminaymax)' This can be
done in six ways. Fig. 8a illustrates a 2-cornered cell
with the cell corners Vi(Xmins Vmin)> V2(Xmax> Vmin)
while Fig. 8b illustrates the case with V(Xmax, Vmin)s
V(Xmin» Ymax)- We now state and prove the follow-
ing lemma.

Barrier

2-cornered cellC

Lemma 5.2.2. Consider the new facility to be fully
contained in a 2-cornered cell. Its optimal location is
such that at least one edge of the facility bounding
rectangle E(H) coincides fully or partially with one of
the shortest rectangular paths (SRP) between the two
cell corners.

Proof. By definition, a cell corner must be either
(xminaymin)a (xmax:ymin)a (xminaymax)a or, (xmax’ymax)'
Hence six cases can be generated by choosing any
two of the four aforementioned points as cell
corners.

Let X be the optimal server location such that no
edge of E(H) coincides with the SRP between

Barriers

New facility along with its server and bounding rectangle

Indicates non-dominated region for server location

Fig. 8. A 2-cornered cell (used in the proof of Lemma 5.2.2).
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V1 and V,. However, as illustrated in Fig. 8a (2-
cornered cell with (Xmin, Vmin) and (Xmax, Ymin) as cell
corners), we can move the facility along the
perpendicular XX until E(H) coincides fully with
the SRP between V7 and V5. Since the rectangular
distance between X; and all users necessarily
decreases, a contradiction is established.

For the case depicted in Fig. 8b, the size of the
facility H is such that E(H) N B; # 0. However as
demonstrated in Fig. 8b, a SRP can always be
drawn between V| and V), that partially coincides
with edges of E(H). The conditions of the lemma
are thus met. Similar arguments hold for other
possible configurations of a 2-cornered cell. The
lemma follows. [

The immediate implication of Lemma 5.2.2 is the
following: for the case depicted in Fig. 8a (i.e., when
a 2-cornered cell is formed between adjacent cell
corners), the “nondominated” region D is a line seg-
ment. Any point on this line D dominates any feasi-
ble (x,y) € C such that (x,y) ¢ D. This line segment
can be obtained by moving the facility inside the cell
C, such that B;N H = () and E(H) coincides with the
line segment joining V7 and V5. D is demonstrated
in Fig. 8 by a bold line.

For the case depicted in Fig. 8b, (i.e., a 2-cor-
nered cell with opposing cell corners), the server X
can be moved along a line (joining X and some
point on the facility’s boundary) that makes an
angle of 45° with the +x-axis without altering the
minimum rectangular distance between a user i

3-cornered
cell C -

X1

Barrier

(constrained to pass through V; or V,) and X.
(The idea is similar to the case of 3-cornered cell
and is discussed in detail in the following case.)
The nondominated region D can be obtained by
moving the facility inside C such that B;N H =)
(in a similar manner as discussed next for 3-cor-
nered cells).

Based on the previous background, we now pro-
ceed to determine the optimal server location.
Clearly cell corners V; and corners Hy of E(H) are
rectangularly visible for j =k =1,2. Hence the dis-
tance between user i and the facility server X can
be expressed as follows:

di,X)=d(i,V,;)+d(V,;, H;) +d(H;X),

where d(i,V;) and d(H; X) are constants while
d(V;, H)) is a linear function of x and y.

The I-center facility placement problem in a
2-cornered cell C is as follows:

min max wid (i, X) + 7,].

The 1-center facility placement problem can thus
be solved by performing a line search over the non-
dominated segment SP € D.

Case 3: The facility is fully contained in a 3-cornered
cell

Following the discussion in Case 2, four possible
cases are generated when any three of the four
cell corners (xmin,ymin)a (xmax,ymin)a (xmax:ymax):
(Xmin» Ymax) are selected to represent a 3-cornered
cell. Fig. 9 shows a 3-cornered cell with the cell

’ S

Vo

New facility along with its server X
and bounding rectangle

Indicates non-dominated region for server location

Fig. 9. A 3-cornered cell (used in the proof of Lemma 5.2.3).
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corners Vl(xminaymin)a VZ(Xmaxa ymin) and V3(Xmin>
Ymax).- We now state and prove the following lemma.

Lemma 5.2.3. Consider the new facility to be fully
contained in a 3-cornered cell. Its optimal location is
such that at least one edge of the facility bounding
rectangle E(H) coincides with any edge of the cell
that is not common to a barrier boundary.

Proof. Let us consider the new facility to be con-
tained fully inside a 3-cornered cell C with cell cor-
ners Vi, V5, V3, as illustrated in Fig. 9. Let us
consider the point X; on the edge V;V3 such that
ZXX P =45°. By moving the server X of the new
facility to X, along XX;, the minimum rectangular
distances from any user i (constrained to pass
through V, or V3) to the server X remains unaltered.
Since we are considering the rectangular distance
metric, any increase in y-distance from X to V), or
V5 is compensated by a decrease in x-distance and
vice versa. However for any user i constrained to
pass through V7, the minimum rectangular distance
between i and X strictly decreases. Similar argu-
ments apply if X; lies on V5. Since we assume that
the facility is fully contained inside the cell, the
lemma follows. [J

Other cases of 3-cornered cells can be dealt with
in a similar manner. An immediate implication of
Lemma 5.2.3 is the following: the nondominated
region D, when the new facility is fully contained
in a 3-cornered cell, is composed of line segments
that are parallel to the edges of the cell that are
not common to a barrier boundary. D can be
obtained by moving the facility inside C such that
BiNnH=0. D is demonstrated in Fig. 9 by bold
lines.

Based on the previous background, the problem
to determine the optimal server location over a seg-
ment D (when the new facility is fully contained in a
3-cornered cell), can be solved by performing a line
search alike Case 2.

Before moving on to case 4, we observe that
Lemmas 5.2.1, 5.2.2 and 5.2.3 extend the results
obtained in Theorem 1 of Nandikonda et al. [14]
to account for finite size of the new facility in our
work.

Case 4: The facility is fully contained in a
4-cornered cell

A 4-cornered cell C may be subdivided into sub-
cells SC by ETTLs between adjacent and/or oppos-
ing cell corners. Each subcell SC is defined by a set

Subcell SC1 Subcell SC2 Feasible
Server
Locations
inside

each subcell

Subcell
Sc4

New Facility

with its

server

Subcell SC3

Rectangulg} Cell C

Fig. 10. Figure for Lemma 5.2.4.

of linear line segments (ETTLs) and the boundary
of a rectangular cell C to which SC belongs. It is
straightforward to see that any SC is a convex poly-
hedron (for discussion, see Fig. 10). Let F denote a
feasible region within a SC where a server of the
new facility can be located. Note, however, that
the new facility itself may intersect ETTLs and
may cross over into one or more neighboring sub-
cells. One can show the following result Lemma
5.2.4.

Lemma 5.2.4. F C SC are convex polyhedra.

Proof. Let us consider any subcell SC of a rectan-
gular cell C, as shown in Fig. 10. 7 C SC is obtained
by moving the new facility along the boundary of
SC. Thus the server X moves parallel to the edges
of SC. The lemma follows since each subcell SC is
a convex polyhedron. [J

Hence F C SC can be represented by a set of
inequalities

X

Af< ) < b, (1)
y

The rectangular distance from a user i to the ser-

ver X can be expressed as follows:
d(i,X) = d(i’ Vj) + d(Vijk) + d(HkﬂX)7

where d(i,V;) and d(Hy,X) are constants while
d(V;, Hy) is a linear function of the coordinates of
the server, i.e., x and y. Note that a pair of V;, H
are rectangularly visible if j = k. Hence a user 7 as-
signed to cell corner V; will communicate with the
server X through corner H; of the facility bounding
rectangle. Since H;, k =1,2,3,4 and X may not be
rectangularly visible, Results 2 and 3 mentioned in
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Section 3.1 can be utilized to evaluate the distance
function d(Hy, X).

The I-center facility placement problem over
each F C SC C C can be formulated as a linear pro-
gram as follows:

minimize Z,
subject to w;[d(i,V;)+d(V;,H;)+d(H;,X)|+7,<Z

forieVy, Vk, (2)
Vs (X> <b. (3)
Y

V), denotes the set of users uniquely assigned to
cell corner Vi, such that U,V, = D. Solution to the
linear program gives the optimal 1-center location
in F.

5.2.2. The facility placement cuts off at least one
element of L

When the new facility is placed over a number of
gridlines, the facility may interfere with the shortest
rectangular paths between the existing users. The
consequence of the facility cutting off a number of
gridlines is that the shortest feasible rectangular
path from a user i to the server location X may have
to travel around the facility, i.e., the facility itself
may act as a barrier to travel between the user
and its server. Hence ETTLs may move, as dis-
cussed earlier in Section 4.1. Consequently the
assignment of users to cell corners may change.
The placement of the new facility determines the cell

corner through which a user i communicates with
the server X of the new facility.

Let us consider a feasible initial placement / of
the facility such that it cuts off at least one element
of L. We assume here that no element of L coincides
with any facility traversal line. Following the con-
cept of Savas et al. [16], we identify the set of place-
ments Q (of the server X) such that when / € Q, the
facility will always interfere with the same ele-
ment(s) of L. The idea is elucidated in Fig. 11a, in
which the new facility cuts off two gridlines, marked
as Line 4 and Line B. The set Q obtained by mov-
ing the facility such that it interferes with no gridline
other than Line 4 and Line B is also shown. It is
pertinent to note the following here:

1. @ may be composed of mutually disjoint sets, as
illustrated by Fig. 11b.

2. Q@ may be nonconvex nonpolygonal, as illus-
trated by Fig. 12a.

3. Q@ may be convex polygonal, as illustrated by
Fig. 11a.

4. Q may be nonconvex polygonal, as illustrated by
Fig. 12b.

To demonstrate the existence of the previous
cases, we have considered a rectangular new facility
in some cases for the sake of simplicity.

The 1-center problem is solved over each Q@ NC,
since Q may span more than one cell C. For the
@ N C under consideration, the shortest rectangular

Barrier
Barrier

S V(N

Barrier

Line A [Line B

Barrier

New facility

Line A

Line

Barrier

Line

\/\/ e

a
X New facility to be placed along with its server

Fig. 11. Illustration for the set Q.
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N

Barrier

N

(e—— Line A

—Line A Line B

Barrier

AL
Barrier

SetQ

\/ b

Convex Polygonal QO C

[;:j Rectangular facility with server

Fig. 12. Illustration for different shapes of O.

path from a user i to X is constrained to pass
through the cell corners of C. Also as illustrated in
Fig. 12, there is no guarantee that Q is convex. Since
Q can be nonconvex, the optimal server location
cannot be determined by formulating the problem
as a linear program in general. However in some
special cases, the 1-center problem can be formu-
lated as a linear program. We present two such cases
as follows:

Case 1: Q NC is rectangular

Let us consider a 4-cornered cell C as shown in
Fig. 13 with cell corners Vi, V,, V3, and V,. Let C
be bounded on all sides by gridlines (due to other
barriers or users) parallel to the edges of C. In other
words, C is bounded on all sides by 8 rectangular
cells labeled Cell C1, Cell C2, etc. Let us consider
the gridline segments V4V3 and BC. The new facility

New facility with server X(x,y)

A B X ¢ D
Cell 1 Cell C2 Cell C3
¥, Xy5Yy )

V4 : \%
(0,b) K N (e, b)
O S NONNNNNNNNNG
(xp5y,) xpy,)
Cell c8 Cell ¢ Cell 4
A v,
(0,0) (=, 0)
Cell 7 Cell c6 Cell ¢5
NN Set Q

Fig. 13. @NC is rectangular.

is moved parallel to V4V3, BC, BV, and CV, such
that it cuts only V4V3 € L. Q obtained by cutting
V4Vs € L is rectangular. Hence @ N Cell C and
@ N Cell C2 are rectangular.

The rectangular distance from a user i to the ser-
ver X can be expressed as follows:

d(i,X)=di,V;) +d(V; Hy) +d(H;, X),

where d(i,V;) and d(Hy,X) are constants while
d(V;, Hy) 1s a linear function of the coordinates of
the server, i.e., x and y. Since Hy, k=1,2,3,4 and
X may not be rectangularly visible, Results 2 and
3 mentioned in Section 3.1 can be utilized to evalu-
ate the distance function d( Hy, X).

Hence the problem to determine the 1-center can
be formulated as a linear program over the shaded
region Q NC as follows:

minimize Z,
subject to w;[d(i,V;)+d(V; Hy)+d(H,X)|+7y,<Z

forie V,, Vk, (4)
X< x < Xy, (5)
<y <y, (6)

where xj, xy, )1, Yu represent the lower and upper
bounds of the x-coordinate and y-coordinate,
respectively, of the @ NC under consideration and
V: denotes the set of users uniquely assigned to cell
corner V, such that U,V; = D. A similar linear pro-
gram can be formulated over Q N Cell C2.

Case 2: QNC is convex polygonal

If @NC is convex polygonal, as illustrated in
Fig. 12b, QO can be represented by a set of
inequalities
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AQG) < b (7)

Hence the problem to determine the 1-center can
again be formulated as a linear program, asin Case 1.

Case 3: QNC is nonconvex

However if Q is nonconvex, the problem to deter-
mine the 1-center involves finding the minimax loca-
tion over a nonconvex set, which can be represented
as an optimization problem with a linear objective
function and a nonconvex feasible region. Hence
the problem can be formulated as a nonlinear pro-
gram and solved using standard nonlinear program-
ming solvers.

The overall feasible region F is composed of a
number of such regions Q. The number and struc-
ture of Qs depends on the number and shapes of
barriers. However a number of Qs will be rectangu-
lar or convex polygonal. As demonstrated earlier,
the determination of the 1-center for such cases
involves solving a linear program. However for non-
convex Qs, the problem to determine the I-center
can be formulated as a nonlinear program and
solved using standard nonlinear programming solv-
ers. Some nonconvex regions might lend themselves
to division into a finite collection of convex subsets.
Here again, linear programming formulations are
possible.

6. Solution complexity

Our solution methodology for the fixed orienta-
tion problem can be split as two distinct cases: (i)
when the facility is fully contained in a cell/subcell
(ii) when the facility intersects gridlines. Hence the
number of cells/subcells is an important factor that
governs our solution complexity. The number of 1,
2, 3, 4-cornered cells generated depends on the num-
ber of barriers, their shapes and their placement. In
fact, the number of cells generated is a direct func-
tion of the number of points of tangency of each
barrier. Formally, N barriers generate at most CN
horizontal and CN vertical gridlines where C is a
constant that signifies the upper bound on the num-
ber of tangency lines of a barrier (in fact, this is our
only restriction to the arbitrariness of barriers).
Hence the maximal number of 4-cornered cells gen-
erated is O(N?). However these many 4-cornered
cells are typically not generated as gridlines are ter-
minated when they intersect barriers. The number
of subcells into which 4-cornered cells can be split
is a function of the number of ETTLs generated in

each 4-cornered cell. Recall that a user generates
at most 1 ETTL in a 4-cornered cell, as proved in
[14]. Also since ETTLs between opposing cell cor-
ners do not exist, as proved by Lemma 4.2.1, the
number of subcells generated is also restricted.
Hence N users, one associated with each barrier,
can generate N ETTLs in a 4-cornered cell in the
worst case, which can intersect in O(N?) ways.
Hence the number of linear programs to solve is
O(NY).

When the new facility to be placed intersects
gridlines, the number of set Qs formed depends on
the number of gridlines the facility intersects (which
in turn is dependent on the number, shapes and rel-
ative proximity of the barriers). It is pertinent to
note here that the set Os are defined when the facil-
ity intersects successive horizontal and/or vertical
gridlines. The new facility can intersect CN vertical
gridlines in O(N?) ways because intersecting: (i) one
at a time is CN ways, (ii) two at a time is CN — 1
ways because of the successive intersection require-
ment, and so on. Similarly, CN horizontal gridlines
can be intersected in O(N?) ways, and the maximal
number of set Qs is O(N*). Note that if a facility
cuts one vertical (or horizontal) gridline, Q can span
at most two cells. Similarly if a facility cuts two ver-
tical (or horizontal) gridlines, Q can span at most
three cells. Hence considering only vertical (or hor-
izontal) gridlines, the number of QN Cs is O(N°).
Considering there exist both vertical and horizontal
gridlines, the number of QN Cs is O(N®). Conse-
quently there are O(N®) optimization problems to
solve. The complexity of the entire solution proce-
dure would depend on the complexity of the optimi-
zation problem in each such set Q NC.

7. Numerical example

We now elucidate our solution methodology with
a simple five-barrier example, as illustrated by Fig. 4
in Section 3.2. We redraw Fig. 4 as Figs. 14 and 15
for the convenience of the reader. Each barrier has
one user. The coordinates of the barrier vertices
and users are known. The weight (w;) and adden-
dum (y;) of user i are listed in Table 1.

The new facility (along with its server) is shown
in Fig. 14. The first step is to define the feasible
region (hatched region as illustrated in Fig. 14). Fol-
lowing the grid construction procedure of Section
3.1, we draw 11 horizontal (numbered 1-11 in boxes
in Fig. 15) and 13 vertical gridlines (numbered A-M
in boxes in Fig. 15) through the barrier vertices and
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New facility (NF)
to be placed

Fig. 14. Feasible region for placing new facility.
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Fig. 15. Cells and gridlines numbered.
Table 1
Example data
User (i) 1 2 3 4 5
w; 1 2 2 1 2
Vi 3 5 2 1 4

users. As a result, sixty-four cells are generated. The
number of 1, 2, 3 and 4-cornered cells is 0, 7, 22 and
35, respectively. In Fig. 15, the cells are numbered in

Table 2

Results when NF is fully contained in cells

NF fully contained # of sub-problems Optimal z

in cell I-center (x*,y")

27 1 (3,18) 79

28 2 (10,18) 65
(16,18) 77

32 2 (30,17) 58
(30,22) 48

59 1 (6,3) 92

60 1 (10,3) 94

63 1 (26,3) 74

64 1 (30,3) 60

circles. ETTLs generated due to various users are
also illustrated.

The new facility (NF) can be fully contained in 7
cells (cells numbered 27, 28, 32, 59, 60, 63 and 64),
all of which are 4-cornered. For all these cases, the
weighted 1-center problem can be formulated as a
linear program (LP). The (local) optimal 1-center
location and the corresponding objective function
values (z) for all these cases are listed in Table 2.

As an example, let us consider the case when the
NF is fully contained in cell 63. The weighted 1-cen-
ter (x,y) objective function for cell 63 is as follows:

min max{[1(6 + (x —23) +y) +3],[2(3+ (30 —x)
+ (G =»)+5,2Q7T+3B0-x)+ (5-y)) +2],
X [1(31+ (x —23) + (5—y)) + 1],
2394 (30 —x) + (5 —y)) + 4]},

with feasible server locations being bounded by
23 < x <26 and 2 < y < 3. This 1-center problem
can be formulated as an LP. The optimal 1-center
for cell 63 is x =26 and y =3 with an objective
function value of 74. Recall that when the NF is
fully contained inside cells, ETTLs do not move.
Also note that when a cell is split into subcells by
an ETTL (for example, cells 28 and 32), the
weighted 1-center problem splits into two sub-prob-
lems (one for each subcell), each of which can be
formulated as an LP.

When the NF intersects gridlines, set Qs are
formed. In this example, 38 such set Qs are gener-
ated. Recall that Os may span more than one cell.
In all such cases, the weighted 1-center problem
has to be solved over Q NCs. Here, 60 Q NC sets
are found. Consequently, there are 60 optimization
problems to solve, only one of which turned out to
be a nonlinear program (NLP) (case 6 in Table 3).
All other cases were formulated as LPs. The LPs
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Table 3
Selected results when NF intersects gridlines
Case # Lines intersected Shape of Q Shape of 9NC LP/NLP Opt. 1-median (x*,y") z
1 L Mutually disjoint sets,
Convex polygonal (CP) - LP (30,30) 86
Rectangular (R) - LP (27,22) 42
2 L4 CP R LP (28.67,24) 41.33
CP LP (26.89,22.22) 41.33
3 H,10 Nonconvex R LP (23,6) 94
Nonpolygonal (NC-NP) NC-NP LP (23,95) 96
4 C R - LP (8.5,3) 87
5 C9 Nonconvex, CP LP (8,8) 78
Polygonal (NC-P) CP LP (8.25,7) 78.5
6 CS8 NC-NP CP LP (6,13) 72
NC-NP NLP (8,12) 70
7 C.,6,7 R R LP (6,15) 68
R LP (6,15) 68
R LP (6,16) 70

and NLP were solved using the LP solver LINDO
6.1 and the NLP solver LINGO 8.0. The solution
times in all cases were less than a second. We now
present a few selected results, when the NF inter-
sects gridlines.

For each of the following cases, Table 3 lists the
gridline(s) intersected, shape of Qs generated, shape
of @ NC (thereby indicating the number of resulting
optimization problems), their type (LP or NLP) and
the (local) optimal 1-center location along with its
objective function value (z).

The optimal 1-center locations (obtained by com-
paring all local minima) of the new facility are
(26.89,22.22) and (28.67,24.00) (Case 2 in Table
3), both with objective function values of 41.33.

We make an interesting observation for Case 3.
While one of the @ N C related to cell 61 is noncon-
vex nonpolygonal, it is analogous to the 3-cornered
cell for the fully contained case (see Lemma 5.1.3).
Thus its boundary dominates the interior and a line
search (through an LP) is adequate.

Note that since the new facility intersects grid-
lines, ETTLs may move. Case 7 in Table 3 is an
example in which the ETTLs in cells 26 and 32 move.
However the assignment of users to cell corners does
not change in any of the cases in this example.

Establishing domination results can significantly
reduce the number of optimization problems to be
solved. In this example, it can be verified that parts
of the feasible region, for example, between (i) y =
30 and y = 32, (ii)) x = 0 and x = 3, and (iii) all feasi-
ble locations contained strictly inside cell 42, are
dominated. All such feasible locations are excluded
from analysis. Moreover, it is worthwhile noting

that we can attempt to prune some cells (in which
the NF can be fully contained) based on a bound
provided by the optimal 1-center location of an
infinitesimal facility. The overall efficiency of the
solution procedure can thus be further improved.

Finally, the number of optimization problems to
be solved depends on the number of barriers, their
shapes and relative proximity, as mentioned earlier.
However, even for more complex problems, the
computational time required to solve each of the
mini optimization problems is expected to be
negligible.

8. Conclusions

In summary, this paper addresses the optimal
placement problem of a single finite size arbitrarily
shaped facility in the presence of arbitrarily shaped
barriers to travel with the center objective. The rect-
angular travel metric is employed. The server loca-
tion and the facility orientation define a facility’s
placement. Due to the complexities associated with
the finite size of the new facility, the placement prob-
lem with fixed facility orientation is studied in this
paper. Based on the subdivision of the feasible
region into cells, we obtain cell domination results
for 1, 2, 3-cornered cells when the facility is fully con-
tained inside such cells. When the new facility is fully
contained in a 4-cornered cell (or a subcell generated
by ETTLs), the 1-center placement problem can be
formulated as a linear program. When the facility
cuts gridlines, we analyze the problem and develop
a solution methodology based on distinct but fixed
sets of gridlines which the facility intersects.
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Our work can be viewed as an extension of Savas
et al. [16] who study a similar problem but with
“median” objective and Nandikonda et al. [14]
who consider the 1-center placement of an infinites-
imal facility. Ref. [16] considers a median objective
and proves the objective function to be concave.
However since distances are being measured explic-
itly in our work, the procedure can be applied to a
general class of problems irrespective of the objec-
tive considered. Unlike [16], we solely consider the
user—server interaction. We note that since the new
facility to be located itself acts as a barrier to rectan-
gular travel, it can disrupt the level of interaction
between two users. Study of the 1-center placement
problem under a similar setting but subject to a con-
straint that the user—user interaction should not
exceed a specified threshold is an interesting open
problem. Proposing a solution methodology to the
variable orientation problem (when the server loca-
tion X is known a priori) is also a future research
direction.
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