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ABSTRACT 

 

This paper develops a model-based analysis of technological market structure 

evolution in electricity markets. This is done through the development of a power 

plant trading game that, via computational learning, simulates how players coordinate 

their behaviour in buying and selling power generation assets. In particular, we look 

at the question of how market performance depends upon the different technological 

types of plant owned by the generators, and whether, through the strategic adaptation 

of their power plant portfolios, there is a tendency for the market to evolve into 

concentrations of specialised or diversified companies. 

KEYWORDS: Agent-Based, Computational Learning, Electricity Markets, 

Evolutionary Games, Simulation. 
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AGENT-BASED ANALYSIS OF TECHNOLOGICAL DIVERSIFICATION 

AND SPECIALISATION IN ELECTRICITY MARKETS 

1. INTRODUCTION 

All capital intensive industries manifest a co-evolution of market structure and 

performance, but what makes electricity particularly intriguing in this respect is the 

instantaneous, non-storable nature of the product, delivered into a market with low 

demand elasticity, high requirements for security of supply and wide seasonal 

variations. This means that electricity is provided, at any instant, from an economic 

and technical mix of baseload, mid-merit and peaking plant, which in turn operate for 

a decreasing fraction of the year.  Thus, whilst some baseload plant may be operating 

for 90% or more of the year (depending upon maintenance), some peaking plant may 

only be called into operation for a few hours. This raises the strategic issue of whether 

the natural tendency, in these markets, is for competing companies to evolve towards 

becoming diversified players, with a mix of different kinds of assets, or niche players 

seeking to be more dominant in the base, mid or peaking segments of the market. It is 

often argued, for example, that the exercise of market power in electricity markets 

requires the major players to own a diversity of peak, mid and baseload plant, in order 

to set market prices with their marginal plant and thereby reap higher profit 

contributions from their baseload.  If so, we would expect the emergent structure 

under competitive plant trading to reflect this. However, we also examine the counter 

proposition, e.g. Borenstein et al. (1995), for example, who suggested that in the 

liberalised power markets, different segments would emerge, at least for baseload and 

peak plants, and so market-power considerations might suggest a tendency towards 

greater concentration in these. Furthermore, this issue may be complicated by the 
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market rules, for example, to the extent that an administered market is introduced, 

based upon a single clearing price for all power at a particular point in time (e.g., the 

Pool model), or a multi-clearing process that facilitates discriminatory prices for the 

base, mid and peaking market segments (e.g. bilateral forward trading). This paper is 

motivated by a desire to develop a methodological framework for addressing these 

two inter-related questions. 

Research into the strategic behaviour within power markets has typically focussed 

upon bidding behaviour, capacity withholding and price formation in the daily 

markets1, usually under various exogenous assumptions for market structure. Yet, 

whilst the dynamic trading of assets between major players has been a salient feature 

of fully liberalised electricity markets, as seen in Australasia, North America, Great 

Britain and other European countries, the evolutionary development of market 

structure, its drivers and dependencies, has received very little research attention. Ishii 

and Yan (2002, September) present evidence that mandated divestment crowded out 

new investment in the California market, but this is quite a different issue from 

voluntary strategic plant trading. To address the latter, a modelling framework is 

needed that captures the trading of assets as an endogenous response to performance 

in the daily market(s) for electricity. 

The model developed in this paper incorporates two main components: a plant trading 

game and an electricity market game. The plant trading game represents the 

interaction between electricity companies that trade generating plants. The electricity 

market game formulates the daily electricity market prices by assuming Cournot 

                                                 
1 See for example: Abbink et al., 2003; Rassenti et al., 2003; Bower and Bunn, 2000; Bunn and 

Oliveira, 2001, 2003; Day and Bunn, 2001; Green and Newbery, 1992. 
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players. Essentially, we investigate the different strategies that can be used by a 

generator when managing its portfolio of plant to see how technological 

diversification or specialisation could enhance its performance. We find that the 

relative value of peak and baseload specialisation is influenced by the market 

mechanisms and that, for example, the value of peaking plants to a portfolio is higher 

under a single price (i.e., “Pool”) clearing mechanism. We follow Borenstein et al. 

(1995), for example, who suggested that in the liberalised power markets there would 

be different markets for baseload and peak plants, and Elmaghraby and Oren (1999) 

who proposed a market mechanism that implies discriminatory pricing by technology. 

Although we develop a generalisable model and stylised insights through agent-based 

simulation, we are motivated in this study by salient aspects of the evolutionary 

history of the British electricity market from its liberalisation in 1990.  

2. STRUCTURAL EVOLUTION IN ENGLAND AND WALES  

During the 1990s, the privatisation of the E&W electricity industry aimed to introduce 

competition, through unbundling, in generation and supply, while maintaining 

incentive based monopoly regulation in the transmission and distribution businesses2. 

Before privatisation, the Central Electricity Generating Board (CEGB) dominated the 

industry structure, selling electricity in bulk to 12 area distribution boards, each of 

which served a closed retail supply area. The 1989 Electricity Act started the process 

by splitting the CEGB into three different generation companies (National Power, 

PowerGen and Nuclear Electric) and a transmission company (National Grid). Fossil-

fuel plants, operating as base, mid-merit and peaking, were assigned to National 

                                                 
2 A good source of information on the history of the electricity sector in the UK is by the Electricity 

Association (2000a). 
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Power (38 GW of capacity) and PowerGen (18 GW of capacity), and the baseload 

nuclear plants to Nuclear Electric (8.4 GW of capacity). In 1996, Nuclear Electric was 

further demerged into two companies, Magnox Electric and British Energy.  

Ownership of their plants then entered a second period of change with successive 

divestments and the arrival of new players to the E&W market. Thus, in 1995, Edison 

Mission Energy entered the market buying the 2GW of peaking pumped storage 

capacity. In 1996, TXU Europe acquired five coal-fired power stations, from National 

Power and PowerGen, with a total capacity of 6 GW. Furthermore, the arrival of the 

new technology of combined cycle gas turbines (CCGTs) in the 1990s changed the 

nature of new investment and competitive entry. This technology reduced the 

economies of scale in electricity generation, and offered low capital costs, operational 

costs and short construction times. Overall, plant-trading and the new entry process 

gradually accelerated so that, by early 2000, there were 24 companies in the market 

with small Independent Power Producers (IPPs) having 21% of the installed capacity. 

Furthermore, vertical integration (between generation, distribution and supply), and 

diversification (the main electricity companies also selling gas) began to reshape the 

industry and its value chain.  

The next major development in the E&W electricity market was a change in the spot 

market mechanism with the introduction of New Electricity Trading Arrangements 

(NETA) in March 2001. NETA replaced the mandatory daily uniform price auction, 

with continuous bilateral trading (up until an hour before real-time, whereupon the 

system operator takes over responsibility for system balancing). This major change in 

market mechanism fuelled an international debate upon the relative merits of pool 

versus bilateral trading systems and their relative effects upon improving market 
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efficiency. Thus, it seems very appropriate when seeking to understand the process of 

endogenous strategic adaptation, which has characterised the evolution of asset 

ownership in the market, and presumably will continue to do so, to test the sensitivity 

of such models to this exogenous influence of market rule changes. 

3. STRATEGIC MANAGEMENT OF PLANT PORTFOLIOS 

Mergers, acquisitions and divestures, insofar as they would be expected to determine 

subsequent performance in the industry, are crucial for both regulatory and 

competition authorities (Cox, 1999). Electricity companies may use mergers and 

acquisitions to adapt to the new environment (e.g. risk management) or to gain market 

power, whereas divestments by incumbent generation companies may be mandated in 

order to ensure that the market becomes more competitive. Clearly, one of the 

strategic aims that companies have in refining the composition of their plant portfolios 

may be to gain a dominant position. 

Further, market rules have been seen to influence investment decisions. For example, 

Exelby and Lucas (1993) examine the link between capacity payments and capacity 

investment in the E&W Pool, showing that the capacity payments mechanism in use 

at that time, paradoxically introduced incentives to reduce the capacity available in 

the system.  

In the E&W electricity market, before privatisation, national security and cost 

minimisation were the driving forces behind the strategic management of plant 

portfolios. The main goal of this strategy was to ensure generation technology 

diversity. Stirling (1994) claims that technological diversity was the basic rationale 

for the investment in the UK electricity market, under central planning. 

Diversification seemed the correct reaction to the uncertainty underlying fuel prices, 
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environmental impacts and financial performance. Sterling also maintains that, since 

privatisation, the government created better conditions for technological diversity by 

revoking, in the late 80s, the European Community legislation forbidding the use of 

gas in bulk power generation. Furthermore, the need for diversification also justified 

the investment on nuclear plants. Moreover, he argues that in the liberalised market, 

the new private companies also appear to have technological diversity as one of the 

drivers of their behaviour as they have indeed diversified their sources of fuel. 

Regarding the impact of governmental intervention on the technological diversity of 

electricity generation in the UK, Henney (1994) suggests that, during the 70s and 80s, 

the policies were favourable to nuclear and coal technologies. In contrast, Newbery 

(1998) suggests that the UK government promoted the nuclear option as a means to 

combat the coal miners’ power. In Henney’s view, however, the protection of UK 

coal led to high inefficiencies and mistakes, namely over-estimating the demand for 

coal. 

Therefore, it seems that within the public sector, a monopolistic electricity industry 

managed under government policy, followed technological diversity as one of the key 

issues of plant portfolio strategy. Essentially this was a facet of national security. The 

political context of the oil crises in the 70s in the UK, as elsewhere, helps to explain 

this preference.  

However, the driving forces in the electricity industry, during the late 1980s and at the 

beginning of the 1990s, became much broader with the arrival of new technologies, 

environmental concerns and the political impetus for market mechanisms (Flavin and 

Lensen, 1994; Bodde ,1998). The arrival of natural gas allowed independent power 

producers to build small and efficient power plants, and subsequent concerns about 
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carbon emissions served to amplify its attractiveness compared to coal. With 

privatisations, the logic behind the strategic management of plant portfolios changed 

substantially. Larsen and Bunn (1999) summarised some of these the changes. The 

new industry became characterised by unstable and volatile prices, the presence of 

new shareholders with high performance objectives, regulatory uncertainty, and 

information opacity. At the corporate level, the new market was characterised by a 

focus on shareholder value (that replaces the social optimum) and new methods of 

linking strategic thinking, uncertainty, and limited information (replacing the classic 

operational research planning). 

When looking at the principles of restructuring, Kaserman and Mayo (1991) claim 

that the industry should generally be privatised vertically due to the presence of 

economies of vertical integration, and due to the exhaustion of economies of scale 

(caused by technological change). It is noteworthy that the evolution of the E&W 

electricity market seems to have supported their hypothesis. Even though privatised 

horizontally in 1990, ten years later by 2000, the E&W electricity industry had re-

converged substantially towards vertical integration. In addition, Kennedy (1997) 

analyses the way vertical integration affects market power, wholesale prices, and 

barriers to entry. Kennedy argues that vertical integration benefits would depend on 

the market structure such that, if the supply is regulated and there is competition on 

the generation side then vertical integration reduces transaction costs.  

Within the new liberalised markets, and due to the decentralisation of the long-term 

decisions, the investment problem is now very different from the capacity planning 

formulations that characterised power system economics for so long. The privatised 

market presents an increased risk due to price and demand uncertainty and due to 
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competition (the investment projects are private). Skantze et al. (2000, November) 

address the investment problem in oligopolistic electricity markets using stochastic 

prices, to perform simulation-based valuation of generation assets, taking into account 

start-up and shutdown costs. On the same topic, Visudhiphan et al. (2001) model 

investment dynamics in a system with a spot and futures market, analysing how price 

information affects long-term supply, demand and price evolution. They simulate 

investment behaviour using a backward-looking strategy, wherein investment depends 

on past spot prices, and a forward-looking strategy in which investment depends on 

the prices in the market for futures. Their simulations show that a backward-looking 

strategy leads to investment delays and under-investment, while a forward-looking 

strategy leads to smaller imbalances between generation and demand. Similarly, 

Pineau and Murto (2003) look specifically at the special nature of modelling 

investment in competitive electricity markets, again from the perspective of supply 

adequacy, and, as in our formulation, adopt separate markets for baseload and peaking 

plant as one of their constructs. 

Whilst the investment perspective of security of supply is clearly important for public 

policy, we have chosen to focus upon the apparently unresearched, but observable, 

phenomena of investment through asset swapping, the process of readjusting the 

balance of ownership for an existing stock of plant, rather than changing the overall 

stock of plant. 

4. MODELLING THE ELECTRICITY MARKET AND THE PLANT 

TRADING GAME 

In this paper we model the electricity market as a Cournot game (e.g., Allaz and Vila, 

1993; Borenstein and Bushnell, 1999; Wei and Smeers, 1999; Hobbs, 2001). Even 
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though other approaches are possible such as conjectural variations (e.g., Garcia-

Alcalde et al., June 2002; Hernaez et al., 2003), Bertrand games (e.g., Bunn and 

Oliveira, 2003), or supply functions (e.g., Green and Newbery, 1992; Anderson, E. J., 

Philpott, 2002), we found that the simpler Cournot model with capacity constraints 

provides useful and novel insights into the main characteristics of oligopolistic 

strategic behaviour within a portfolio setting.  

We have adopted and analysed two different hypotheses for these Cournot games: a 

single-clearing Cournot game in which there is a single clearing price for each hour of 

the day (which attempts to replicate the conditions of electricity trading in pool like 

systems), as distinct from a multi-clearing Cournot game in which there are different 

clearing prices for different markets, over certain times of the day (which attempts to 

replicate the conditions of electricity trading in bilateral markets). Therefore, these 

clearing-mechanisms define a theoretical model of prices and loads in electricity 

markets in which the behaviour of a generator is a function of the industry structure 

and of his portfolio of plants. Further, each one of the models captures the following 

stylised facts: A generator’s supply function is step-shaped. A generator may receive 

different prices for his generation from different plants, even if these are identical. 

Different generators may price the same type of plant differently. A generator aims at 

maximising the value of his portfolio of plants as a whole. 

In both models, the start-up costs and ramp rates are not explicitly taken into account3. 

However, since these technical constraints are important to define the capability of a 

plant to access a given market, the model exogenously defines, for each plant, the 

                                                 
3 This is a simplifying assumption, which has also been adopted by other studies such as, for example, 

Ramos at al. (1998) and Borenstein et al. (1999). 
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market in which it can sell. This simplification does not change the economics of a 

model for the yearly trading of electricity (as it still captures the underlying stylised 

facts) and decreases its complexity from a non-linear to a linear complementarity 

problem.  

Next, we formalise the electricity Cournot game. In this game, each player i chooses 

his output LiQ ,  in market L, which is characterised by a certain demand. Moreover, let 

Ci,L stand for the marginal cost of player i. In this case, Ci,L is assumed locally 

constant for a given plant, but it may be different for the different plants owned by a 

player. Thus, Ci,L will generally be a step-function, which makes the optimisation 

problem computationally hard. Let AL, Lα  represent, respectively, the intercept and 

slope of the inverse demand function; further let DL stand for the duration of market 

L. Moreover, let Ki,L stand for player i’s total available capacity in market L.  

The single-clearing mechanism assumes that each player receives the same price for 

the electricity generated by any plant selling at any given time. Therefore, each player 

receives a clearing price PL for the electricity sold in each one of these markets, and 

the capacity constraint, for each market, is equal to the total capacity that a given 

player has available for market L (in the single-clearing mechanism at any time there 

is only one market). Thus, for a player i, the profit ( iπ ) maximisation problem is 

represented by equations (4.1). 

( ), ,

,

, ,

,

max
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. ,  

,  
0,  

i L i L i L L
L

L L L i L
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On the other hand, the multi-clearing price mechanism aims to capture the bilateral 

trading of electricity by allowing a player to sell the generation from any of his plants 

in different markets, for a given time, possibly receiving a different clearing price in 

each one of them. This mechanism follows the model proposed by Elmaghraby and 

Oren (1999) and suggested by Borenstein et al. (1995), and aims to capture the 

interaction between different markets and technologies in defining the value of a 

plant. Thus, for a player i, the profit maximisation problem is similar to the one 

presented in equations (4.1), with the additional constraint that at each time t the 

available capacity is the sum of the available capacity in each market, i.e., 

∑=
L

Lii KK , .  

Each one of this market clearing mechanisms is then used within the plant trading 

game. The main goal of the plant trading game is to model how the electricity market 

structure would evolve under the current market mechanisms, taking into account the 

initial conditions for the market structure. The game is repeated for a given number of 

iterations in order to capture its main attractors (however, we do not expect to 

simulate how the market will evolve over time, only to test which market structures 

represent an attractor, under the present conditions). 

In the computational simulation of the plant trading game the simulation algorithm 

has five main stages: Initialization, Identification, Adaptation, Trading and Updating. 

Briefly, Initialization starts with the opening market structure and solves the Cournot 

game to give the initial valuations of each plant. In the second Identification stage, 

each player then infers a model representing how the system is behaving and 

identifies the plants that will most probably be offered for trading in the next round 

(ie,  each player selects which plants are likely to be traded, in order to simplify the 
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coordination problem). In Adaptation, each player computes the set of plants he will 

attempt to buy and sell given the inferred model (i.e., the set of plants most likely to 

be traded). Then, possibly, two of the players Trade a plant. Finally, the algorithm 

Updates the state of the game, i.e., it recalculates the capacities owned by each player, 

and the respective cost structures.  

In order to exemplify each of these stages, we use a simple example, alongside a 

formal description of the simulation algorithm. Assume a system with five plants 

54321 ,,,, aaaaa  and two players P1 and P2, with the properties specified as in Table 

4.1. Furthermore, assume that, in the initial state, player P1 owns plants a1, a3, a5, and 

player P2 owns plants a2 and a4. 

TABLE 4.1: Example: Marginal Costs and Installed Capacity 

Plant Marginal 
Cost 

(£/MWh) 

Capacity MW 

a1 5 1000 
a2 5 1000 
a3 10 100 
a4 10 100 
a5 50 10 

 

Table 4.2 presents the Identification process, and in the Appendix we have a summary 

of all notations used.  A one dimensional table Ti is a model of the system, for each 

player, in which each element represents a given plant and the perceived outcome 

(success or not) of an action to buy a plant not owned or to sell a plant owned. At 

initialization, we set ]1,1,1,1,1[2
0

1
0 == PP TT , which implies that both players perceive 

all possible trades as possible.  In general, as iterations develop, the players associate 

a probability of success for each of the possible trades and only retain those in this set 

of possible trades if their success probabilities are greater than a pre specified 
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plausibility cut-off4 ( )1.0=θ .  These success probabilities are based upon a moving 

window (length K ) of previous trades (K=4 in this example). 

TABLE 4.2: Identification Algorithm 

At stage zero initialise ( )0
iS ,T : ( ) ( )( )0, [1,1,...,1], , 1i i i i ia s a T s a θ∀ ∈Σ = = . 

1. At any given stage t and for each player i: 
1.a) For each possible action update the string of perceived outcomes of the 

past 

( )
⎩
⎨
⎧

←
←

=
possibleTrade

possiblenotTrade
aD i

t
i
t _1

__0
 

( )( )1, ,i i i i i i
t t t t ta s s D aφ −∀ ∈Σ =  

1.b) Compute ,
a
i tp  the percentage of time each action is expected to be 

successful 

Let i
j td s∈  represent a perceived outcome in string i

ts , such that { }0,1jd ∈ . 

1
,,

K

j
ji i a

t i t

d
a p

K
=∀ ∈Σ =
∑

 

1.c) Let ,j tτ  represent the perceived outcome of action a, such that { }, 0,1a tτ ∈ : 

( ), , ,, ,i i a
a t t a t i tT pτ τ θ∀ ∈ = Φ . 

2. The update operator ( )φ  

Let ( )i i
t tD a  represent the expected outcome of action i

ta , and let 

1 1 2[ , ,..., ]i
t Ks d d d− =  represent the vector of the past outcomes of action 

i

a : 

( )2 ,..., ,i i i
t K t ts d d D a⎡ ⎤= ⎣ ⎦ . 

3. The forecast operator ( )
1

,
0

p
p

p
θ

θ
θ

← ≥⎧
Φ = ⎨ ← <⎩

 

 

                                                 
4 The plausibility parameter helps to speed up the best-response algorithm as it enables the players to 

direct the best-response algorithm to analyze the set of actions that is more likely to lead to a trade. 
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Thus each player maintains a K-element string in S (the set of strings representing the 

possible outcomes of the bids and offers for each plant, as perceived by each player) 

and these are initially set as ( ) ( ) ( ) ( ) ]1,1,1,1[...... 2
5

1
0

2
1

1
0

1
5

1
0

1
1

1
0 ====== asasasas PPPP , in 

which each string ( )Player
plantnumber

Player
time as _  has a size K = 4. This means that at the start of 

the game these prior parameters ]1,1,1,1[  ensure that all actions start with equal 

probability of success. 

In step 1.a) for each possible action, and for each player, the perceived outcomes 

(DP1, DP2) are updated. The perceived outcomes are trade-possible (1) or not trade-

possible (0). A trade is possible if the player wants to sell (buy) plant and there are 

buyers (sellers) in the market for that plant. We restrict the number of offers and/or 

bids into the market, by any player, to W at each time (W = 2 in this example). 

Assume that in our example the set of actions at time one were { }42
1

0 , aaAP =  and 

{ }41
2

0 ,aaAP =  respectively for player P1 and P2. These action sets imply that player 

P1 wishes to buy plants 42 , aa ; and that player P2 wishes to buy plant 1a  and sell 

plant 4a . Therefore, at this step each player would update his strings of perceived 

outcomes. Hence, for player P1, ( ) ( ) ]1,1,1,1[1
4

1
1

1
1

1
1 == asas PP  and 

( ) ( ) ( ) ]0,1,1,1[1
5

1
1

1
3

1
1

1
2

1
1 === asasas PPP , and for player P2: ( ) ( ) ]1,1,1,1[2

4
2

1
2
1

2
1 == asas PP  

and ( ) ( ) ( ) ]0,1,1,1[2
5

2
1

2
3

2
1

2
2

2
1 === asasas PPP .  

Thus, in step 1.b) we compute the probability that a given action is a success ( )action
tplayerp ,  

at time t. Therefore, in this example, given the observed strings, for both players P1 

and P2 (here represented as PJ) the probabilities of success are 14
,

1
, == a

tPJ
a

tPJ pp  and 

75.05
,

3
,

2
, === a

tPJ
a

tPJ
a

tPJ ppp .  
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Finally, in step 1.c) we update the tables TP1 and TP2. Each element of the tables is 

computed using the forecast operator ( )θ,,
action

tPlayerpΦ . Thus, for a given action, if the 

perceived probability of a trade being made is greater than θ , then this action is 

considered to be a plausible trade. In this example, at the end of iteration one, since all 

the 1.01, >action
Playerp  the updated models will be ]1,1,1,1,1[2

1
1

1 == PP TT . 

The plant trading game proceeds with the Adaptation procedure, Table 4.3, which 

models how players co-evolve their best response strategies on the basis of some 

stochastic search and learning. There are several behavioural elements to this 

including inertia, i
tw , which denotes in the probability5 of player i to stay with 

existing strategies at time t rather than search for new ones.  

Assume in our example that the inertia variables are 5.01
0 =Pw  and 12

0 =Pw , and so 

after drawing two random numbers, suppose they are 0.8 and 0.9 respectively for P1 

and P2. Therefore, it follows from 1.a) that player P1 will have to compute a new set 

of actions, whilst player P2 will keep choosing the same actions 

{ }41
2

0
2

1 ,aaAA PP == . Thus, player P1 selects a new portfolio of actions using a 

dynamic programming algorithm. In our example, as the state space and table TP1 are 

the same at times zero and one the optimal set of actions will not change and therefore 

{ }42
1

1 , aaZ P = . Moreover, as # 1
1
PZ  = W = 2, there is no need to complete the 

adaptation model, and therefore { }42
1

1
1

1 ,aaZA PP == . Otherwise, player P1 would 

choose the best possible action from the set of unlikely trades (in addition to the ones 

in 1
1
PZ ) and use them in the auctions, in order to attract another player to that deal. 

                                                 
5 We allow inertia to decline over time through an updating parameter ( )9.0=σ . 
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TABLE 4.3: Adaptation Algorithm 

1. Each player i decides to adapt  
1.a) Applies the Inertia principle, for a given i

tw  

 ( )
1

, ,i i i
t t t i t

i i i
t t t

Z BR T r w

Z A r w

ρ

−

⎧ = Ω ← ≥⎪
⎨

= ← <⎪⎩
 

 
1.b) Algorithm Best-Response ( ), ,i i

t t t iZ BR T ρ= Ω : 

Compute the optimal policy, i
tZ : 

 

( ) ( )

( )
( ){ } { }

( )

1 1 1

1 0 1 0

, 1 1 , 1 ,

1

,
,

1,..., ,

arg max , ,

. .
,

, ,

\ , ( , )

,
0

i
t

i i i i
t t t i t t t

a

i i

i i i
j t t j t j t t

t t

i
j ti i t

j t t i
t

t h

Z u a V T

s t
T T

T a

a i a j

j a
a

j a

ρ

τ τ δ τ

τ
δ τ

+ + +

+ + +

+

∀ =

⎡ ⎤= Ω + Ω⎣ ⎦

= Ω = Ω

∀ ∈ =

Ω = Ω

←⎧ ≠
= ⎨ ← =⎩

∪

 

2. Complete Adaptation Model 
If # i

tZ <W 

  Let { }, ,: , 0i i i
t t j t t j ta Tτ τΛ = ∈ =  

  ( ), ,i i
t t t iZ BR ρ= Ω Λ   

else { }=i
tZ  

 
3. Define the set of actions to bid into the auction 

i i i
t t tA Z Z= ∪  

 

The game continues with the plant Trading Auction (Table 4.4). There is a separate 

auction for every plant, simultaneously: a trade is possible only if simultaneously 

there are one or more buyers and a seller, and the price bid by the buyers (Ba,i, for 

player i attempting to buy asset a ) is higher than the seller’s offer (Oa,i, for player i 

attempting to sell asset a ). Then, after computing the set of possible trades, the 

auctioneer chooses which transaction actually takes place, as the one with the largest 

difference between bid and offer (there are only positive-valued trades since a seller 
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always has the option to close a plant at no cost). The algorithm proceeds by 

computing the transaction price for the chosen trade as a simple average of the seller’s 

bid price and the buyers’ highest offered price. 

TABLE 4.4: The Trading Auction 

1. For every asset a find Ta  
 ( ){ }, , , ,, : ,a a i a j a i a jT B O i j B O= ≠ >  

 ( ){ }, , ,: ,a a i a i a j aB B B O T= ∈  

2. Find T:  
 For every asset a find a viable trade ( ), ,,a i a jB O+ + : 

  , ,a j a jO O+ =  and , supa i aB B+ =  
 Find the set of all viable trades: 
  ( ), ,,a i a j

a

T B O+ +=∪  

3. Find the asset to be traded ( )* *
, ,,a i a jB O  

 Let g stand for a function from T into R : 
  ( )( ){ }jajaaajaia OBGRTGOBg ,,,, |,, −=×∈=  

 
The asset to be traded is the one with the largest difference between offer and 
bid prices 

  ( )
( )a ,i a , j

* *
a ,i a , j

B ,O

B ,O gargmax=  

4. Compute the transaction price 
 Let ,a zB++  represent the second highest bid for asset a:  

  { }*
, ,sup \a z a a iB B B++ =  

  
* *
, ,

, ,max ,
2

a i a j
a t a z

B O
P B++

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

We now consider the case of a third player a third player P3, who owns no plant, and 

is attempting to buy plants a3 or a4, i.e., { }43
3

1 ,aaAP = . In our example the sets of 

possible trades would be { }==== 5321 aaaa TTTT , i.e, for these plants no trade is 

possible, but for plant a4 we have ( ) ( ){ }2,43,42,41,44 ,,, PaPaPaPaa OBOBT = .  
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Assume that in our example KWB Pa /£1601,4 = , KWB Pa /£1553,4 =  and that 

KWO Pa /£1402,4 = . Then KWB Pa /£1601,4 =  is the winning bid and 

KWB Pa /£1551,4 =++  and the trading price equals the maximum of the simple average 

of the highest bid and the second highest offered price6, i.e., 

KWPa /£155155,
2

140160max,14 =⎟
⎠
⎞

⎜
⎝
⎛ +

= . In this case player P1 buys plant a4 for 

155£/ KW. 

Next, after a successful trade, the algorithm computes a new state of the game. Table 

4.5 describes this procedure, which can be illustrated in our example as follows. First 

we update the state of the industry Ω  for the trade of plant a4:  

( ) ( ) ( ) ( ) ( ){ }0 1 2 3 4 5, 1 , , 2 , , 1 , , 2 , , 1a P a P a P a P a PΩ =  

( ) ( ) ( ) ( ) ( ){ }1 1 2 3 4 5, 1 , , 2 , , 1 , , 1 , , 1a P a P a P a P a PΩ = .  

Then, the inertia variables 5.01
0 =Pw  and 12

0 =Pw  are updated using the inertia 

updating parameter 9.0=σ : 45.09.05.01
1 =×=Pw  and 9.09.012

1 =×=Pw . 

Then, in order to solve the Cournot game (step 3) the algorithm computes the 

marginal costs and capacities of each player in each auction. Each player updates the 

capacities and marginal costs iteratively, taking into account the past performance of 

                                                 
6 This is a standard procedure of the single-call auction, Cason and Friedman (1997). The simple 

average is just one of the possible criteria from which to select the trading price; for as long as the 

trading price falls between the highest and the second highest bids the auction solution will always be 

the same, and any price in this range is an acceptable outcome of the auction, as it will not change the 

trajectory of ownership in the game. 
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each plant. Note that the marginal cost of a given player is the highest one among all 

the plants he submits to a given market: see Ramos at al. (1998) and Borenstein et al. 

(1999). 

TABLE 4.5: Update State of the Game 

1. Update state of the industry tΩ  
 ( ){ } { }1 \ , ( , )t t a i a j+Ω = Ω ∪  

 1
.

,1

z
z t
t

otherwisew
w

z i j
σ

+

←⎧
= ⎨ ← =⎩

 

2. Update cost structure and capacities bid in each auction:  
 L, i :∀ ∀  
  , : 0i LK =  
  a∀ , ( , ), : 0a i LK =  
  2.1: For all available asset a 
   if ( ) i ,La ,i ,LC C≤  or ( ) ( ) 1i ,La ,i ,Lnot a,i,t ,C C +

⎡ ⎤≤⎣ ⎦  

   
( )

( )

, , ,

, , , ,

:

: max ,

i L i L a i

i L i L a i L

K K K

C C C

= +

⎡ ⎤= ⎣ ⎦
 

   ( )( , ), ,:a i L a iK K=  

      if multi-clearing and if ( , ), 0a i LK >  then ( ), : 0a iK =  
3. Solve Cournot game 
4. Compute value of plant 
 i,a :∀  

 ( ) ( )( ) ( )L,t La ,i ,L a ,i ,L
L

OP a,i P C .Q .D⎡ ⎤= −⎣ ⎦∑  

 ( ) ( )
( )a ,i

OP i OP a,i= ∑  

 

In our example assume that the quantities generated at time zero are the ones 

represented in Table 4.6. Therefore, following step 2 in Table 4.5 we can compute the 

marginal costs and capacities submitted by each player for each market.  

We start with player P1. As at iteration zero: in the baseload market he will offer the 

full capacity of plant a1; in the shoulder market he will offer the full capacity of plant 

a1 and a3; in the peak market he will offer the full capacity of plant a1, a3, and a5. 
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Furthermore, this time he also owns plant a4. As he did not owned this plant at 

iteration zero, this time he will also offer the generation of plant a4 in the baseload 

market (which will also attempt to sell in the shoulder and peak markets) as it follows 

from step 2.1. Then player P2 decides to offer the generation of his only plant a2 in all 

the markets. Finally, the algorithm solves the Cournot game and computes the 

operational profit of each plant and player. 

TABLE 4.6: Example: Generation per plant and Market at Time Zero 

 Generation 
Plant Baseload Shoulder Peak 

a1 1000 1000 1000 
a2 500 1000 1000 
a3 0 80 100 
a4 0 50 100 
a5 0 0 5 

 

The simulation then repeats and advances in t. Clearly the main goal of the 

evolutionary simulation is to model how the electricity market structure would 

develop under the two market mechanisms, taking into account the initial conditions 

for the market structure. The game is repeated for a given number of iterations in 

order to capture its main attractors. This is not intended to simulate how the market 

will actually evolve over time, only to test which market structures reveal attractors, 

under the present conditions. 

5. MODELLING THE IMPACT OF MARKET DESIGN ON STRATEGIC 

OWNERSHIP 

This section now describes a large scale application of the above model to analyse the 

impact of market design on the strategic ownership of plant portfolios through 
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simulating the evolution of a stylised version of the England and Wales Market, as it 

was in 2000, under various hypothetical initial conditions for the market structure. 

The specific market structure used is represented in Table 5.1 [Electricity Association 

(1999, 2000 a, b, c)]. 

TABLE 5.1: England and Wales Generating Capacity in 2000 

Capacity of each Company (% of Total, 59 GW) in 2000 
 Total Nuclear Large 

Coal+CCGT 
Small Coal +OCGT + 
OIL + Pump. Storage 

PG 16.5  19.7 24.9 
NP 13.9  16.3 22.5 
BE 12.4 54.0 4.9  

Edison 10.6  10.1 30.7 
TXU 9.7  11.6 14.7 
AES 7.8  10.1 6.8 
EDF 4.7 17.3 2.0  

Magnox 3.9 19.9   
Others 20.5 8.8 25.3 0.4 

     
Total GW 59.1 11.4 40.7 7.0 

 

The analysis proceeds by comparing the results under single and multi clearing 

mechanisms. These experiments simulated trading at a genset level (using the 137 

gensets which defined the E & W system in 2000), but distributed hypothetically 

among three different players. In these experiments the demand functions were 

parameterised by defining the same elasticity, prices, and traded quantities in each one 

of the two clearing mechanisms, in the three simulated markets (baseload, shoulder 

and peak). The elasticities used were 0.5, 0.35 and 0.25 respectively for the baseload, 

shoulder and peak market7. Whilst, in the multi-clearing mechanism the durations for 

                                                 
7 The choice of these elasticities follows the elasticities used previously in the literature: Wei and 

Smeers (1999) use 0.4 and 0.53 for residential and industrial clients respectively, in simulating the 
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the baseload, shoulder and peak markets were specified as 8760, 5500 and 500 hours; 

these durations in the single-clearing mechanism were equivalently defined as 3260, 

5000 and 500 hours. Further, all the experiments presented in this section simulate 

2000 iterations in each different scenario.  

Moreover, we used a plausibility cut-off of 1.0=θ , a discount factor of  

9.021 === PP ρρρ  and an inertia updating of 9.0=σ . The specific values of these 

parameters are not crucial. However, the plausibility cut-off should be low (even 

equal to zero, if speed is not a concern), the inertia updating should be close to one 

(the closer to one the higher the required number of iterations will be) and the 

discount factor reflects both the value of money in time and the accuracy of the 

dynamic programming algorithm used to estimate the optimal policy (the closer to 

one, the higher the accuracy, but the algorithm can become very slow).  

5.1. Analyzing the Specialisation Scenario 

In the experiments presented in Figures 5.1 and 5.2 the baseload, shoulder and peak 

plants were separated out among the three different players (they are called, 

respectively, Baseload, Shoulder and Peak). Figure 5.1 shows that the single clearing 

mechanism leads to higher concentrations: whilst in the single-clearing mechanism, a 

single player becomes a monopolist, in the multi-clearing mechanism several players 

do survive. The main reason for this behaviour relates to the impact of capacity 

withholding on market prices and generation, under the two different market clearing 

mechanisms.  

                                                                                                                                            
Belgium, France, Germany and Italy market; whilst Ramos et al. (1998) use an elasticity of 0.6 in 

simulating the Spanish market. 
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(b) 

FIGURE 5.1: Capacity by player. (a) Single-clearing mechanism. (b) Multi-clearing 

mechanism. 

Under single-clearing, the Baseload player (which receives the same price as the 

Shoulder and Peak players for the electricity sold at shoulder and peak times) has a 

very strong incentive to withhold capacity. Consequently, by reducing the generation 

from shoulder and peak plants this player is able to increase the value of his baseload 

portfolio. Therefore, the winning strategy of this player is to buy the Shoulder and 

Peak players out of the market. This scenario most clearly shows that the evolutionary 
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attractors of the industry, under single-clearing, tend to lead towards the low 

generation and high prices which characterise monopolistic behaviour.  

Under multi-clearing, on the other hand, every player receives the same price for 

selling in a given market, however, as baseload plants cannot sell their generation in 

the shoulder or peak markets, and as shoulder plants cannot sell their generation in the 

peak markets, then capacity withholding is less profitable. In this second case, the 

evolutionary attractor drives the market structure towards specialization in different 

markets (and technologies). This specialization, however, also leads to high prices and 

lower generation as the players can benefit from selling in a segmented market. 

Furthermore, looking at Figure 5.2, again the concentration indices in the single-

clearing mechanism are higher than in the multi-clearing mechanism. In the multi-

clearing case, the concentration index of the baseload technology is the highest. As 

the initial values for these concentration indices were, respectively 5200, 3360 and 

5000 (in Figure 5.2.a), in the multi-clearing mechanism the baseload player buys 

baseload plant, and the shoulder player buys shoulder plant: this is a direct 

consequence of the effect of capacity withholding on their respective portfolios.  

Moreover, it is very important to note that even with only three players the multi-

clearing game does not converge to a monopoly. This observation suggests that the 

structure of an industry that had been privatised with specialized players is only 

sustainable, in the long run, if accompanied by the multi-clearing pricing mechanism.  

Additionally, the analysis of Figure 5.2.b) tells us, straight away, that prices in the 

single-clearing mechanism tend to be higher than under the multi-clearing 

mechanism. However, and most surprisingly, the prices in the baseload are the same 
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in both mechanisms; and the prices in the shoulder market are very similar in both 

mechanisms as well: the reason being the market specialization by each player.  
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(b) 

FIGURE 5.2: Concentration and Prices. (a) HHI Concentration Indices: Multi 

(Single) represents the concentration index in the multi-clearing (single-clearing) 

mechanism. (b) Electricity Prices (in the Baseload, Shoulder and Peak markets). 
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the concentration indices of the two markets are very different (10000 vs. 5000) only 

in the small part of the market that reflects the Peaks, were the electricity prices 

significantly different (approx 230 vs. 150). In the baseload market, even though the 

concentration ratios are different (10000 vs. 7800) the prices are the same. In the 

shoulder market, the difference in the HHI (10000 vs. 4100 approx.) does not 

correspond to the same level of difference between prices.  

These results show that the HHI is a measure of concentration that does not indicate 

well the ability of players to manage market prices. Furthermore, this set of 

experiments clearly shows that the clearing-mechanism has implications for the 

evolutionary properties of the market structure. Under single-clearing, technological 

specialization is not stable and the market converges towards concentration, whereas, 

under multi-clearing, technological specialization is viable, and more players can 

survive in their own market segments. 

5.2. Analyzing the Diversification Scenario 

As a second variation on the interaction of market design and the strategic 

management of plant portfolios, in the experiments represented in Figures 5.3 and 5.4 

the plants were assigned (one by one) to each one of three players (called P1, P2 and 

P3) by increasing order of marginal cost. Thus, in these experiments the initial 

portfolios are similar for all the three players.  

Figure 5.3 represents the results of this set of experiments, showing that in the single-

clearing mechanism the structure converged to a more concentrated configuration 

than in the multi-clearing mechanism.  
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      (a) 

 

(b) 

FIGURE 5.3: Capacity by player. Experiment with three homogeneous players (P1, 

P2, P3). (a) Single-clearing mechanism. (b) Multi-clearing mechanism. 

Moreover, the analysis of Figure 5.4 shows that the industry as a whole is a little more 

concentrated in the single clearing market: see Figure 5.4a. As a general observation, 

the prices in both types of clearing mechanism are very similar, which implies that 

under diversification the type of market clearing-mechanism is not a crucial 
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market structure again did not converge on the monopolistic solution and, even 

though the market concentration increased, the final equilibrium is a stable 

diversification.     
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FIGURE 5.4: Concentration and Prices. Experiment with 3 homogeneous players 

(P1, P2, P3). (a) HHI Concentration Indices. (b) Electricity Prices. For the Baseload, 

Shoulder and Peak markets, presented as a function of Clearing-Mechanism. 
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Furthermore, the comparisons of Figure 5.1 (5.3) and Figure 5.2 (5.4) suggest that 

independently of the type of the clearing mechanism, a restructuring in which all the 

players are diversified tend to lead to less concentration. Most importantly, these 

results seem to indicate that the management of a portfolio of generation plants is a 

function not only of the market clearing mechanism, but also of the initial state of the 

industry’s structure. Consequently, if the industry is at a state of great diversification 

it will tend to remain so, independently of the market-clearing mechanism.  

6. CONCLUSIONS 

The issue of market structure evolution in liberalised electricity markets and its 

relationship with the management of portfolios of generation plants is still an open 

research question. Therefore, a better understanding of this evolutionary process will 

have important implications on both regulatory policy and strategic behaviour. The 

research presented in this paper has provided initial insights on this elusive issue 

through a plant trading game, which enables market structure evolution to occur 

endogenously. 

Furthermore, through the simulations of this game, a number of preliminary 

interesting insights into the interaction between market design and strategic portfolio 

management have become evident. Restructuring with similarly diversified, rather 

than technologically specialised, players leads to more competition, less concentration 

and lower prices. The assumption that this would lead to relatively higher market 

power has not been supported. Liberalisation through bilateral markets can lead to 

market power in the market segments. However, it can also ensure the survival of 

more companies. In the bilateral markets, the existence of segment market power, due 

to the technical features of generation, can lead to prices that are very high, even in 
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the presence of multiple companies. In general, the value of power plants does depend 

upon the ownership portfolios in which they belong, and more surprisingly, upon the 

market rules within which competition takes place. 

Moreover, this study has some interesting implications for the strategic management 

of portfolios of generation plants. Market specialization leads to higher profits than 

diversification. Therefore, a player should invest in the same type of technology (i.e., 

that sells in the same market segment) as the one it currently owns. Moreover, new 

entrants should specialize in a given technology, instead of diversifying their 

portfolios by acquiring (or investing) in different types of technology. When trading 

plants, the incumbents should sell the technologies in which they are not specialized. 

Moreover, preferably they should sell to companies that are specialists in that 

technology. The reason for this is that, as we have seen before, the more concentrated 

the industry segments the higher the prices. Therefore, by selling a plant in which a 

player does not dominate a given technology he is in fact charging a small part of the 

premium that the buyer will have on the traded plant. Independent power producers 

will tend to flourish in industries where the incumbent players are not specialized and 

where there is bilateral trading. All of these observations relate simply to competition 

and market structure. Clearly, many other factors influence such conclusions in 

practice, eg economies of scale, operational synergies, etc, but in the context of these, 

our results do provide substantially new insights into some basic principles of market 

structure and design. 

Moreover, despite the computational intensity of this model, this study represents 

quite a stylised approach to the modelling of evolutionary electricity markets. There 

are some possible extensions to this model that may bring very interesting and 
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complementary new insights, such as the inclusion of transmission networks and 

regional interconnections, new entry and investment in new plants, as well as the 

impact of risk aversion on the firms’ strategies. 

APPENDIX – Notation 

:= operator representing a process of iterative updating 

a: Any given plant that may be auctioned 

( )a,i : Plant a is owned by player i 

( )not a,i,t : Plant a is not owned by player i, at time t 

:i
ta  action of player i at time t 

i, j: players offering (attempting to sell) or bidding (attempting to buy) assets in an 

auction 

h: number of steps of look-ahead 

θ : plausibility cut-off parameter, 0 1θ≤ ≤  

iρ : discount factor for agent i, 0 1iρ≤ ≤  

r: random generated number from a uniform distribution, such that [ ]0,1r∈  

( )i
tt a,Ωμ : utility (profit or reward) of player i at time t, for a given action i

ta  in 

state tΩ  

i
tw : inertia variable such that [ ]0,1i

tw ∈ , at time t. 

] [0,1σ ∈  is the parameter for inertia updating 

i
tA : set of actions actually bid by player i, in state t, with size W; such that i i

tA ⊆ Σ  

Ba: set of all acceptable bids for asset a 

Ba,i: price bid by player i attempting to buy asset a 
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C(a,i),L: marginal cost of plant a, owned by player i, for market L 

Ci,L: marginal cost of player i in market L 

Di: perceived outcomes of the player’s actions in the path of his automaton, 

 { }1,0≡iD  

LD : duration of market L 

K: Length of the strings in S, a set containing all the prefixes of Di  

Ki,L: capacity of player i assigned to market L 

K(a,i): available capacity of asset a, owned by player i 

K(a,i),L: capacity of asset a offered in market L in the previous iteration 

Oa,i: price offered by player i attempting to sell asset a 

( )OP a,i , ( )OP i : Operational profit of plant a and player i, respectively 

Pa,t: transaction price of asset a at time t 

PL,t: electricity price in market L, at time t 

( )a ,i ,LQ : total generation of plant i sold in market L 

iΣ : set of actions ai available to player i 

S ≡  all prefixes of Di  with a length less of equal than K> W  

i
tT : plausibility Table, a one-dimensional table of dimension M (number of plants) 

Ta: set of all possible trades for asset a 

T: set of the all winning trades (at the most one per asset) 

tΩ : state of the industry at time t 

i
tV : value of i’s portfolio at time t 

W: Size of the set of actions i
tA  actually bid by any player i. 

 



 34

REFERENCES 

ABBINK, K., J. BRANDTS, AND T. MCDANIEL (2003): “Asymmetric Demand 

Information in Uniform and Discriminatory Call Auctions: An experimental 

Analysis Motivated by Electricity Markets,” Journal of Regulatory Economics, 23 

(2), 125 – 144.  

ALLAZ, B., AND J.-L. VILA (1993): “Cournot Competition, futures markets and 

efficiency,” Journal of Economic Theory, 59 (1), 1-16. 

ANDERSON, E. J., AND A. B. PHILPOTT (2002): “Using Supply Functions for 

Offering Generation into an Electricity Market,” Operations Research, 50 (3), 477-

489. 

BODDE, D. L. (1998): “Strategic thinking about nuclear energy: implications of the 

emerging market structure in electricity generation,” Energy Policy, 26 (12), 957-

962. 

BORENSTEIN, S., J. BUSHNELL, E. KAHN, AND S. STOFT (1995): “Market 

power in California electricity markets,” Utilities Policy, 5 (3-4), 219-236. 

BORENSTEIN, S., AND J. BUSHNELL (1999): “An Empirical Analysis of the 

Potential for Market Power in California’s Electricity Industry,” The Journal of 

Industrial Economics, XLVII (3), 285-323. 

BOWER, J., AND D. W. BUNN (2000): “A Model-Based Comparison of Pool and 

Bilateral Market Mechanisms for Electricity Trading,” The Energy Journal, 21 (3), 

1-29. 

BUNN, D. W., AND F. S. OLIVEIRA (2001): “Agent-based Simulation: An 

Application to the New Electricity Trading Arrangements of England and Wales.” 

IEEE Transactions on Evolutionary Computation, 5 (5): 493-503. 



 35

BUNN, D. W., AND F. S. OLIVEIRA (2003): “Evaluating Individual Market Power 

in Electricity Markets Via Agent-Based Simulation,” Annals of Operations 

Research, 121, 57-77. 

CASON, T. N., AND D. FRIEDMAN. 1997. Price formation in Single Call Markets. 

Econometrica 65 (2), 311-345. 

COX, A. J. (1999): “Mergers, Acquisitions, Divestures, and Applications for Market-

Based Rates in a Deregulated Electric Utility Industry,” The Electricity Journal, 12 

(4), 27-36. 

DAY, C. J., AND D. W. BUNN (2001): “Divestiture of generation assets in the 

electricity pool of England and Wales: A computational approach to analysing 

market power,” Journal of Regulatory Economics, 19 (2), 123-141. 

ELECTRICITY ASSOCIATION (1999): “The UK Electricity System,” 

www.electricity.org.uk. 

ELECTRICITY ASSOCIATION (2000a): “Electricity Companies in the United 

Kingdom – a brief chronology,” www.electricity.org.uk. 

ELECTRICITY ASSOCIATION (2000b): “List of Power Stations.” 

www.electricity.org.uk. 

ELECTRICITY ASSOCIATION (2000c): “Who owns whom in the UK electricity 

industry.” www.electricity.org.uk. 

ELMAGHRABY, W., AND S. S. OREN (1999): “The Efficiency of Multi-Unit 

Electricity Auctions,” The Energy Journal, 20 (4), 89-116.  

EXELBY, M. J., AND N. J. D. LUCAS (1993): “Competition in the UK Market for 

Electricity Generating Capacity, A Game Theory Analysis,” Energy Policy, April: 

348–354. 



 36

FLAVIN, C., AND N. LENSSEN (1994): Reshaping the electricity power industry. 

Energy Policy, 22 (12): 1029–1044. 

GARCIA-ALCALDE, A., M. VENTOSA, M. RIVIER, A. RAMOS, AND G. 

RELANO (2002, June): “Fitting Electricity Market Models. A Conjectural 

Variations Approach,” 14th PSCC, Sevilha.  

GREEN, R. G., AND D. NEWBERY (1992): “Competition in the British Electricity 

Spot Market,” Journal of Political Economy, 100(5), 929-953.  

HENNEY, A. (1994): “Energy markets and energy policies after the White Paper,” 

Energy Policy, January: 5-116. 

HERNAEZ, E. C., J. B. GIL, J. I. LEÓN, A. M. S. ROQUE, M. V. RODRÍGUEZ, J. 

G. GONZÁLEZ, A. M. GONZÁLEZ, AND A. M. CALMARZA (2003): 

"Competitors' Response Representation for Market Simulation in the Spanish 

Daily Market," in Bunn (ed.), Modelling Prices in Competitive Electricity Markets, 

Wiley. 

HOBBS, B. F. (2001): “Linear Complementarity Models of Nash-Cournot 

Competition in Bilateral and POOLCO Power Markets,” IEEE Transactions on 

Power Systems, 16 (2), 194-202. 

ISHII, J., AND J. YAN (2002, September): “The “Make or Buy” Decision in U.S. 

Electricity Generation Investments,” CSEM WP 107, UCEI, www.ucei.org. 

KASERMAN, D. L., AND  J. W. MAYO (1991): “The measurement of vertical 

economies and the efficient structure of the electricity utility industry,” The 

Journal of Industrial Economics: 483–502. 

KENNEDY, D. (1997): “Merger in the English electricity industry,” Energy Policy, 

25 (4): 393–399. 



 37

LARSEN, E. R., AND D. W. BUNN (1999): “Deregulation in electricity: 

understanding strategic and regulatory risk,” Journal of the Operational 

Research Society, 50: 337-344. 

NEWBERY, D. M. (1998): “Freer electricity markets in the UK: a progress report,” 

Energy Policy, 26 (10): 743-749. 

PINEAU, P.-O., AND P. MURTO (2003): “An Oligopolistic Investment Model of the 

Finnish Electricity Market,” Annals of Operations Research: 121, 123-148. 

RAMOS, A., M. VENTOSA, AND M. RIVIER (1998): “Modelling competition in 

electric energy markets by equilibrium constraints,” Utilities Policy, 7, 233-242. 

RASSENTI, S. J., V. L SMITH, AND B. J. WILSON (2003): “Discriminatory Price 

Auctions in Electricity Markets: Low Volatility and the Expense of High Price 

Levels,” Journal of Regulatory Economics, 23 (2), 109 – 123. 

SKANTZE, P., P. VISUDHIPHAN, AND M. ILIC (2000, November):  “Valuation of 

Generation Assets with Unit Commitment Constraints under Uncertain Fuel 

Prices,” Working Paper MIT_EL 00-006. 

STIRLING, A. (1994): “Diversity and ignorance in the electricity supply investment,” 

Energy Policy, March: 195–201. 

VISUDHIPHAN, P., P. SKANTZE, M. ILIC (2001, July): “Dynamic Investment in 

Electricity Markets and Its Impact on System Reliability,” Working paper MIT_EL 

01-012WP. 

WEI, J.-Y., AND Y. SMEERS (1999): “Spatial Oligopolistic Electricity Models With 

Cournot Generators and Regulated Transmission Prices,” Operations Research,. 47 

(1), 102-112. 


	coversheet_template
	BUNN 2007 Agent-based analysis of technological

