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Abstract 

 

Proofs from complexity theory as well as computational experiments indicate that most lot 

sizing problems are hard to solve. Because these problems are so difficult, various solution 

techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu 

search, genetic algorithms and simulated annealing, have become popular and efficient tools 

for solving hard combinatorial optimization problems. We review the various meta-heuristics 

that have been specifically developed to solve lot sizing problems, discussing their main 

components such as representation, evaluation, neighborhood definition and genetic operators. 

Further, we briefly review other solution approaches, such as dynamic programming, cutting 

planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This 

allows us to compare these techniques. Understanding their respective advantages and 

disadvantages gives insight into how we can integrate elements from several solution 

approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for 

computational experiments and illustrate these with several examples. 
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1. Introduction 

 

There is a wide variety of models for production planning and inventory management. Lot 

sizing models determine the optimal timing and level of production. At one end of the 

spectrum there are the continuous time scale, constant demand and infinite time horizon lot 

sizing problems. In this category we find the famous Economic Order Quantity model (EOQ) 

and the Economic Lot Scheduling Problem (ELSP). At the other end of this spectrum we have 

the discrete time scale, dynamic demand and finite time horizon lot sizing models. This type 

of planning is generally referred to as dynamic lot sizing and is the subject of this review.  

 

A number of studies have provided a good introduction into the lot sizing literature. De Bodt 

et al. (1984) and Bahl et al. (1987) present some earlier reviews. Kuik et al. (1994) discuss the 

impact of lot sizing and production planning at different decision levels in the organization 

and respond to some criticisms on lot sizing. Wolsey (1995) reviews the history of the single 

item lot sizing problem. The integration of lot sizing and scheduling, both for discrete and 

continuous time models, is discussed in Drexl and Kimms (1997). Belvaux and Wolsey 

(2001) explain how to model many extensions of the basic lot sizing problem to obtain good 

formulations. Although these reviews have made important contributions to the literature, 

they do not provide an up-to-date overview of the existing algorithms in the much evolving 

field of lot sizing. 

 

This paper has several contributions. First, it fills a gap by providing a comprehensive 

overview of the use of meta-heuristics for solving lot sizing problems (Section 3.1). To the 

best of our knowledge, no general analysis of meta-heuristics has been done specifically for 

lot sizing problem. Second, this paper aims to provide a general review on lot sizing 

algorithms (Section 3.2-3.6), whereas most tutorials or literature reviews focus mainly on one 

single approach or model. By discussing the many different solution techniques, we obtain 

insights in their relative strengths and weaknesses (Section 4) and the power of hybrid 

algorithms. This discussion is also of interest for researchers who apply these techniques to 

other problems. Third, we discuss guidelines for computational experiments, with a focus on 

meta-heuristics (Section 5). Many meta-heuristics are specifically developed for special cases 

of standard lot sizing problems. Therefore, we first briefly introduce the most important 

problems (Section 2). 
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2. Lot Sizing Models 

 

2.1. The single item uncapacitated lot sizing problem 

 

The dynamic lot sizing problem in its simplest form tries to find a production plan that 

satisfies deterministic demand and minimizes the total costs of production, set up and 

inventory for one item over a multi-period horizon. We can mathematically formulate this 

problem as follows: 
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In this model xt represents the production variable for period t, yt is the set up variable and st is 

the inventory variable. There are costs associated with these decision variables: vct, sct and hct 

are respectively the variable production cost, set up cost and holding cost in period t. T is the 

set of all periods in the planning horizon and m denotes the last period. Demand for each 

period, dt, is given. The objective function (1) minimizes the total cost of production, set up 

and inventory. Constraint (2) is the demand balance equation: the inventory from the previous 

period and the production from the current period can be used to meet demand in this period 

or to build up inventory to satisfy later demand. In each period with non-zero production a set 

up is incurred. This is modeled in the fixed charge constraint (3). Since no ending inventory is 

allowed, production is limited by the remaining cumulative demand. This problem is usually 

referred to as the single item uncapacitated lot sizing problem (ULS) and was first discussed 

in the seminal paper by Wagner and Whitin (1958). Zangwill (1969) demonstrated that this 

problem is actually a fixed charge network problem.  

 

2.2.  The Capacitated Lot Sizing Problem (CLSP) 

 

The capacitated multi-item lot sizing problem (CLSP) is a typical example of a large bucket 

model, where many different items can be produced on the same machine in one time period. 

There are n different items that can be produced and P is the set of all these items. They all 

make use of the same machine with a limited production capacity capt. Producing one unit of 
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product i consumes vti units of capacity. Product specific variables and parameters now have 

an extra index i to identify the item. The formulation is as follows: 
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Each product consumes a specific variable production time, ivt , and all the products are made 

on the same machine. In the set up constraint (7), production is now limited by both the 

capacity and remaining demand.. The total production in each period is limited by the 

capacity, tcap  (8). The problem can also be extended with set up times (Trigeiro et al. 1989). 

 

2.3.  Small bucket models 

 

In small bucket models, the assumption is made that during each time period, at most one type 

of item can be produced on the same machine. This is the case for the Continuous Set Up Lot 

Sizing Problem (CSLP):  
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The new variable zit is the start up variable and there is an associated start up cost of git. A 

start up occurs when the machine is set up for an item for which it was not set up in the 

previous period. The objective function (10) now minimizes the total cost of start ups, set ups, 

variable production and inventory. We still have the regular demand constraints (11). Further, 

the single mode constraint (12) imposes that the machine can only be set up for at most one 

item in each period. For each item, production can be up to capacity if there is a set up (13). 
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The start up variables are modeled in constraint (14). There will only be a start up if the 

machine is set up for an item for which it was not set up in the previous period. Finally, the 

set up and start up variables are binary (15). Karmarkar and Schrage (1985) consider this 

problem without set up costs and called it the product cycling problem. Karmarkar et al. 

(1987) study the single item version of the CSLP, both for the uncapacitated and capacitated 

case. This problem is also referred to as lot sizing with start up costs (Wolsey 1989, 

Sandbothe 1991).  

The Proportional Lot Sizing and Scheduling Problem (PLSP) relaxes the restriction of 

allowing production for only one product in each time period. In the PLSP at most two 

different items can be produced in each time period (Drexl and Haase 1995, 1996). There is 

still at most one set up in each period, but the set up from the previous period can be carried 

over to the next period.  

Fleischmann (1990) proposes a generic model for the Discrete Lot Sizing and Scheduling 

Problem (DLSP). The difference with the CSLP is that a discrete production policy is 

assumed, implying that an item must be produced at full capacity. The generic model has a 

similar structure as the CSLP (10)-(15), except that the capacity and set up constraint (13) 

becomes an equality: 

 ittiti ycapxvt =  ∀  i ∈  P, ∀  t ∈  T (16) 

Note that the production variable can be substituted out through this constraint. Jans and 

Degraeve (2004a) extended this model with industrial constraints such as general start up 

times and multiple alternative machines.  

 

2.4.  Multi-Level Lot Sizing 

 

In a multi-level lot sizing problem, the production planning is not only done at the final level 

for the end product, but also for the components and subassemblies that are needed to make 

the end product. Production at one level leads to demand for components at a lower level 

(dependent demand). At the highest level, production is triggered by market demand 

(independent demand). Different kinds of product structures can be considered. Zangwill 

(1966b) analyses an uncapacitated multi-facility problem where the product flows through 

several facilities at different levels for a few special models such as facilities in series or 

parallel. Lambrecht and Vander Eecken (1978a) extend the model with a capacity constraint at 

the final level. Afentakis et al. (1984) reformulate the multi-stage problem with an assembly 
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structure in terms of echelon stock. Afentakis and Gavish (1986) solve problems with a more 

general product structure. Multi-level lot sizing can be further complicated by capacity 

constraints (McClain et al. 1989, Harrison and Lewis 1996, Tempelmeier and Helber 1994) 

and set up times (Tempelmeier and Derstroff 1996, Katok et al. 1998, Stadtler 2003). 

Simpson and Erenguc (1996) give a good review on the production planning research for 

multi-stage problems.  

 

 

3. Solution Approaches 

 

Most lot sizing problems are hard to solve. Some complexity results can be found in Florian 

et al. (1980). They prove that the single item capacitated problem is NP hard for quite general 

objective functions. Problems with concave cost functions and no capacity limits (Wagner 

and Whitin 1958) or constant capacities (Florian and Klein 1971) are solvable in polynomial 

time. Also lot sizing with convex cost functions and no set up cost is polynomially solvable. 

Additional complexity results are given by Bitran and Yanasse (1982), Salomon et al. (1991), 

Brüggemann and Jahnke (1997) Vanderbeck (1998) and Webster (1999). Because these 

problems are so difficult, various solution techniques have been used to solve them. We 

provide a review of the various meta-heuristics that have been developed to solve lot sizing 

problems. Further, we briefly discuss other solution approaches. This allows us to discuss 

how these techniques relate to each other and list their respective advantages and 

disadvantages in Section 4.  

 

3.1.  Meta-Heuristics for lot sizing problems 

 

In the past decade, meta-heuristics such as Tabu Search (TS), Simulated Annealing (SA) and 

Genetic Algorithms (GA) have become more and more popular for solving complex 

combinatorial problems. Readers who are not familiar with the basic concepts of these 

algorithms can find excellent introductions in Michalewicz and Fogel (2002), Glover and 

Laguna (1997) and Reeves (1997). General guidelines for the design of meta-heuristics are 

discussed in Hertz and Widmer (2003). One of the main reasons for the success of these meta-

heuristics is their flexibility and ability to handle large and complex problems. As a 

consequence, these methods are usually developed for extensions of the standard lot sizing 
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problems for which no good special purpose algorithm exists and which are too difficult to 

solve with commercial integer optimization software:  

1) Single level CLSP (Hindi 1996, Kohlmorgen et al. 1999), with set up times 

(Hung et al. 1999, Özdamar and Bozyel 2000), with set up times and overtime 

(Özdamar, Birbil and Portmann 2002), with set up times and multiple resources 

(Hung et al. 2003), with set up carry over (Gopalakrishnan et al. 2001), with 

sequence dependencies (Fleischmann and Meyr 1997, Laguna 1999, Meyr 2000), 

on parallel machines (Özdamar and Birbil 1998), ; 

2) Multi level lot sizing without capacities (Kuik and Salomon 1990, Dellaert and 

Jeunet 2000, Dellaert et al. 2000, Tang 2004); 

3) Capacitated multi level lot sizing (Kuik et al. 1993, Barbarosoğlu and Özdamar 

2000), with set up times (Salomon et al. 1993, Hung and Chien 2000, Özdamar 

and Barbarosoğlu 2000, Xie and Dong 2002), and loading decisions (Özdamar 

and Barbarosoğlu 1999); 

4) Multi level PLSP (Kimms 1996, 1999); 

5) CSLP (Hindi 1995). 

6) DLSP with batch availability (Brüggemann and Jahnke 1994, 2000) 

Other meta-heuristics such as Neural networks (NN) (Aarts et al. 2000, Gaafar and Choueiki 

2000) and Treshold Accepting (TA) (Meyr 2000) have only been used on a limited scale for 

solving lot sizing problems. 

 

There is a lot of freedom in the design of these meta-heuristics. Therefore we do not discuss 

the details of each specific implementation but we refer the interested reader to the specific 

papers. We restrict ourselves mainly to the discussion of the general components of these 

meta-heuristics and how they are implemented for dynamic lot sizing. In the design of a SA 

and TS algorithm, the major questions that need to be answered are (Michalewicz and Fogel 

2002): 1) how do we represent a solution; 2) how do we evaluate a solution; and 3) how do 

we define a neigbourhood. Further, we need an initial solution and there are also many control 

parameters that need to be set such as the initial temperature, cooling ratio and a stopping 

criterion for SA and the memory structure and length, an aspiration criterion and a stopping 

rule for TS. For a GA, the major decisions concern: 1) the representation; 2) evaluation; 3) the 

construction of genetic operators to generate offspring; and 4) the choice of a selection 

mechanism to determine the next population. Further implementation issues are for example 

the initial solution, generation size and repair operators.  
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In the representation of a solution, whether it is for TS, SA or GA, we have two basic 

options for a direct representation as we are dealing with Mixed Integer Programming 

problems containing both integer variables for the set ups and possibly the sequencing 

decisions and continuous variables for the production quantities. In the first option, we 

explicitly include both the integer variables and the production quantities in the representation. 

(Özdamar and Birbil 1998, Özdamar and Barbarosoğlu 1999, Barbarosoğlu and Özdamar 

2000, Özdamar and Barbarosoğlu 2000, Özdamar and Bozyel 2000, Gopalakrishnan et al. 

2001, Özdamar, Birbil and Portmann 2002). The second option is to include only the integer 

variables and discard the production quantities. Each setting of the integer variables 

corresponds with an optimal value for the production variables. This solution can be found by 

solving a Linear Programming model, which is the original MIP problem with the integer 

variables fixed (Kuik and Salomon 1990, Hindi 1995, Hindi 1996, Hung et al. 1999, Hung 

and Chien 2000, Meyr 2000, Hung et al. 2003). As this calculation is repeated many times, it 

is of paramount importance that the LP can be solved efficiently. If this is not the case, the 

production quantities can be chosen heuristically (Kuik et al. 1993, Salomon et al. 1993, 

Fleischmann and Meyr 1997, Xie and Dong 2000). Another solution is to reoptimize the latest 

LP as a move usually only induces a small change (Hindi 1995, Hindi 1996, Meyr 2000, 

Hung et al. 2003). Using a dual method for calculating optimal production values for a given 

set up schedule has the advantage that expensive solutions can be detected early and the 

problem does not have to be solved to optimality (Meyr 2000). In case of the uncapacitated 

multi-level problem (Dellaert and Jeunet 2000, Dellaert et al. 2000, Tang 2004), the set up 

decisions automatically determine the optimal production quantities through the zero-switch 

property. Compared to the first option, this representation with only integer variables is less 

complex, but we have to solve additional optimization problems to obtain a complete solution.  

 

There is also the possibility of an indirect representation of the solution. Kimms (1999) 

present a genetic algorithm for the multi-level multi-machine PLSP. The representation of a 

solution is quite different from the general bitstrings in the previously discussed algorithms. 

The chromosome is a two-dimensional matrix and each entry represents a rule for selecting 

the set up state for a machine at the end of the period. Choosing the item with maximum 

holding costs, minimum set up cost, maximum depth, maximum number of predecessors are 

examples of such selection rules. To compute the fitness value of chromosome, a construction 

scheme is called which uses the rules that define the chromosome to build a solution. Kimms 



 9

(1996) represents the solution of the same problem for a single machine by a graph structure 

on which a tabu search is performed and the production plan is generated by a specific 

construction scheme. Kohlmorgen et al. (1999) experiment with a parallel genetic algorithm 

for the CLSP. A solution is represented by a string of real values, which control a heuristic 

method for generating a production plan. For the CLSP with set up times, Özdamar and 

Bozyel (2000) apply genetic operators to priority vectors which are used to construct a 

feasible solution. 

 

There are several options available for evaluating a solution. The most obvious choice for the 

evaluation function is the objective function. However, in a GA it is possible to obtain an 

infeasible solution after applying the genetic operators and for TS and SA a move can also 

lead to an infeasible neighbor. A main issue is how to treat such infeasible solutions. One 

option is to discard all infeasible solutions or attach an infinite cost to them (Kimms 1999, 

Dellaert et al. 2000). A second option is to impose some penalty cost proportional to the 

infeasibility. An example is to impose a backlog cost for demand which cannot be met in time 

(Barbarosoğlu and Özdamar 2000, Özdamar and Barbarosoğlu 2000, Xie and Dong 2002), a 

penalty for capacity violation (Özdamar and Birbil 1998, Özdamar and Barbarosoğlu 1999, 

Barbarosoğlu and Özdamar 2000, Özdamar and Barbarosoğlu 2000, Gopalakrishnan et al. 

2001) or a high cost for initial inventory (Meyr 2000). A third option is to devise some repair 

operators which are invoked when a solution is infeasible (Özdamar and Birbil 1998, 

Özdamar and Barbarosoğlu 1999, Dellaert et al. 2000, Xie and Dong 2002). Finally, a two-

phase algorithm can be applied (Brüggemann and Jahnke 2000) where first an initial feasible 

solution is constructed and next the optimization within the feasible region is started. For GA, 

some sort of scaling is usually done where the fitness of a chromosome is calculated relative 

to the best solution in the population (Hung et al. 1999, Hung and Chien 2000, Dellaert and 

Jeunet 2000, Dellaert et al. 2000, Özdamar and Bozyel 2000, Xie and Dong 2002). Other 

options such as ranking or tournament selection (Reeves 1997) are not used for the lot sizing 

problem.  

 

The definition of the neighborhood for SA and TS depends on the specific problem at hand 

and the representation of the solution. In a representation with both integer and continuous 

variables, moves can be defined on both parts (Gopalakrishnan et al. 2001). Neighbor 

solutions can also be generated by partially or completely shifting the lot of one item 

(Özdamar and Birbil 1998, Özdamar and Barbarosoğlu 1999, Özdamar and Barbarosoğlu 
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2000, Barbarosoğlu and Özdamar 2000, Özdamar, Birbil and Portmann 2002). For the 

representation with only the integer variables, the simplest mechanism only alters the set up 

variable for one product-period combination. This is the most widely used neighborhood 

definition (Kuik and Salomon 1990, Kuik et al. 1993, Salomon et al. 1993, Hindi 1995, Hindi 

1996, Hung et al. 1999, Hung and Chien 2000, Hung et al. 2003). More sophisticated 

transition mechanisms have also been proposed (Kuik and Salomon 1990, Meyr 2000).  

 

In a GA, we use genetic operators to explore the solution space. The mutation operator 

changes a single solution. The most popular mutation operator is the single bit flip (Xie and 

Dong 2002, Dellaert and Jeunet 2000, Dellaert et al. 2000), where the set up is changed for a 

randomly chosen item and period. In the case lot sizes are incorporated into the solution, the 

mutation operator can change the lot size by a random amount (Özdamar and Birbil 1998, 

Özdamar and Barbarosoğlu 1999, Özdamar, Birbil and Portmann 2002). A cross-over 

combines elements from several solutions into a new one. In the one point cross-over 

(Dellaert and Jeunet 2000, Xie and Dong 2002) the bit strings of the two parents are cut in 

two at some random point and are recombined into one new solution. More elaborate cross-

overs have also been devised (Özdamar and Birbil 1998, Hung et al. 1999, Özdamar and 

Barbarosoğlu 1999, Hung and Chien 2000, Dellaert et al. 2000, Özdamar, Birbil and 

Portmann 2002). The selection operator determines which chromosomes from the current 

population and the newly created offspring will form the new population. In a popular random 

strategy the probability of selection of each chromosome is proportional to its fitness value 

(Hung et al. 1999, Dellaert et al. 2000, Hung and Chien 2000, Xie and Dong 2002). An elitist 

strategy also keeps the best chromosomes from the current population (Dellaert et al. 2000, 

Özdamar and Bozyel 2000). Selection can also be done deterministically, choosing the 

chromosomes with the highest fitness value (Kimms 1999, Özdamar, Birbil and Portmann 

2002). A genetic algorithm can also be applied to multiple parallel populations (Özdamar, 

Birbil and Portmann 2002). The migration operator allows for a cross-over between 

chromosomes from different populations.  

 

3.2.  Dynamic Programming  

 

Wagner and Whitin (1958) proposed a Dynamic Programming (DP) recursion for the single 

item uncapacitated lot sizing problem. They prove that there exists an optimal solution that 
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satisfies the following property: 01 =− tt xs , Tt ∈∀ . This property implies that there exists an 

optimal solution in which one never produces in a period and at the same time has inventory 

coming in from the previous period. As a consequence, production in one period satisfies the 

demand for an integral number of consecutive periods. Based on this special property of the 

optimal solution, Wagner and Whitin formulate a dynamic programming recursion of O(m2). 

The properties of an optimal solution can also be proven by network theory (Zangwill 1969). 

Diaby (1993) develops an efficient post-optimization procedure to recompute the optimal 

schedule starting from the Wagner-Whitin solution for the case where some set ups are 

imposed or prohibited. A recent milestone in the history of the single item uncapacitated lot 

sizing problem is the independent discovery of an O(m log m) algorithm for this problem by 

Federgruen and Tzur (1991), Wagelmans, Van Hoesel and Kolen (1992) and Aggarwal and 

Park (1993). The algorithms run in O(m) time for special cases. 

 

Also for other single item lot sizing problems, DP recursions have been developed based on 

the structure of an optimal solution. The extension with backlogging is discussed in Zangwill 

(1966a), Van Hoesel et al. (1994) and Federgruen and Tzur (1993). Florian and Klein (1971) 

consider the single item lot sizing problem with a constant capacity and concave costs, 

whereas Lambrecht and Vander Eecken (1978b) extend this analysis by looking at an arbitrary 

capacity structure. Van Hoesel and Wagelmans (1996) propose an O(m3) DP recursion for the 

case of constant capacities, concave production costs and linear holding costs. Shaw and 

Wagelmans (1998) improve the DP recursion of Florian and Klein for general costs structures, 

as long as the production cost function is piecewise linear. Many other researcher have 

proposed DP algorithms for the single item lot sizing problem and special cases (Lippman 

1969, Florian et al. 1980, Bitran and Yanasse 1982, Chung and Lin 1988, Kirca 1990, Pochet 

and Wolsey 1993). Further, Van Hoesel and Wagelmans (2001) show how DP algorithms can 

be used to construct a fully polynomial approximation scheme for the single item capacitated 

lot sizing problem. DP results for the DLSP can be found in Cattrysse et al. (1993), Van 

Hoesel and Kolen (1994), Van Hoesel et al. (1994) and for the CSLP in Vanderbeck (1998). 

 

3.3.  Polyhedral Results and Strong Valid Inequalities 

 

Much attention is devoted to the polyhedral study of the convex hull of a problem. The goal 

of this line of research is to describe the convex hull of a problem by valid inequalities. Next, 
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one can apply this knowledge to a substructure of a larger problem to obtain improved lower 

bounds. Excellent overviews on polyhedral approaches for lot sizing problems are given in 

Pochet and Wolsey (1995), Pochet (2001) and Wolsey (2002). The research into strong valid 

inequalities for lot sizing problems was initiated by Barany, Van Roy and Wolsey (1984a,b) 

who describe the convex hull of the single item uncapacitated lot sizing problem. They define 

the (l, S) inequalities as follows:  

 � �
∈ ∈

+≤
St St

lttlt sysdx  Tl ∈∀ , { }lL ,...,1=∀ , LS ⊆∀  (17) 

These cutting planes can be used to strengthen the formulation of other problems such as the 

capacitated problems. Pochet and Wolsey (1988) present strong valid inequalities for the case 

with backlogging, which describe the convex hull of the single item uncapacitated problem. 

Pochet (1988) and Leung, Magnanti and Vachani (1989) derive several valid inequalities for 

the capacitated problem. Polyhedral results and cutting planes for problems with a Wagner-

Whitin cost structure, i.e. 1+≥+ ttt vchcvc , are presented in Pereira and Wolsey (2000) and 

Pochet and Wolsey (1994). Other valid inequalities for the capacitated lot sizing problem and 

variants are discussed in Pochet and Wolsey (1993), Constantino (1998), Miller, Nemhauser 

and Savelsbergh (2000a,b), Loparic, Marchand and Wolsey (2003), Van Vyve and Ortega 

(2003) and Van Vyve (2003). The polyhedral structure and valid inequalities for a single 

period relaxation of the CLSP with set up times are presented in Miller et al. (2003a,b). They 

study the �Single-Period Relaxation with Preceding Inventory�, which includes the joint 

capacity constraint, the demand constraints with only the preceding inventory variables and 

the set up constraints for multiple items in a specific period t. Miller et al. (2000b) present an 

efficient branch-and-cut algorithm for the CLSP with set up times using these valid 

inequalities of the single period relaxation. A good overview of several inequalities for 

various models, such as capacitated models, lot sizing with start ups and multi-stage problems, 

is given in Pochet and Wolsey (1991). Belvaux and Wolsey (2000) report on an efficient 

branch-and-cut system that includes preprocessing and cutting planes for a variety of lot 

sizing models.  

 

Polyhedral results for the Discrete Lot Sizing and Scheduling problem can be found in 

Magnanti and Vachani (1990), Van Eijl and Van Hoesel (1997), Magnanti and Sastry (2002) 

and Loparic et al. (2003). Vanderbeck and Wolsey (1992) show how to solve the Lasdon-

Terjung model more efficiently with cutting planes. Valid inequalities and polyhedral results 
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for the single item Continuous Set Up Lot Sizing Problem are discussed by Wolsey (1989, 

1997), by Constantino (1996) and by Agra and Constantino (1999). 

 

3.4. Lagrange Relaxation and Dantzig-Wolfe Decomposition 

 

Dantzig-Wolfe decomposition and Lagrange relaxation are two other techniques for finding 

improved lower bounds. The basic idea is to divide the problem into smaller subproblems 

which are much easier to solve and a coordinating mechanism ensures that we obtain a good 

approximation for the overall problem. It is well known that the optimal values resulting from 

Dantzig-Wolfe decomposition and Lagrange relaxation are the same (Geoffrion 1974, Fisher 

1981). One formulation is the dual of the other. In the Dantzig-Wolfe decomposition, the 

linking or complicating constraints are put in the master whereas in the Lagrange relaxation 

they are dualized in the objective function. The subproblems that result from these two 

approaches are equal.  

 

As an example, we consider the Capacitated Lot Sizing Problem (5)-(9) with set up times. 

Manne (1958) proposed an innovative formulation for solving this problem. He explicitly 

models all the possible schedules with different set up sequences. For a problem with a 

planning horizon of m periods, there are 2m different set up schedules possible for each 

product, as for each period we either have a set up or not. Manne only considers �dominant� 

schedules, which have the property that in each period demand will be met by production in 

that period if there is a set up or otherwise from the nearest preceding period with a set up. 

The model that Manne proposes is actually the full blown master of the Dantzig-Wolfe 

reformulation (Dantzig and Wolfe 1960) with the capacity constraints as the linking 

constraints. Dzielinski and Gomory (1965) propose the use of column generation to counter 

the difficulty of the large amount of variables in Manne�s formulation. Column generation 

starts with a feasible restricted master with only a few columns and new columns are added 

iteratively as they are needed. At each iteration of the column generation procedure, we solve 

a separate single item uncapacitated subproblem for each item i, where the objective is to 

minimize the reduced cost. If the new column has a negative reduced cost, we add it to the 

master. Solving the master again provides new dual prices which are used to generate new 

columns. If we cannot find any new column with a negative reduced cost, we have solved the 

master�s LP relaxation to optimality with an objective value of DWv . All the columns that are 
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generated as such will have the Wagner-Whitin property. Manne�s dominant schedules are in 

fact all the schedules that satisfy the Wagner-Whitin property. Manne further proves that the 

LP solution of his formulation will naturally have most variables at zero or one if the number 

of items is much larger than the number of time periods in the planning horizon and as such it 

will be a good approximation to the optimal IP value. There is however a structural problem 

with Manne�s formulation. The formulation with integrality constraints on the variables will 

not necessarily give the optimal solution to the multi-item lot sizing problem as the schedules 

in the optimal solution usually do not have the Wagner-Whitin property. Lambrecht and 

Vanderveken (1979) and Bitran and Matsuo (1986), among others, note that the solution of 

Manne�s formulation with integrality constraints is only a subset of the solutions of the 

original IP problem. Degraeve and Jans (2003) present a new Dantzig-Wolfe reformulation 

model of this problem which does not suffer from this structural deficiency. They separate the 

integer set up decisions and the continuous production decisions. Bitran and Matsuo (1986) 

provide an error bound for the solution obtained by using the production schedule proposed 

by Manne�s formulation and properly accounting for the set ups. The Dantzig-Wolfe 

decomposition for the DLSP is discussed in Lasdon and Terjung (1971), Cattrysse et al. 

(1993), and Jans and Degraeve (2004a) and for the CSLP in Vanderbeck (1998). 

 

In the Lagrange relaxation of the CLSP (Kleindorfer and Newson 1975, Thizy and Van 

Wassenhove 1985, Trigeiro et al. 1989, Diaby et al. 1992b), the capacity constraint (8) is 

dualized into the objective function (5) with a specific set of positive multipliers 

{ }mpppp ,...,, 21= : 

=)( pvLR  Min ( ) � ����
∈ ∈∈∈ ∈

−−−++
Tt Pi

iti
Pi

ititt
Pi Tt

itititititit xvtystcappshcxvcysc )(   (18)

The Lagrange problem also decomposes into separate single item uncapacitated subproblems 

for each item i. The Lagrange Dual problem consists of finding the maximum lower bound 

LDv :  )(max
0

pvv LRpLD ≥
= . In iterative steps, the multipliers are adapted in the hope of finding 

a better lower bound. The most popular method for updating the dual prices is the subgradient 

method. Du Merle et al. (1997) provide a competitive alternative by using an interior point 

cutting plane method for finding new dual prices. Similar Lagrange relaxation schemes have 

been proposed for the DLSP (Fleishmann 1990, 1994) and the CSLP (Karmarkar and Schrage 

1985, Karmarkar et al. 1987) 
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Most of the decomposition schemes relax the capacity constraint. However, other 

decompositions are possible. Diaby et al. (1992a) discuss a new approach in which they 

dualize the demand constraint. Here the subproblem consists of a combination of set up and 

knapsack constraints for which they derive a specialized branch-and-bound algorithm. From 

computational experiments they conclude that the capacity relaxation is much more efficient 

than the demand relaxation. Jans and Degraeve (2004b) study yet another decomposition. 

They start from the network reformulation, which is discussed in the next section, and dualize 

the demand constraints. This decomposition results in improved lower bounds, as the network 

formulation already gives the same lower bound as the relaxation of the capacity constraint. 

For a multi-machine DLSP, De Matta and Guignard (1994a,b) also propose to dualize the 

demand constraint.  

 

For multi-level problems, relaxation of the capacity constraints results in a single 

uncapacitated multi-level, multi-item problem. Relaxation of both the capacity constraints and 

demand constraints results in single-item uncapacitated subproblems (Tempelmeier and 

Derstroff 1996). Also the reformulation in terms of echelon stock (Afentakis et al. 1984, 

Afentakis and Gavish 1986, Clark and Armentano 1995, Belvaux and Wolsey 2001) allows 

the problem to be decomposed into uncapacitated single item subproblems. The echelon stock 

for an item i (Clark and Scarf 1960) is defined as all the units of item i that are held in 

inventory in the whole system, either as item i or as a component in an assembly.  

 

Dantzig-Wolfe decomposition and Lagrange relaxation are essentially techniques for finding 

tighter lower bounds. They need to be extended with other heuristics if we want to find good 

upper bounds or they can be integrated within a B&B scheme to find an optimal solution. 

Starting from the solutions of the Lagrange subproblems, heuristic solutions can be obtained 

by shifting production quantities (Trigeiro et al. 1989, Tempelmeier and Derstroff 1996). 

Fixing the set up variables according to the Lagrange solution and next solving a 

transportation problem to obtain a feasible solution is also done (Thizy and Van Wassenhove 

1985, Diaby et al. 1992b). Cattrysse, Maes and Van Wassenhove (1990) discuss the set 

partitioning formulation of the problem for which schedules are obtained by heuristics for the 

multi-item capacitated lot sizing problems. Hence the individual schedules do not necessarily 

have the Wagner-Whitin property. They find feasible solutions either by rounding up the 

fractional set up variables and improving the solution or by solving a smaller problem 

heuristically for the items with a fractional value. During column generation, Degraeve and 
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Jans (2003) round the fractional set up solution of the current master and determine the 

according production quantities. Branch-and-Price algorithms integrate column generation 

within a branch-and-bound scheme (Barnhart et al. 1998). Very few applications to lot sizing 

problems exist. Notable exceptions are Degraeve and Jans (2003) for the CLSP with set up 

times and Vanderbeck (1998) for the CSLP with start up times. Lagrange bounds are also 

often used in B&B schemes (Afentakis et al. 1984, Afentakis and Gavish 1986, Fleischmann 

1990, Karmarkar and Schrage 1985, Karmarkar et al. 1987).  

 

3.5.  Reformulations of the Lot Sizing Problem 

 

It is well known that for (mixed) integer programming problems, some formulations are better 

than others in the sense that they provide tighter bounds. For the lot sizing problem, three 

such reformulations have been proposed. Krarup and Bilde (1977) propose the simple plant 

location reformulation: 

 Min � ��
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 ttl yw ≤  ltTtl ≤∈∀ ,,  (21) 

 1≤ty  Tt ∈∀  (22) 

 0, ≥ttl yw  ltTtl ≤∈∀ ,,  (23) 

The variable wtl is the fraction of the demand of period l produced in period t. In the objective 

function (19) we find the set up cost and an adjusted production cost, � =
+= m

tl ltt hcvcc , as 

this is a formulation without inventory variables. Constraint (20) imposes that the demand in 

each period is satisfied from production in that period or from a previous period. Further we 

have the fixed charge constraint (21) and the simple upper bound on the yt variables (22) and 

non-negativity constraints (23). This reformulation gives integer solutions to the single item 

uncapacitated lot sizing problem. Pochet and Wolsey (1995) discuss the multi-commodity flow 

reformulation, which is equivalent to the facility location formulation after variable 

transformation. 

 

Eppen and Martin (1987) describe another reformulation, which is in fact the network or 

shortest path formulation of the DP recursion used by Wagner and Whitin. They introduce a 
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variable tkzv which represents the fraction of the demand from period t to k that will be 

satisfied by production in period t. Based on the property of an optimal solution, they impose 

that the tkzv  variable is binary for a single item uncapacitated problem. If tkzv  equals one, 

then we produce in period t the demand for period t until k. As such we can describe the lot 

sizing problem as a shortest path network. On every arc, a cost cvtk is defined as the total cost 

for producing in period t the demands for period t until k and the according inventory holding 

cost: � �+=

−

=
+= k

ts

s

tu sutkttk dhcsdvccv
1

1 . The single item uncapacitated lot sizing problem can 

then be reformulated as follows: 
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Constraints (25) to (27) are the conservation of flow equalities for the shortest path network. 

Constraint (28) is the set up forcing constraint. Eppen and Martin show that the LP relaxation 

of this formulation has an integer solution for ULS. This network formulation can also be 

used to obtain tighter lower bounds for multi-item capacitated problems.  

 

For the multi-item capacitated lot sizing problem, the three reformulations provide the same 

lower bound. Pochet and Wolsey (1988) discuss the plant location and shortest path 

reformulation for the uncapacitated case with backlogging. Pochet and Wolsey (1993) provide 

reformulations for the problem with batches. Van Hoesel and Kolen (1994) present a shortest 

path reformulation for the single and multi-item DLSP based on variable splitting, and Van 

Hoesel et al. (1994) give an assignment reformulation. Reformulations for the CSLP are 

discussed in Wolsey (1989, 1997). Both the simple plant location formulation (Stadtler 1996, 

Stadtler 2003) and the network reformulation (Tempelmeier and Helber 1994, Stadler 1996, 

Stadtler 1997) can be extended for the multi-level case.  
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As the reformulations provide improved lower bounds, their LP solution can also be used to 

construct heuristic solutions. Maes et al. (1991) discuss such LP-based rounding heuristics for 

the multi-level problem, but the ideas can also be applied to single level problems (Alfieri et 

al. 2002). The single pass branching algorithm fixes the largest non integer set up variable to 

one and resolves the problem until an overall integer solution is obtained. In a variant, sets of 

variables are set to one and zero at the same time. In the curtailed branch-and-bound 

algorithm, all the variables which are integer in the LP solution are fixed and a limited 

branch-and-bound is performed on the remaining set up variables. The curtailed branch-and-

bound results in a smaller gap compared to the single pass branching algorithm, but at the 

expense of a much higher CPU time. The fixing of sets of variables appears to be more 

efficient than branching on one variable at the time.  

 

3.6.  Special-Purpose Heuristics for Lot Sizing Problems 

 

Several dedicated heuristics have been proposed for solving the uncapacitated single item lot 

sizing problem. These heuristics are often used as lot size rules in MRP systems instead of the 

Wagner-Whitin algorithm. A discussion of many of these lot size rules such as the Economic 

Order Quantity, Period Order Quantity, Least Period Cost (Silver and Meal 1973), Least Unit 

Cost, Part Period Balancing, Least Total Cost, Marginal Cost Difference (Groff 1979) and the 

Technique for Order Placement and Sizing (Coleman and McKnew 1990) can be found in 

Baker (1993) or in most textbooks on production planning (Silver et al. 1998). A comparison 

of many of these heuristics can be found in Coleman (1992) and Simpson (2001). Bitran et al. 

(1984), Axsäter (1985) and Vachani (1992) present worst-case bounds for some of these 

heuristics for several demand classes.  

 

Much research has been done on the more challenging problem of multi-item capacitated lot 

sizing. Some heuristics are based on a Silver-Meal criterion of the average cost per period 

(Eisenhut 1974, Lambrecht and Vanderveken 1979). Dixon and Silver (1981) present another 

heuristic where the criterion is to select that item for which a one period increase in the supply 

results in the largest decrease in average cost per unit time (Silver Meal cost criterion) per unit 

of capacity absorbed. The Silver-Meal criterion has also been extended for the case of regular 

and overtime production (Dixon et al. 1983) and set up times (Trigeiro 1989). Maes and Van 

Wassenhove (1986c) use in their ABC heuristic several cost criteria to determine whether or 
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not to include a next period and several rules for determining the order of the items. 

Dogmaraci et al. (1981) develop a forward-sweep algorithm and a greedy search starting from 

the lot-for-lot solution. In an extensive computational experiment, Maes and Van Wassenhove 

(1986a,b) compare three of the heuristics discussed above: Lambrecht and Vanderveken (LV), 

Dixon and Silver (DS) and Dogmaraci et al. (DPA). On average, DPA is slightly better than 

the two others, but at the expense of considerable higher CPU times. LV and DS are 

comparable both in the quality of solution and CPU times. The cost structure and tightness of 

the capacity constraint seem to have a large impact on the performance. Van Wassenhove and 

De Bodt (1983) apply the Lambrecht and Vanderveken and Dixon and Silver heuristics to 

solve a real live planning problem in the injection moulding industry. Another period-by-

period heuristic is discussed in Günther (1987). Starting from a lot-for-lot schedule, Günther 

attempts to smooth the capacity profile using marginal cost savings as a priority index. Karni 

and Roll (1982) start from the WW schedules and try to achieve feasibility and improve the 

cost by shifting production. Van Nunen and Wessels (1978) present a separate lot size 

determination and capacity smoothing procedure. Kirca and Kökten (1994) develop a very 

effective heuristic for the multi-item capacitated lot sizing problem. They use an item-by-item 

approach in which items are selected one at a time. Next a single item problem is solved with 

adapted capacities and extra bounds on production and inventory to ensure feasibility of the 

overall problem. The best results are obtained by selecting the item with the largest average 

cost per unit demand, where this cost is based on the EOQ formula. The computation times 

are comparable with those for the Lambrecht and Vanderveken and Dixon and Silver 

heuristics, but they have a superior solution quality. These dedicated heuristics have also been 

extended to solve more complex lot sizing problems. An example is the lot sizing problem 

with sequence-dependent set up times, batch production and storage constraints (Selen and 

Heuts 1990) for which a cost savings based heuristic is developed.  

 

Another kind of heuristic is based on a mathematical programming approach. We have 

already discussed how the improved LP relaxation from Dantzig-Wolfe decomposition, 

Lagrange relaxation and reformulations can be used as a starting base to obtain good heuristic 

solutions. Maes and Van Wassenhove (1988) conclude that mathematical programming based 

heuristics are more flexible and perform better in general compared to the special-purpose 

heuristics. Good solutions are also obtained by solving the problems in a rolling horizon way 

(Belvaux and Wolsey 2000, Stadler 2003). Set up decisions are only considered for a specific 

time window, which is moved forward in iterative steps. Set up decisions before the time 
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window have been fixed in previous steps, and set up variables in later periods are relaxed. 

Hung and Hu (1998) start from a solution where a set up is done in each period. The 

algorithm solves LP�s iteratively and decides in which periods it is better not to have a set up 

based on the shadow price information. Newson (1975a,b) sequentially deletes arcs in an 

uncapacitated shortest path network as long as some capacity restrictions are violated.  

 

For the multi-level case, efficient heuristics follow a level-by-level approach, but modify the 

set up and inventory costs at lower levels to model the interdependencies (Blackburn and 

Millen 1982, Bookbinder and Koch 1990, Billington et al. 1994, Tempelmeier and Helber 

1994). Heuristics based on a similar idea of iteratively solving LP�s with modified cost and 

constraint coefficients are proposed by Harrison and Lewis (1996) for the capacitated case 

and by Katok et al. (1998) for the capacitated case with set up times. A recent overview of 

various heuristics for multi-level lot sizing problems is provided in Dellaert and Jeunet (2003).  

 

 

4.  Comparing methodologies 

 

Lot sizing problems are hard to solve, as the regular IP formulations usually have a large gap. 

We have discussed several solution approaches that aim to find tighter lower bounds or 

optimal solutions. Dynamic programming recursions have been developed for several 

special cases, based on insights into the structure of the optimal solution. The drawback of 

these DP algorithms is that they are developed for single item problems and cannot be directly 

extended to multi-item problems. However, these single item problems are very important as 

they appear as core structures in more complex problems. Many efficient algorithms exploit 

the specific knowledge about such a substructure to find tighter lower bounds. Dantzig-Wolfe 

decomposition and Lagrange relaxation are examples of such algorithms. However, in 

practice these methodologies exhibit convergence problems. Lagrange relaxation is usually 

done only for a limited number of iterations and there is no guarantee that we have found the 

optimal bound. Dantzig-Wolfe decomposition provides both an upper and lower bounds for 

the optimal relaxation value, but the method suffers from a slow convergence towards the end, 

known as the tailing off effect. A further disadvantage of Lagrange relaxation is that it does 

not provide a primal solution. In Dantzig-Wolfe decomposition, the intermediate primal 

solution of the current master can be exploited in a LP fixing heuristic to find an integer 

solution. Cutting planes also make use of specific knowledge about the polyhedral 
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(sub)structure. Usually a class of cutting planes has an exponential number of members, but 

only a small number of them are generated as they are needed. Therefore, a customized 

separation algorithm is usually developed. A disadvantage is that there is no structured way of 

finding good cuts. A general drawback of DW, LR and CP is that they only provide a lower 

bound and have to be extended with heuristics or complemented by branch-and-bound to 

obtain a feasible solution. Yet another way of finding tighter models is variable redefinition. 

The main advantage of the variable redefinition is that commercial optimization software can 

be used instead of a custom-tailored algorithm (Wolsey 2002). The techniques described 

above have the same goal: obtaining strong lower bounds by approximating the convex hull 

of the problem. As an illustration, Table 1 compares several lower bounds for 6 test instances 

of the Capacitated Lot Sizing Problem with Set Up Times (Trigeiro et al. 1989, Belvaux and 

Wolsey 2000, Jans and Degraeve 2004b), with 6, 12 and 24 products and 15 and 30 periods.  

 

Table 1.  Comparison of lower bounds 
 LP 1 period 

(l,S) 

WW LAG1 DW BW MNS LAG2 

Tr6-15 (G30b) 13,023.8 32,042.2 36,793 37,198.6 37,201.2 37,213.3 37,319 37,380.3 

Tr6-30 (G62) 16,530.2 47,072.2 60,351 60,946.1 60,946.2 60,979.4 61,150 61,189.1 

Tr12-15 (G53) 24,738.5 61,703.0 69,412 73,756.8 73,847.9 73,858.2 73,929 73,942.7 

Tr12-30 (G69) 29,179.9 91,317.7 129,377 130,176.9 130,177.2 130,177 130,292 130,330.4

Tr24-15 (G57) 43,021.4 110,831,2 135,843 136,363.7 136,365.7 136,366 136,388 136,417.9

Tr24-30 (G72) 57,136,1 202,958.9 287.235 287,753.2 287,753.4 287,753 287,811 287,824.3

 

The regular LP relaxation is given in the column LP. Next, we add a limited number of (l,S) 

inequalities with only one period: tttt sydx +≤ , Tt ∈∀ . This already substantially improves 

the lower bound. Also disregarding the capacity constraint and just solving the single item 

uncapacitated Wagner-Whitin problems result in a better lower bound (WW). Relaxing the 

capacity constraint in the Lagrange relaxation (LAG1) results theoretically in the same lower 

bound as keeping it as the linking constraint in the master of the Dantzig-Wolfe reformulation 

(DW). In practice, however, the Lagrange bound will usually be smaller because of 

convergence issues. This Dantzig-Wolfe bound (DW) is also equal to the ones obtained by the 

Plant Location and Shortest Path reformulation and the regular formulation plus all the (l,S)-

inequalities. Belvaux and Wolsey (2000) (BW) present a branch-and-cut algorithm, consisting 

of both general cutting planes and specific lot sizing inequalities. Compared to DW, they 

obtain better bounds for the smaller problems and the same bounds for the larger problems. 
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Miller et al. (2000b) (MNS) derive cuts for the �Single Period relaxation with Preceding 

Inventory�, while Jans and Degraeve (2004b) apply a Lagrange relaxation on the shortest path 

reformulation (LAG2). 

 

Research into optimal algorithms is part of the process of continuous improvement. Problems 

that are unsolvable today, may become solvable tomorrow due to new research developments. 

Heuristics are important as well and there is a clear interaction between these heuristics and 

optimal algorithms. Heuristics usually provide a good starting solution for optimal algorithms 

and allow for early pruning in branch-and-bound based algorithms. Further, heuristics are 

necessary when optimal algorithms fail to solve very large or complex problems. The 

literature review shows that some of the best heuristics are also based on optimal algorithms. 

For the standard problems, traditional method or special purpose heuristics seem to 

outperform the meta-heuristics (Gopalakrishnan et al. 2001). On the other hand, meta-

heuristics provide good results for the more difficult problems such as multi-level or sequence 

dependent problems, for which the traditional methods fail.  

 

A major disadvantage of these meta-heuristics is the fact that no lower bound is available 

unless it is calculated separately. As such it is difficult to assess the solution quality. The 

flexibility also implies that the meta-heuristics are used to solve a variety of problems which 

all have (slightly) different assumptions. Hence it is very difficult to compare these algorithms 

as they are customized for a specific case and they are usually not tested on standard test sets. 

Although one often quoted advantage is that meta-heuristics are easy to understand, most of 

these algorithms are fairly complex because of all the special adaptations that are needed to 

make them work better.  

 

Hybrid systems have been developed to combine the strengths of different methodologies. 

Solutions obtained by LP-based heuristics provide good starting solutions for meta-heuristics 

(Hindi 1996, Kuik et al. 1993). Elements from SA and TS have also been used as a 

diversification strategy in GA�s (Özdamar and Birbil 1998, Hung et al. 1999, Özdamar and 

Barbarosoğlu 1999, Özdamar, Birbil and Portmann 2002). A local search with TS or SA is 

done on randomly selected chromoses of the current population and they are replaced by the 

best found solutions. This also helps to restore feasibility in chromosomes. Meta-heuristics 

have also been used to obtain primal solutions withinin Lagrange relaxation algorithms 

(Özdamar and Barbarosoğlu 1999, Özdamar and Barbarosoğlu 2000). Hung et al. (2003) use 
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information from the simplex sensitivity analysis to rank candidate neighbors within a tabu 

search framework. The best neighbor is more likely to be among the candidates with the 

highest rank. In a first modification, this ranking is used to reduce the neighborhood. A 

second algorithm searches the sorted neighbors sequentially and takes the first solution with a 

better objective function as the new solution. Computational experiments demonstrate that 

especially this last combination is very effective. 

 

Vanderbeck (1998) combines branch-and-price and cutting planes for solving the CLSP. 

Dantzig-Wolfe decomposition can be combined with Lagrange relaxation to speed up the 

column generation process and obtain faster convergence, either by using Lagrange relaxation 

to solve the master (Cattrysse et al. 1993, Jans and Degraeve 2004a) or by using Lagrange 

relaxation on the original problem to generate new columns (Degraeve and Jans 2003). To 

obtain stronger bounds, Dantzig-Wolfe decomposition is done on a variable redefinition 

reformulation for the CLSP (Jans and Degraeve 2004b). There is an advantage in using DP for 

solving the subproblems in the Dantzig-Wolfe decomposition. Not only the column with the 

minimum reduced cost is available, but also the suboptimal solutions and their costs. This can 

be exploited by adding several columns at the same time to accelerate convergence (Jans and 

Degraeve 2004a). 

 

 

5. Computational experiments for meta-heuristics 

 

In order to increase the quality of computational experiments, researchers should take into 

account some guidelines. These guidelines hold for any algorithm, but are particularly 

relevant in the experimental evaluation of meta-heuristics as they are usually developed for a 

specific extension of a standard problem for which no other algorithms are available yet. For 

an excellent tutorial on computational experiments for heuristics, we refer the reader to 

Rardin and Uzsoy (2001). As a general remark, they state that once several algorithms for a 

specific problem have been tested in the literature, simply demonstrating that an algorithm is 

possible is not a valid research question anymore. In order to have a valid contribution, the 

research must either produce a new inside, or demonstrate the superiority of the new 

algorithm. First, the trade-off between the speed and solution quality must be evaluated. 

The aim of the heuristics is to provide a good quality solution within a reasonable 

computation time. Generally, large test sets with a wide variety of instances are necessary to 
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evaluate the algorithmic performance. It is important that you check the robustness of your 

meta-heuristic with respect to different problem characteristics, such as number of items, 

capacity utilization, time between orders, demand variability and set up time which may 

affect the performance. Usually, the meta-heuristics are fine-tuned to provide good solutions. 

A characteristic of a good heuristic is that it remains robust with respect to the setting of the 

various control parameters. This also has to be tested. Second, there are several ways of 

comparing the solution quality and speed. A comparison can be done either with other 

heuristic approaches or with an optimal algorithm. This latter approach is usually only an 

option for small problems. However, the conclusions should be interpreted with caution: 

heuristic behavior on small instances does not necessarily extend to larger instances. When 

comparing several approaches, you can use previously published heuristics or develop several 

different new heuristics. Also, lower bounds can be used to evaluate the solution quality. 

However, good lower bounds are usually difficult to obtain. When working with published 

benchmark libraries, the best known solutions are available for comparison. When no other 

results are available from the literature, best known solutions could also be obtained with the 

meta-heuristic itself by either using different starting points or allowing for long runs. 

 

As an illustration of these guidelines, we finally discuss some papers which have performed 

comprehensive computational experiments. However, this is not an exhaustive list of papers 

with elaborate computational experiments. Gopalakrishnan et al. (2001) developed a TS 

heuristic for the CLSP with set up carryover. For the problem with set up carryover, they 

developed a lower bound to estimate the optimality gap of their TS solutions. They also tested 

their TS heuristic on the CLSP without set up carryover and compared their results to the 

solution from another heuristic (Trigeiro et al. 1989). Algorithms can indeed be tested on 

several data sets: if you consider sequence dependent set up times, you can test your 

algorithm on a data test set without the sequence dependency or an algorithm for problems 

with set up times could be tested on problems without set up times as well. Likewise, Kimms 

(1999) compares a GA for the multi-machine PLSP also with a TS algorithm for the single 

machine problem using previously published data sets. A comparison is made with optimal 

solutions and he also tests the effect of problem parameters such as number of machines, 

demand pattern, cost structure and capacity utilization and algorithm parameters such as the 

population size. Özdamar, Birbil and Portmann (2002) compare their results on the data set 

consisting of 90 four-item, six-period problems used in Özdamar and Bozyel (2000) and 

extend their results with another test on 90 fourteen-item, six-period problems. They compare 
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their solutions to the optimal solution on the small data set and the best solution found among 

several algorithms for the larger data set. Hung et al. (2003) compare several versions of their 

Tabu Search to a LP-based heuristic (Hung and Hu 1998) and to B&B optimization. The gaps 

are calculated and compared to the best solution found among all the algorithms. They also 

investigate the effect of several problem parameters such as number of products, time period, 

set up cost, set up time and demand-to-capacity ratio. In order to have a fair basis for the 

comparison, they introduce a time limit. 

 

 

6.  Conclusions  

 

The numerous extensions of the basic lot sizing problem demonstrate that it can be used to 

model a variety of industrial problems. Lot sizing problems are challenging because many 

extensions are very difficult to solve. We have discussed several techniques to tighten the 

formulations and obtain good quality solutions. The development of algorithms based on the 

combination of these techniques has already led to promising results. Many more 

opportunities for combining algorithms are still largely unexplored. The contribution of a new 

heuristic should be supported by extensive computational experiments using large and 

standard data set, making a comparison with other algorithms or lower bounds and testing 

insights into the effect of the algorithm parameters and problem structure. 

 

From the literature review, it is clear the meta-heuristics have been applied to a wide variety 

of lot sizing models. Yet it seems that there is an absence of research on meta-heuristics for 

the regular DLSP. This is odd as a binary encoding is natural for this problem and this could 

be exploited by such algorithms as the production quantities can be calculated without having 

to solve an LP. Also, meta-heuristics should be applied to real-life problems and can then be 

compared to current practices. Until now, meta-heuristics are usually tested on artificial data 

sets only. Yet the power of these algorithms is exactly the ability to deal with complex, 

industrial considerations. 

 

Finally, the interaction between modeling and algorithms will play an important role in future 

research. Many extensions of the general lot sizing problems have been proposed and the 

research expands in two opposite directions. The first line of research focuses on modeling 

the operational aspects in more detail, such as the sequence dependencies, different kinds of 



 26

set ups and inventory aspects. The second direction is towards more tactical and strategic 

models such as integrated production-distribution planning and supplier selection. Solution 

approaches for such integrated models will be based on previous research in the separate areas. 

Decomposition methods such as Dantzig-Wolfe decomposition and Lagrange relaxation seem 

a natural way to coordinate decisions by separating the different stages. Existing knowledge 

about the structure and properties of a specific subproblem can be exploited in solving 

integrated models. Additionally, meta-heuristics will play an important role in solving such 

complex problems, either as stand-alone algorithms, but more likely as part of a hybrid 

optimization model. 
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