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Abstract

This paper makes a review of interactive methods devoted to multiobjective integer and mixed-integer programming
(MOIP/MOMIP) problems. The basic concepts concerning the characterization of the non-dominated solution set are first
introduced, followed by a remark about non-interactive methods vs. interactive methods. Then, we focus on interactive
MOIP/MOMIP methods, including their characterization according to the type of preference information required from
the decision maker, the computing process used to determine non-dominated solutions and the interactive protocol used to
communicate with the decision maker. We try to draw out some contrasts and similarities of the different types of methods.
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1. Introduction

Multiobjective integer and mixed-integer pro-
gramming (MOIP/MOMIP) is very useful for many
areas of application as any model that incorporates
discrete phenomena requires the consideration of
integer variables (such as, for modeling investment
choices, production levels, fixed charges, logical
conditions or disjunctive constraints). However,
research on methods for the general multiobjective
integer/mixed-integer model has been rather limited
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when compared with multiobjective linear program-
ming with continuous variables (MOLP) or meth-
ods (and heuristics) for particular multiobjective
combinatorial problems.

The introduction of discrete variables into multi-
objective programming problems turns these prob-
lems much more difficult to tackle, even if they are
linear. The feasible set is no longer convex, and
the resulting difficulties go beyond those of chang-
ing from mono-objective LP to IP. Thus, in most
cases, the problems cannot be handled by adapta-
tions to integer variables of MOLP methods. Fur-
ther, there are multiobjective approaches designed
for all-integer problems that do not apply to the
mixed-integer case. Therefore, even for the linear
case, techniques for dealing with multiobjective
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integer/mixed-integer programming involve more
than the combination of MOLP approaches with
integer programming techniques.

In the last years, there have been many develop-
ments devoted to particular multiobjective combi-
natorial problems (such as, location, scheduling,
knapsack, shortest-path problems, etc.). The
researchers’ attention has also focused on the use
of meta-heuristics to solve these problems. In fact,
there is nowadays a vast list of bibliography on
meta-heuristic approaches, namely evolutionary
algorithms, to tackle multiobjective combinatorial
problems. For space reasons, it is not practicable
to include in one review all these topics. We have
opted for focusing on interactive methods for the
general formulation of the MOIP and MOMIP
problem due to their potentialities to solve real mul-
tiobjective problems with integer variables for which
those special models are not suitable. Without hav-
ing the pretence of being exhaustive, we present and
compare several interactive methods published in
the literature of the area, characterizing them
according to the protocol of interaction with the
decision maker (DM) and the computing process
used to obtain non-dominated solutions.

Several survey articles have already been pub-
lished in this area. Teghem and Kunsch (1986b) pre-
sented a survey of interactive methods for
multiobjective integer and mixed-integer linear pro-
gramming published until the final of 1985 (the first
method dates from 1980). Covering the same period
of time, another review is due to Rasmussen (1986)
which focused on multiobjective 0-1 programming,
considering both interactive and non-interactive
methods. Also, Evans (1984) presented an overview
of algorithms for multiobjective mathematical pro-
gramming developed during the 15 years before. A
brief overview of MOIP approaches can be found
in Climaco et al. (1997), and Alves and Climaco
(2001) presented an article on MOMIP. The review
we present herein aims at giving an updated state-
of-art on interactive MOIP/MOMIP methods. This
paper refers to about 20 published interactive meth-
ods (although some of them are improvements of
previous versions), from which only five were devel-
oped until 1985, the period covered by the articles of
Teghem and Kunsch (1986b), Rasmussen (1986)
and Evans (1984). Also, the more recent articles of
Climaco et al. (1997) and Alves and Climaco
(2001) do not include an extensive description of
MOIP and MOMIP interactive methods. The for-
mer presents a classification of different algorithm

approaches for multicriteria integer programming
(but do not describe the functioning of each
method), and the latter is a short article specific to
the multiobjective mixed-integer case.

We hope this review can contribute to help and
motivate researchers to continue the study and the
development of this area, with undoubted impor-
tance and potentialities, but little active nowadays.
The description and the comparison among the pro-
posed methods aim at presenting their advantages
and also their weaknesses, relevant issues to
researchers and to whom wants to choose a method
to tackle a real problem.

The paper is organized as follows. Section 2 pre-
sents basic concepts and general results concerning
the characterization of the non-dominated solution
set. Section 3 discusses non-interactive methods
versus interactive methods regarding this type of
problems. Section 4 reviews several interactive
MOIP/MOMIP methods, presenting a summary
of each method, and characterizing them according
to the type of preference information required
from the DM, the computing process used to deter-
mine the non-dominated solutions and the type of
interactive protocol. A comparison of the men-
tioned interactive methods is made in Section 5.
The paper ends with some concluding remarks in
Section 6.

2. Basic concepts and general results

Consider the following multiobjective problem
(P):

maxz; = f;(x)

maxz; :fk(x)
s.t.x e X,

where X C R" denotes the non-convex set of feasi-
ble solutions defined by a set of functional con-
straints, x > 0 and Xx; integer j € JC {l,...,n}. It
is assumed that X is compact (closed and bounded)
and non-empty. The integer variables can either be
binary or take on general integer values.

(P) is a MOIP problem if all variables are integer.
Otherwise (P) denotes a MOMIP problem.

Models with linear constraints and linear objec-
tive functions have been more often considered than
nonlinear cases. In linear multiobjective integer or
mixed-integer problems (MOILP/MOMILP), the
functional constraints can be defined as Ax < b,
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and the objective functions f(x) =c'x, i=1,....k
where A4 is a m X n matrix, b is a m-dimensional col-
umn vector and ¢, i=1,...,k, are n-dimensional
row vectors.

The concept of efficiency or non-dominance in
multiobjective  (mixed-)integer programming is
defined as usually for multiobjective mathematical
programming.

A solution X € X is efficient for the problem (P) if
and only if there is no x € X such that f;(x) > fi(%)
forallie {1,...,k} and f;(x) > fi(x) for at least one
i

A solution x € X is weakly-efficient for the prob-
lem (P) if and only if there is no x € X such that
filx) > fi(x) for all i € {1,...,k}.

Let Z C R* be the image of the feasible region X
in the objective functions (criteria) space. A point
z € Z corresponding to a (weakly) efficient solution
X € X is called (weakly) non-dominated.

Since the feasible region of (P) is non-convex,
unsupported non-dominated solutions may exist. A
non-dominated point z € Z is called unsupported
if it is dominated by a convex combination (which
does not belong to Z) of other non-dominated crite-
ria points (belonging to Z).

Hence, unlike in MOLP, the non-dominated
solution set of a problem (P) cannot be fully deter-
mined by parameterizing on 1 the weighted-sum
program:

k

max > Afi(x) (P)
i=1

s.t. xeX,

where 2 e A= {le R\ >0vi, S8 4 =1}

The unsupported non-dominated solutions can-
not be reached even if the complete parameteriza-
tion on / is attempted.

Researchers on multiobjective mathematical pro-
gramming early recognized this fact and stated
other characterizations for the non-dominated set
that fit the multiobjective integer/mixed-integer
cases.

Basically, two main characterizations can be
defined.

2.1. Weighted-sum programs with additional
constraints

This characterization of the non-dominated solu-
tion set consists of introducing additional con-
straints into the weighted-sum program (P,).

Generally, these constraints impose bounds on the
objective function values, which can be regarded
as a particularization of the general characterization
provided by Soland (1979). The introduction of
bounds on the objective function values enables
the weighted-sum program to also compute unsup-
ported non-dominated solutions. This scalarizing
program can be stated as follows:

k
max Z Aifi(x) (Prg)
=1
s.t. xeX,
fx) =g,

where 4 € A, fix) = (fi(x),...,fr(x)) and g is a row
vector of objective bounds.

Besides the fact that every solution obtained by
(Pyg) is non-dominated, there always exists a
g € R* such that (Py.¢) yields a particular non-dom-
inated solution.

2.2. Reference point based scalarizing programs

Other characterizations based on reference points
can be defined.

The Tchebycheff theory, whose foundation origi-
nated from Bowman (1976), integrates this type.

Let us denote by ||f —f(x)|l, the w-weighted
Tchebycheff metric, ie., max;<c{wilf; — fi(x)|},
where w; = 0 Vi, Zf;lw,- =1, and f denotes a refer-
ence point of the criteria space. Considering
f > f(x) for all x € X, Bowman (1976) proved that
the parameterization on w of min,x|f — f(x)
generates the non-dominated set.

The program min,y|f — f(x)|, may yield
weakly non-dominated solutions, which can be
avoided by considering the augmented weighted Tche-
bycheff program: min,o{|[7 — f(x)], — pY fi ()},
with p a small positive value. This program can also
be written as follows:

min {a—pi}(x)} (Ty)

st wi(fi — filx)) <o, 1<i<k,
x X,
o= 0.

[

Steuer and Choo (1983) proved that there always
exists p small enough that enable to reach all the
non-dominated set for the finite-discrete and polyhe-
dral feasible region cases. Concerning the mixed-inte-
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ger case, there may be portions of the non-dominated
set (nearby weakly non-dominated solution) that
(Ty) 1s unable to compute, even considering p very
small (an example is shown in Alves and Climaco,
2001). However, this characterization is still possible
in practice, because p can be set so small that the DM
is unable to discriminate between those solutions and
nearby weakly non-dominated solutions.

In Steuer and Choo (1983) and Steuer (1986) a
lexicographic weighted Tchebycheff program is pro-
posed for nonlinear and infinite-discrete feasible
region cases to overcome this drawback of the aug-
mented weighted Tchebycheff program. The lexico-
graphic approach can also be applied to the
mixed-integer (linear or nonlinear) case. However,
it is more difficult to implement since two stages
of optimization are employed. At the first stage only
o is minimized. When the first stage results in alter-
native optima, a second stage is required. It consists
of minimizing —3°% , fi(x) (i.e., max 3. fi(x)) over
the solutions that minimize « in order to eliminate
the weakly non-dominated solutions.

Besides (T,,) (either the augmented or the lexico-
graphic forms), there are other approaches based on
reference points that allow to characterize the non-
dominated set of multiobjective integer/mixed-inte-
ger programs. An approach of this type consists in
discarding the w-vector or fixing it and varying f,
the criteria reference point, which may represent
DM’s aspiration levels. We shall refer to this scalar-
izing program as (7). There always exist reference
points satisfying f > f(x) Vx € X, such that (7;)
produces a particular non-dominated solution
z = f(x). Reference points that do not satisfy the
condition f > f(x) Vx € X, can also be considered,
provided that the « variable is defined without sign
restriction. This corresponds to the minimization of
a distance from Z to the reference point if the latter
is not attainable and to the maximization of such a
distance if the reference point is attainable. If refer-
ence or aspiration levels are used as controlling
parameters, the (weighted) Tchebycheff metric
changes its form of dependence on controlling
parameters and should be interpreted as an achieve-
ment scalarizing function (Lewandowski and Wie-
rzbicki, 1980).

Like the simplest form of (Ty,), the simplest form
of (T;) may produce weakly non-dominated solu-
tions, but the augmented form is a good substitute
in practice and the lexicographic approach guaran-
tees that all non-dominated solutions can be
reached. In what follows, we shall use (Ty,) and

(T7) to denote either the corresponding simplest
or augmented forms.

3. Non-interactive versus interactive methods

Although providing very important theoretical
results, the characterizations of the non-dominated
set do not offer explicit means to provide decision
support for MOIP/MOMIP problems. Conse-
quently, some researchers have developed methods
for handling these types of problems.

Methods may be non-interactive — in general, gen-
erating methods designed to find the whole set or a
subset of the non-dominated solutions — or interac-
tive — characterized by phases of human interven-
tion alternated with phases of computation.

Generating methods that are designed to generate
the whole set or a large subset of non-dominated
solutions may require an excessive amount of com-
putational resources, namely in processing time,
which may be inadequate to deal with large prob-
lems. Further, if a large set of alternatives is pre-
sented to the DM at the final of the procedure, this
will raise additional difficulties to the DM to analyze
all the information and make a final choice. How-
ever, there are some approaches that attempt to find
a representative subset of the non-dominated set —
generating methods according to the above defini-
tion — that could be easily embodied in an interactive
framework. Solanki’s biobjective method (Solanki,
1991) may be regarded as an example of such an
approach (due to this fact, we include this method
in the list of interactive methods presented in the
next section). Therefore, the border between a gener-
ating method and an interactive method can some-
times be tenuous. A generating method can be
used, for instance, to obtain a set of well-distributed
non-dominated solutions to be presented to the DM.
The DM can then select bounds for the objective
functions, and a new MOIP/MOMIP problem is
considered including those bounds, for which a gen-
erating method will be used again. This process can
be repeated by narrowing or relaxing the bounds.
This is just an example of how a generating method
can be integrated into an interactive process.

Most generating methods for MOIP/MOMIP
were developed in the decades of 70 and 80. The fol-
lowing list includes some well-known methods of
this type (most of them restricted to linear cases):

e Pasternak and Passy (1973), Bitran (1977, 1979),
Deckro and Winkofsky (1983), Bitran and Riviera
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(1982), Kiziltan and Yucaoglu (1983) and White
(1984) — for multiobjective 0—1 programming;

e Klein and Hannan (1982), Villareal and Karwan
(1981), Chalmet et al. (1986) and Sylva and
Crema (2004) — for multiobjective all-integer
programming.

e Mavrotas and Diakoulaki (1998) — for multiob-
jective mixed 0-1 programming.

We observe that most generating methods are
devoted to problems with 0—1 variables, which is
understandable because it is easier to use enumera-
tion techniques in 0—1 problems than in general inte-
ger or mixed-integer problems. Some methods are
specialized to biobjective problems, such as the
methods of Pasternak and Passy (1973) and Chal-
met et al. (1986), which can profit from graphical
representations on the criteria space.

Some generating methods use a constructive pro-
cess, which add successively new solutions to the
efficient/non-dominated set. This is the case of the
methods of Pasternak and Passy (1973), Bitran
(1977, 1979), Klein and Hannan (1982), White
(1984), Chalmet et al. (1986) and Sylva and Crema
(2004) (which is a variation of the Klein—-Hannan
algorithm).

Other methods operate with potentially non-
dominated solutions in the intermediate phases of
the process, and only at the end of the process the
true non-dominated set is known — e.g. Villareal
and Karwan (1981), Deckro and Winkofsky
(1983) and Kiziltan and Yucaoglu (1983).

In the Teghem and Kunsch (1986a) survey of
methods to characterize the set of efficient solutions
of MOILP, the authors conclude that it might not
be wrong to say that none of those methods really
copes well with large dimensional problems, and
this is not too surprising due to the complexity of
the MOILP structure.

It must also be stressed that there are few gener-
ating methods devoted to mixed-integer program-
ming. The work of Mavrotas and Diakoulaki
(1998) is a good example but it just concerns the
mixed 0-1 case. The method consists of generating
and saving potentially non-dominated solutions
and making pairwise comparisons to successively
eliminate the dominated ones. Thus, at the final of
the process only the non-dominated solutions
remain. The computational results presented in this
paper illustrate well the computational effort
involved in the generation of all non-domi-
nated solutions. Therefore, the authors suggest the

intervention of the DM to reduce the scope of the
search, namely by imposing bounds on the objective
function values and defining filters for the generat-
ing process.

From the beginnings of the 1980s decade, the
researches have paid more attention to the develop-
ment of interactive methods to deal with MOIP/
MOMIP problems (mainly, linear cases) in order
to overcome the principal difficulties of generating
methods. Interactive methods enable to reduce the
computational effort and aid the DM in the decision
process. In interactive methods, the set of non-dom-
inated solutions is explored by a progressive articu-
lation of the DM’s preferences. This is a shared
feature of all interactive methods, but there are dif-
ferent paradigms followed by the authors.

Some authors admit that the DM’s preferences
can be represented by an implicit utility function.
Then, the interactive process aims to ‘discover’ the
optimum (or an approximation of it) to that implicit
utility function. The convergence to this optimum
generally requires no contradictions in the DM’s
responses given throughout the interactive process.

In contrast with implicit utility function
approaches, there are other approaches aiming at
a progressive and selective learning of the non-dom-
inated solution set, which use an open communica-
tion protocol to interact with the DM (this
terminology is inspired on the concept of open
exchange defined by Feyerabend, 1975). Those mul-
tiobjective approaches are not intended to converge
to any ‘best’ solution, but to help the DM to avoid
the search for non-dominated solutions he/she is
not at all interested in, and to help in the identifica-
tion of satisfactory compromise solution(s). There
are no irrevocable decisions during the whole pro-
cess and the DM is always allowed to go ‘back-
wards’ at a later interaction. So, at each
interaction, the DM is only asked to give some indi-
cations on what direction the search for non-domi-
nated solutions must follow, or occasionally to
introduce additional constraints. The process fin-
ishes when the DM considers to have gathered suf-
ficient insight into the non-dominated solution set.
Using Roy’s terminology (Roy, 1987), convergence
gives place to creation. The interactive process is a
constructive process, not the search for something
‘pre-existent’.

In the next section, we include a tentative classi-
fication of each method based on these paradigms:
the assumption of an implicit utility function vs. an
open communication protocol.
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4. Interactive methods for MOIP/MOMIP

In the following review we adopt the following
taxonomy to group the methods: biobjective and
multiobjective. We distinguish between these two
classes since biobjective methods are naturally less
applicable than multiobjective methods.

There are methods that can only handle all-inte-
ger problems and others that can also handle mixed-
integer problems. For each class (biobjective/multi-
objective) we first present the integer methods and
then the mixed-integer methods.

Also, a distinction can be made between the
methods that can only deal with linear cases and
methods that can be applied to nonlinear cases. In
this review we have concentrated on methods for
linear problems, although some of the presented
methods can also tackle nonlinear problems. These
cases will be explicitly mentioned below.

We try to classify each method according to the
type of procedure used to compute non-dominated
solutions — type (a), weighted-sum programs with
additional constraints, or type (b), reference point
based scalarizing programs — and according to the
type of protocol used to interact with the DM —
the assumption of an implicit utility function or an
open communication protocol. Besides this classifica-
tion, we describe summarily the general functioning
of each method.

Not claiming to be exhaustive, we shall pres-
ent some methods representative of different
approaches, which have been published in well-
divulged journals of the area.

4.1. Biobjective integer and mixed-integer
programming

e Ramesh et al. (1990) proposed an interactive
method devoted to biobjective integer linear pro-
gramming (BILP) which assumes an implicit utility
function of the DM, pseudo-concave and non-
decreasing. The method employs a modified version
of the MOLP method of Zionts and Wallenius
(1983) within a branch-and-bound framework. The
DM’s preference structure is assessed using pairwise
comparisons. This method can be classified as type
(a) in what concerns the computation of non-domi-
nated solutions (weighted-sum programs with addi-
tional constraints).

The method of Ramesh et al. begins by relaxing
the integrality conditions of the variables and
applies the Zionts—Wallenius method to the linear

relaxation of the BILP problem. If the ‘optimal’
solution to the utility function is integer, then it is
also ‘optimal’ to the original problem. Otherwise,
a branch-and-bound search for the integer ‘opti-
mum’ is conducted, beginning with an initial incum-
bent integer solution, z! = (z],z}) € Z, obtained
using a heuristic procedure. This solution is used
to divide the relaxed feasible region into two sub-
regions, X; and X,, where X is obtained by intro-
ducing the constraint f(x) > z{, and X, is obtained
by introducing (fi(x) <z} — ¢ and f>(x) > z}), with
¢ a small positive value. A branch-and-bound search
is then performed, separately, in X; followed by a
search in X,. If the search in X finds an integer
solution that dominates the incumbent solution,
the partitions are tightened redefining X; and X,
as previously but considering z°, the solution that
dominates z', in place of z'. The branch-and-bound
search in each partition generates candidate prob-
lems for investigation by branching on a fractional
variable from a given solution. These biobjective
linear relaxation problems are solved using the
strategy of the Zionts—Wallenius method. The
incumbent solution is updated whenever the ‘opti-
mal’ solution of a candidate problem is preferred
to the current incumbent solution.

e Shin and Allen (1994) presented an interactive
method for biobjective integer (linear and nonlin-
ear) programs, with concave objective functions
and a convex feasible region (apart from the inte-
grality constraints). This method aims at converging
to the best compromise solution of an implicit utility
function of the DM. The method excludes succes-
sively search regions by imposing constraints on
the objective function values, which result from
pairwise comparisons of non-dominated solutions
performed by the DM. At each phase, the method
determines the supported non-dominated solution
closer to an already known non-dominated solution
(to the right or to the left). This is called an ASN
(associated supported non-dominated) solution to
the previous one, and a particular technique is used
to compute it. Given a non-dominated point z’,
the ASN point to the right of z° is obtained graph-
ically as follows: a horizontal line is drawn extend-
ing from z° and it is swung downward to the right
until it intersects a feasible point — this is the ASN
point to the right of z° (see Fig. 1). Mathematically,
an ASN point is obtained by optimizing an auxiliary
(nonlinear) single objective problem.

The interactive algorithm begins by determining
the non-dominated solution that maximizes f5(x),
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Z,

Fig. 1. Locating an ASN point in the method of Shin and Allen.

which is the initial incumbent non-dominated solu-
tion. An iterative procedure is then employed with
the following steps: (1) Determine an ASN point
to the current incumbent solution; if none exists
(to the right or to the left), terminate; else, go to
the next step. (2) Let z* and z’ be the incumbent
solution and the corresponding ASN, or vice-versa,
such that z* is on the left of z' (i.e. z5 > z5). If the
DM prefers z° to Zz/, impose the constraint
f2(x) > zb; if the DM prefers z' to z°, impose the con-
straint f)(x) > zj; if the DM is indifferent between
them, impose fi(x) >z} and f>(x) >z,. Update
the incumbent solution with the preferred solution
and return to (1).

o Aksoy (1990) developed an interactive method
for biobjective mixed-integer programs, which
employs a branch-and-bound scheme to divide the
subset of non-dominated solutions of each node
into two disjointed subsets. The branching process
seeks to bisect the range of non-dominated values
of z, at the node under consideration, checking
whether a non-dominated point exists whose z,
value is in the middle of the range. So, if [#},]] is
the range of values of z, in the node N, the proce-
dure attempts to obtain a non-dominated solution
such as z, = (&, +u})/2. This solution is used to
divide the non-dominated set of N into two dis-
jointed subsets. If no such solution exists, the set
is divided using two non-dominated points whose
values for z, are the closest (one up and the other
down) to the middle value. These non-dominated
solutions are obtained by optimizing one objective
function and bounding the other. Hence, this
method uses weighted-sums, just considering
weights (0,1) and (1,0), imposing additional con-
straints on the criteria values (a particular form of
(Prg) — type (a)). It considers a lexicographic
approach to ensure that just efficient solutions are
obtained. The interactive process requires the DM

to make pairwise comparisons in order to determine
the branching node and to adjust the incumbent
solution to the preferred non-dominated solution.
It assumes that the DM’s preferences are consistent,
transitive and invariant over the process aiming to
optimize the DM’s implicit utility function.

e The method of Solanki (1991), which was
designed to biobjective mixed-integer linear pro-
grams, is an adaptation of the non-inferior set esti-
mation (NISE) method developed by Cohon for
biobjective linear programs. The method seeks to
generate a representative subset of non-dominated
solutions by combining the NISE’s key features
with weighted Tchebycheff scalarizing programs
(type (b)).

The NISE method aims at obtaining an approxi-
mate representation of the non-dominated set by
computing successively non-dominated solutions
that optimize weighted-sums of the objective func-
tions. The segment joining a pair of solutions, say
z* and z®, can be considered a good approximation
of that region if the ‘error’ of the approximation is
within a predefined error bound. The ‘error’ is esti-
mated by the length of the perpendicular of the seg-
ment z°z® to an upper bound of the non-dominated
set. The measure of error used by the NISE method
is based on the convexity of the feasible region.
Therefore, it is no longer valid in integer or mixed-
integer programs. Moreover, the weighted-sum pro-
grams, used in NISE to generate non-dominated
solutions, cannot capture unsupported solutions.
These difficulties led Solanki to adopt the augmented
weighted Tchebycheff program, reformulating the
measure of the ‘error’. At each iteration of the Solan-
ki’s method, a new non-dominated solution, say z°,
is computed by solving (T,,) for specific w and f vec-
tors, which ensure that z° belongs to the region
between a pair of non-dominated criteria points pre-
viously determined, say (z% z°). This pair is then
replaced by (% z°) and (z%,z°). The approximation
of the non-dominated surface is progressively
improved, thus decreasing the ‘errors’ associated
with the approximate representation of the pairs.
An ‘error’ is measured by the largest range of the
two objectives for the points forming the pair, i.e.,
the ‘error’ of the pair (% z°), 2 > 2% is given by
max{(z* —z0)/R, (z5 — 28)/R,}, where R; and R,
are scale factors. The algorithm finishes when the
largest ‘error’ is within a predefined error bound.

This is not an interactive method, since the DM
just has to specify the error bound. However, in
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our opinion, this method could be easily embodied
in an interactive framework, in which the DM could
choose the pair of solutions to analyze, in each iter-
ation, and decide the continuation or the end of the
algorithm. This is the reason why we include the
method in this review of interactive methods.

e Ferreira et al. (1996) developed a decision sup-
port system for biobjective mixed-integer programs,
in which the interactive process follows an open
communication protocol, aiming at a progressive
and selective learning of the non-dominated solu-
tion set.

At each interaction, the DM chooses a pair of
non-dominated solutions to further explore the
non-dominated region between them, starting (in
the first interaction) with the pair of non-dominated
solutions that optimize individually each objective
function. The DM can also specify bounds directly
on the objective function values. A weighted-sum
program is then optimized in the region seclected
by the DM, which is reduced in relation to the ori-
ginal feasible region by constraints on the objective
function values (method of type (a)). The knowledge
of new non-dominated solutions enables to elimi-
nate progressively some criteria regions, either by
dominance or unfeasibility. Later, Ferreira (1997)
proposed the use of the Tchebycheff metric (zype
(b)) instead of weighted-sums. The author observed
that this approach has the advantage over the for-
mer of enabling to eliminate larger regions by
unfeasibility.

4.2. Multiobjective integer and mixed-integer
programming

e Marcotte and Soland (1980, 1986) presented an
interactive method devoted to multiobjective prob-
lems for which the feasible set is either convex or
discrete. It is not, however, applicable to the
mixed-integer case. The method requires that the
DM specifies his/her preferences between pairs of
solutions, and assumes that they are stable and fol-
low an appropriate mathematical structure (not
requiring the existence of an implicit utility func-
tion). The algorithm follows a branch-and-bound
scheme, splitting the multiobjective problem into
sub-problems by introducing constraints on the
objective function values. The non-dominated solu-
tions are computed by optimizing weighted-sums of
the objective functions in the feasible subset corre-
sponding to each sub-problem. Hence, the method

can be classified as fype (a) in what concerns the
computation of non-dominated solutions.

Let N be the node j of the branch-and-bound
tree corresponding to criteria feasible region Z
and the ideal point f/ (which is computed when N
is created). To analyze N, the algorithm first opti-
mizes a weighted-sum of the objective functions to
determine a non-dominated solution ' € Z. If
Z/ # [, the node is branched into many nodes as
the number of components i such that z/ < p/. In
the branch i of N the constraint f;(x) > z} + J; with
0,> 0 is added. Hence, the feasible regions of the
descendants of N are not necessarily disjointed.
The ideal points give upper bounds for the criteria
values of the corresponding non-dominated sets,
and the DM is asked to arrange them in a list of
decreasing preferential order. This list defines the
order for selecting nodes to be analyzed. Designat-
ing by incumbent solution the non-dominated solu-
tion preferred by the DM, among all those found
thus far, a node will be fathomed if its ideal point
is not preferred to the incumbent solution. There-
fore, the algorithm terminates if the list is empty,
or the ideal point of the first node is feasible, or even
if it is not preferred to the incumbent solution.

e White (1985) presented a method based on the
method of Marcotte and Soland, which implements
an extension of Lagrangean relaxation from scalar
problems to vector problems. As the former, this
method applies to multiobjective integer problems.
The Lagrangean technique aims at finding better
bounds for the criteria values, which assist in the
elimination of ‘non-optimal’ solutions to the impli-
cit utility function of the DM (a monotonic increas-
ing function).

As mentioned above for the Marcotte and Soland
method, the non-dominated incumbent solution is
compared with the ideal point of each node of the
branch-and-bound tree, since the ideal point gives
upper bounds for the criteria values of that branch.
The Lagrangean method aims at narrowing those
bounds in order to eliminate more nodes of the tree
that would be uninteresting to the DM. This method
can also be classified as type (a) in what concerns the
computation of non-dominated solutions.

e A different approach for dealing with multiob-
jective integer linear problems was proposed by
Gonzalez et al. (1985). This method consists of
two stages: the first stage only computes supported
efficient solutions, by optimizing weighted-sums of
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the objective functions. The second stage computes
unsupported efficient solutions, using weighted-
sums of the objective functions with additional con-
straints that eliminate solutions already known
(type (a)). The information required from the DM
at each interaction consists of selecting the least pre-
ferred solution from a reduced set of candidate effi-
cient solutions. The method assumes the existence
of an implicit utility function of the DM.

In the first stage, the procedure starts by comput-
ing the & non-dominated solutions that optimize
individually each objective function, forming the
set N* of criteria points. If the DM wants to con-
tinue the search, the hyperplane that passes through
the k points of N” is defined and also the corre-
sponding weighted-sum of the objective functions
whose gradient is perpendicular to this hyperplane
(if the weights are not all positive, a perturbation
is made to ensure this condition). The non-domi-
nated point Z that optimizes this weighted-sum is
then determined. If 2/ # N* and it is preferred to
at least one point of N*, then z/ will take the place
of the least preferred point of N, and the comput-
ing procedure is repeated. Otherwise, the stage 1 ter-
minates. The stage 2 computes unsupported efficient
solutions. At each iteration, it optimizes the
weighted-sum of the objective functions, F(x),
whose gradient is perpendicular to the hyperplane
that passes through the k points of N*, considering
the additional constraint F(x) < P (where P is
obtained by subtracting a fractional amount to the
constant of the supporting hyperplane). This proce-
dure can be repeated by diminishing P in order to
turn unfeasible the points already generated. The
stage 2 terminates whenever the DM desires or the
solution obtained is dominated by any other
solution.

e Gabbani and Magazine (1986) presented an
interactive approach to multiobjective integer linear
problems, in which the solutions are obtained heu-
ristically. The method is an adaptation of the Inter-
val Criterion Weights method of Steuer (1977, 1986)
for MOLP. The method of Gabbani and Magazine
assumes that the DM has an implicit linear utility
function. It uses (simple) weighted-sum programs,
discarding from consideration unsupported efficient
solutions.

The Interval Criterion Weights method of Steuer
can be summarized as follows: (i) select 2k + 1
weight vectors from the current weight space (which
is A in the first iteration) according to a selection

rule, and solve the corresponding 2k + 1 weighted-
sum programs; (ii) ask the DM to select the most
preferred solution from the resulting solutions; (iii)
contract the weight space around the weight vector
which produced the preferred solution. Steps from
(i) to (iii) are repeated until a stopping condition
is verified. In the proposal of Gabbani and Maga-
zine, the integer programs of (i) are solved heuristi-
cally, in order to reduce the computational effort.
Consequently, there is no guarantee of computing
true efficient solutions or just near-efficient solu-
tions. The computational experience presented by
the authors concerns 0-1 multidimensional knap-
sack problems for which a specific heuristic (devel-
oped by Magazine and Oguz) is employed.

Concerning interactive methods for multiobjec-
tive mixed-integer linear programming (MOMILP),
a first reference is addressed to the family of the
methods that are extensions of the MOLP Zionts—
Wallenius method (like the above-mentioned biob-
jective method of Ramesh et al. (1990)).

e The first version is due to Villarreal et al.
(1980). This method received later improvements
by Karwan et al. (1985) and Ramesh et al. (1986).
Starting by applying the Zionts—Wallenius algo-
rithm to the linear relaxation of the MOMILP prob-
lem, the method then employs a branch-and-bound
phase until an integer solution that satisfies the DM
is achieved. An implicit utility function is assumed
and the DM’s preferences are assessed using pair-
wise evaluations of decision alternatives and trade-
off analysis. In light of the DM’s underlying utility
function, decisions on whether (i) to apply again
the Zionts—Wallenius procedure to the linear relax-
ation of a candidate multiobjective sub-problem or
(i1) to continue branching by appending a constraint
on a variable that does not satisfy the integrality
condition, are successively made. A scalarizing pro-
gram, which consists of the weighted-sum program
combined with additional constraints (that delimit
the feasible region of each node), is used for com-
puting non-dominated solutions in this interactive
branch-and-bound method (zype (a)).

e Steuer and Choo (1983) developed a general-
purpose interactive method, which is applicable to
multiobjective integer and mixed-integer programs
(including nonlinear cases). The method assumes
an implicit DM’s utility function without any special
restriction on shape (except that it must be coordi-
natewise increasing in criteria space). The strategy
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of the interactive procedure is to sample series of
progressively smaller subsets of non-dominated
solutions.

In each interaction, the DM selects his/her pre-
ferred solution from a sample of non-dominated
solutions. These solutions are obtained by solving
the augmented (or the lexicographic) weighted
Tchebycheff program (T,,) with several dispersed
w-vectors over the current weight space (considering
the ideal criteria point as the reference point f) —
method of type (b). The solution preferred by the
DM at the iteration % provides information to define
w™_ which is used to reduce the set of w-vectors for
the following iteration (concentrating the weight
space around w™). The reduction of the weight
space depends on a convergence factor defined a pri-
ori. The procedure terminates after a predefined
number of iterations.

e Another interactive method capable of solving
multiobjective integer and mixed-integer linear pro-
gramming problems was developed by Durso
(1992). This method is a modification of the interac-
tive branch-and-bound method of Marcotte and
Soland (1986). Unlike the method of Marcote and
Soland, this method is able to deal with mixed-inte-
ger programs due to the modification on the
approach used to compute non-dominated solu-
tions, the main difference between the two methods.
The method of Durso uses the augmented weighted
Tchebycheff metric — type (b).

The method of Durso employs a branching
scheme considering progressively smaller portions
of the non-dominated set by imposing lower bounds
on the criteria values. For each node N of the
branch-and-bound tree, the £ non-dominated solu-
tions that define the ideal point f/ are first calcu-
lated. The DM is then asked to select the node for
analysis by choosing his/her preferred ideal point.
The analysis process begins by solving an equally
weighted augmented Tchebycheff program to
determine a ‘‘centralized” non-dominated point
for the subset of the node under exploration. Once
the DM chooses the most preferred solution of the
k + 1 non-dominated points already known for this
node, say z, up to k new nodes (children) are cre-
ated, many as the number of elements of the set
{ilz; < B/ — &;} with 6; (i=1,...,k) specified by the
DM. Each child inherits its parent’s bounding con-
straints and uses Z to further restrict the bound for
one objective function. Thus, the ith child restricts
the ith criterion by imposing f;(x) = z;, + 0 with ¢

small positive. This approach may be regarded as
an open communication procedure that terminates
when the DM is satisfied with the incumbent solu-
tion — the preferred non-dominated solution from
those obtained so far.

e Karaivanova et al. (1993) proposed an adapta-
tion of the method of Steuer and Choo (1983) for
multiobjective integer and mixed-integer linear pro-
gramming problems, in which the augmented
weighted Tchebycheff scalarizing programs are
solved heuristically. Therefore, the obtained solu-
tions may be efficient or just near-efficient solutions.
In this paper, the authors aim at comparing the
computational results of both methods, defining a
utility function for each multiobjective problem ran-
domly generated. They observed that the exact pro-
cedure (of Steuer and Choo) was faster in small
problems (with 3-6 integer variables, 15-30 con-
straints are 3-6 objective functions) but the pro-
posed heuristic procedure outperformed the
former when the number of variables was increased
(considering problems with 30 integer variables,
three constraints and three objectives). In these
tests, a particular heuristic for mixed-integer pro-
gramming was used.

e Steuer et al. (1993) proposed a multiobjective
generic interactive approach. Although it has not
been designed specifically to MOIP/MOMIP prob-
lems, and the reported computational experience
refers to MOLP problems, we can say that it is gen-
eric enough to fit this type of problems if an ade-
quate algorithm to solve the integer/mixed-integer
scalarizing programs is incorporated.

The proposed approach combines the Tcheby-
cheff method of Steuer and Choo (1983) with the
Wierzbicki’s aspiration criterion vector method
(Wierzbicki, 1982, 1986; Lewandowski and Wierzb-
icki, 1980; among other references) in order to form
an improved procedure for interactive multiobjec-
tive programming. Both methods solve the aug-
mented Tchebycheff scalarizing program to
compute non-dominated solutions (¢#ype (b)), but
the information inputted by the DM is different in
the two methods. The aspiration criterion vector
method is oriented by aspiration vectors for the
objective functions specified by the DM. The
authors argue that the Tchebycheff philosophy of
Steuer and Choo (1983) is likely to be most useful
in the early iterations because of its dispersed sam-
pling, and the aspiration criterion vector philosophy
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is likely to be most useful in the later iterations when
the DM is attempting to pinpoint a final solution.

e L’Hoir and Teghem (1995) presented an interac-
tive method, called MOMIX, which was specially
designed to multiobjective mixed-integer linear pro-
gramming, although a MOLP problem was consid-
ered in the application presented in this paper. The
underlying principle of the method MOMIX is the
use of an interactive branch-and-bound, whose phi-
losophy was introduced by Marcotte and Soland
(1986). For each node, a non-dominated solution is
determined as in the classical STEM method (Bena-
younetal., 1971),1.e. by minimizing a weighted Tche-
bycheff function to the ideal solution of that node
(type (b)). The interactive branch-and-bound of
MOMIX includes two steps: a “depth first” progres-
sion in the tree, which aims at determining a first good
compromise solution, and a “backtracking’ step to
confirm the degree of satisfaction achieved by the
DM or to find a better compromise solution. This
is, in our opinion, an open communication approach.

In the depth first progression, the DM
chooses, for each node, the criterion (say f,)
he/she wishes to improve in priority. A sub-node
is next created by introducing the bound
fp(x) > Z,, where Z, is the non-dominated crite-
ria point determined by the weighted Tchebycheff
program for that node. The backtracking proce-
dure examines other parts of the tree by generating
other sub-nodes (up to more k — 1). The feasible
regions of the children of a given node are dis-
jointed sets (contrariwise to the Marcotte and
Soland method), as the following bounds on the
objective functions are introduced: 2nd child:
Jo,(X) > Z,) A fp(x) <Z,5.. .5 kth child : £, (x) > Z, A
SHx) <z A [ (x) <Z,, j=2,....k—1, where p,
P2,D3,- - Pk 18 the ordering of the criteria accord-
ing to the priorities of the DM at that level of the
tree.

There are other interactive methods that have
been designed to multiobjective integer linear pro-
gramming but are also applicable to mixed-integer
case. Examples of such approaches are those of
Vassilev and Narula (1993), Narula and Vassilev
(1994) and Karaivanova et al. (1995). In our opin-
ion, they are open communication procedures that
share some key features, namely the type of infor-
mation required about the DM’s preferences and
the concept of projecting a reference direction onto
the non-dominated surface (although this concept is

employed in different ways). The information of
preferences lies fundamentally in the specification
of aspiration levels (reference points) and reserva-
tion levels for the objective functions. Some of these
approaches are continuous/integer (Narula and
Vassilev, 1994; Karaivanova et al., 1995) working
almost all time with non-dominated continuous
solutions (i.e. non-dominated solutions for the lin-
ear relaxation of the problem), in order to reduce
the computational effort. Whenever the DM finds
a satisfactory continuous solution, an integer non-
dominated solution close to it is next computed.

The following paragraphs present more details
about these methods.

¢ The interactive algorithm of Vassilev and Nar-
ula (1993) can be summarized as follows: (i) com-
pute an initial non-dominated solution, say Zz. (ii)
If the DM is satisfied with Z, stop; otherwise, ask
the DM to specify a new reference point ¢ such as
q; > z; for the objective functions i the DM wishes
to improve (i € H), g, < z; for the objective func-
tions i the DM accepts to deteriorate (i € L) and
q; = z; for the objective functions i the DM would
maintain equal (i € E). (iii) Based on ¢ and z, a sca-
larizing program is solved and a new (weakly) non-
dominated solution is obtained; this solution is
assigned to z, returning to (ii). The scalarizing pro-
gram maximizes the smallest standardized difference
to the last solution (2) for all objective functions
i € H, in order to move as far as possible from 2z,
but imposing constraints for the other i€ L U E.
The formulation of the scalarizing program is the
following, where 0 is a non-negative parameter.

max o

st. filx)—(g;—2)u =2, i€H,
) > - 0G—q), i€l
filx) =2, i€E,
xeX, a=0.

Narula and Vassilev (1994) proposed a modifica-
tion of this algorithm, which consists of computing
continuous solutions in phases (i) and (iii). These
are (weakly) non-dominated solutions for the linear
relaxation of the multiobjective integer problem. In
(iii) one or more solutions are computed for differ-
ent values of 6. The DM may decide to continue
the search of continuous solutions or require the
computation of the non-dominated integer solution
closer (in the sense min—max) to a continuous solu-
tion that the DM finds interesting.
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e Karaivanova et al. (1995) presented two meth-
ods based on the projection of reference points onto
the non-dominated set. The first method is pure
integer and its underlying principle is close to the
method of Vassilev and Narula (1993), but imple-
mented in a different way. The scalarizing program
used by Vassilev and Narula maximizes the smallest
standardized difference to the last solution for the
objective functions the DM wants to improve.
Instead, Karaivanova et al. minimizes the largest
standardized difference to the reference point
for the same objective functions (i € H). For the
other objective functions (i # H), the constraints
f{x) = ¢, are imposed.

The second method, designated by continuous/
integer method, uses the MOLP Pareto Race
method of Korhonen and Wallenius (1988) to move
around the continuous non-dominated frontier.
When the DM finds the most preferred solution
for the continuous problem, the integer solution
closest to it (in terms of the achievement scalarizing
function) is computed.

The authors pointed out the disadvantages of
each method. The pure integer one is time consum-
ing but the continuous/integer method operates
most of the time in the continuous space, which
may be unsatisfactory to the DM. Therefore, the
authors proposed a combination of both integrated
into a decision support system.

e Alves and Climaco (2000a) developed an inter-
active method for multiobjective integer and mixed-
integer linear programming. This method follows
the same principles as a previous all-integer method
presented in Alves and Climaco (1999). The two
methods differ basically in the techniques used to
solve the reference point scalarizing programs and
the methodology employed for sensitivity analysis.
While the first method uses cutting plane tech-
niques, the method of Alves and Climaco (2000a)
uses branch-and-bound techniques. They are open
communication approaches, which enable a free
exploration of the non-dominated solution set.
These methods are mainly devoted to perform direc-
tional searches by solving scalarizing programs (77;)
parameterized on f — type (b).

Basically, the method of Alves and Climaco
(2000a) works as follows. At each interaction, the
DM can assess directly a new reference point (f)
or just select an objective function, say f,, he wants
to improve in relation to the non-dominated solu-

tion determined in the previous calculation. In the
latter case, the reference point is adjusted automat-
ically by increasing the pth component of f, in
order to produce new non-dominated solutions —
directional search — more suited to the DM’s pref-
erences. This involves an iterative process of sensi-
tivity analysis and operations to update the
branch-and-bound tree. The sensitivity analysis
procedure returns a value 0, > 0 such that the
structure of the previous branch-and-bound tree
remains unchanged for variations in f, up to f,+
0,. Therefore, reference points from f to (f1,...,
fo+0,....fr) lead to non-dominated solutions
that can be obtained in a straightforward way. To
continue the search in the same direction, a slight
increase over 0, is first considered. The previous
branch-and-bound tree is used to proceed to the
next computations. Thus, the tree structure and
some information on the terminal nodes are pre-
served from one computation to the next, which
are used to determine 0, also providing a starting
structure for the next computations. The previous
branch-and-bound tree is firstly simplified and then
expanded if new branching is required until a new
non-dominated solution is reached. This procedure
enables to save time in the computational phases of
directional searches. Besides choosing the objective
function to be improved at each moment, the DM
has also the possibility of imposing bounds on the
objective functions in order to have more control
over the directional searches. These constraints
may be revised whenever the DM wants, by relax-
ing or tightening the bounds.

5. Comparison of the MOIP/MOMIP interactive
methods

Despite the difficulties of comparing interactive
methods, some comments and a critical judgement
on the research on this area should be made, draw-
ing out some advantages and disadvantages of each
method, similarities and differences among them,
applicability and computational experience.

Interactive methods aim at overcoming the main
difficulties of the generating methods, namely the
computational effort and the cognitive burden to
the DM. Nevertheless, some interactive approaches
still require a significant computational effort.
Moreover, there are approaches that put too many
questions to the DM, or only tackle biobjective
problems or pure integer problems. Some of them
are not complete in the sense that any efficient solu-
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tion can be generated. In the following paragraphs
we try to particularize some of these points.

The computational effort involved in each itera-
tion is, in general, higher in methods that require
the resolution of several integer (or mixed-integer)
independent programs at each iteration/interaction.
Examples of such methods are those from Steuer
and Choo (1983), Marcotte and Soland (1986),
White (1985) and Durso (1992). The first one sug-
gests the resolution of 2k scalarizing programs (k
being the number of objective functions) per itera-
tion. In the other methods, k+ 1 programs are
solved for each investigated node of the branch-
and-bound tree.

Also, the computational effort is considerable in
the extensions of the MOLP Zionts—Wallenius
method to problems with integer variables (Ramesh
et al., 1990; Villarreal et al., 1980; Karwan et al.,
1985; Ramesh et al., 1986). Besides the computa-
tional issues, these approaches put many questions
to the DM, some of them being difficult to answer,
such as the evaluation of tradeoff vectors corre-
sponding to relaxed sub-problems.

More recent methods (Vassilev and Narula,
1993; Narula and Vassilev, 1994; Karaivanova
et al., 1995; Alves and Climaco, 2000a) attempt to
reduce the computational effort and to not place
too many demands on the DM. Vassilev and Narula
(1993) started by solving only one scalarizing pro-
gram at each interaction, but they conclude that
even one (mixed) integer program each time may
by excessive. Therefore, Narula and Vassilev
(1994), followed by Karaivanova et al. (1995) (in
their second method), developed continuous—integer
approaches, in which most of the time is spent in
computing non-dominated solutions for the linear
relaxation of the multiobjective (mixed) integer
problem. However, since it is not known a priori
whether the continuous solutions are near or far
from the closest integer solutions, a high waste of
time can exist in searching for information that
can be uninteresting for the DM. This is, in our
opinion, the main disadvantage of this type of
approaches. Alves and Climaco (2000a) reduce the
computational effort by profiting from previous
computations to solve the following scalarizing pro-
grams, employing sensitivity analysis and post-opti-
mality techniques. This is, however, only applicable
when consecutive solutions throughout a directional
search are computed. If the DM wants to search for
dispersed solutions, the scalarizing programs might
be solved independently.

Also attempting to reduce the computational
burden, some interactive approaches use heuristic
techniques to solve the scalarizing programs. Exam-
ples of such proposals are the method of Gabbani
and Magazine (1986), which is an adaptation of
the contraction method of Steuer (1986), and the
method of Karaivanova et al. (1993), which is an
adaptation of the method of Steuer and Choo
(1983). Although this type of approaches can be
an interesting way of overcoming the main difficul-
ties of the exact techniques, it is also essential to
define adequate performance measures to evaluate
the quality of the approximate solutions and the effi-
ciency of the algorithms.

Besides, extensive experimentation must be car-
ried out. The above-mentioned papers do not refer
to quality measures, and just Karaivanova et al.
(1993) present computational times for the proposed
approach. Indeed, heuristic approaches, namely evo-
lutionary algorithms and other meta-heuristics
devoted to particular multiobjective integer problems
have been a worthwhile stream of research in the last
years. Most of these approaches are non-interactive,
aiming at generating a representative set of potential
efficient solutions. Also for these approaches there
has been an increasing concern in creating indices
to measure the quality of the solutions.

Natural limitations on the applicability exist for
the approaches that only address two objective
functions. In our opinion, the methods of Aksoy
(1990), Solanki (1991) and Ferreira et al. (1996)
are attractive approaches from the computational
and cognitive points of view, but their applicability
is limited to biobjective problems. In fact, some
methodological difficulties can be easier overcome
in the biobjective case than in the multiobjective
one. For instance, both Aksoy’s method and the
method of Marcotte and Soland (1986) employ a
similar branch-and-bound structure, but the former
can be applied to integer and mixed-integer prob-
lems and the latter just addresses integer problems.

Some methods cannot capture unsupported effi-
cient solutions. This is the case of Gabbani and
Magazine (1986) method, which is based on
weighted-sums of the objective functions.

Many approaches, in particular the most recent
ones, are based on criteria reference points, using
Tchebycheff functions or more general achievement
scalarizing functions. Some advantages of this type
of approach can be pointed out. Remember the
method of Marcotte and Soland, which uses
weighted-sums with additional constraints on the
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objective functions. This method cannot be applied
to mixed-integer problems, but the replacement of
weighted-sums by the Tchebycheff metric, proposed
by Durso (1992), has overcome this weakness. Also,
the Tchebycheff metric introduced in the second
approach proposed by Ferreira (1997) has improved
the previous method of the author because this
change enables the elimination of larger regions by
unfeasibility. Therefore, it is noteworthy to observe
that there has been an increasing focus on reference
point approaches to deal with multiobjective integer
and mixed-integer problems.

Finally, a brief comment must be made to the
computational experience of the above-mentioned
methods. Few papers related to computational
experience, the most recent ones being Karaivanova
et al. (1993, 1995) and Alves and Climaco (1999,
2000a). Although the fast evolution of computers
enhances undoubtedly the results, it should be
stressed that more efforts are still necessary to turn
the methods applicable to large problems.

6. Concluding remarks

In this paper we made a revision of interactive
methods devoted to the general case of multiobjec-
tive integer and mixed-integer programming. It
was paid particular attention to interactive
approaches because, in our opinion, they generally
are more adequate to face the difficulties of complex
decision problems. Nonetheless, generating meth-
ods can also be promising if they are appropriately
used, and further investigation on this field can pro-
vide important findings to the development of more
effective interactive methods.

On the other extreme of the spectrum, some
approaches making an a priori articulation of the
decision markers preferences, the utility/value func-
tion approaches, were proposed in scientific litera-
ture. They are the most popular in classical
operations research, in which the preferences of
the decision makers are modeled a priori, assuming
that the model is, in Platonic sense, a faithful
description of reality. It is supposed that, in the con-
struction of the model, the analyst has full informa-
tion and is rational. This type of approach is the
most attractive in terms of computational effort.
However, the descriptive models of optimization
are per se, in our opinion, insufficient to prescribe
decisions in most of the practical problems.

We believe that interactive approaches rooted in
constructivism (open communication protocols) rep-

resent one of the most promising ways of research
to develop adequate MOIP/MOMIP tools for deci-
sion aiding in many complex practical situations.

Other type of interactive tools has been reported,
which assumes the existence of an implicit utility
function of the decision maker. The interactive pro-
tocols are built in order to discover the optimal solu-
tion of that function. These methods constitute an
evolution of those based on the paradigm of optimal-
ity referred to above, providing more flexibility to
the decision makers.

It must be recognized that he research effort in
the development of MOIP/MOMIP methods has
been limited. However, we believe that this is a very
promising area because the interest of including
explicitly multiple objectives in different real world
application areas of integer programming models
is undoubted.

We will exemplify with a short reference to one of
these areas, the telecommunication planning, design
and management. Recently, an increasing number
of scientific papers has appeared in the literature
(see Climaco and Craveirinha, 2004). We emphasize
those related to QoS (quality of service) routing
problems. In fact, the new paradigm of routing tak-
ing into account different metrics related to the
quality of service is very important in many situa-
tions, particularly in Internet problems. Some rout-
ing problems are among those situations where the
decisions must be taken automatically, in real time,
and revised periodically taking into account the
state of certain parameters of the networks also
monitored in real time. This opens new fronts of
research, namely developing rule based approaches
to aggregate the preferences and the use of heuristics
to get solutions in short time. It must also be
remarked that approaches devoted to special cases
of MOIP/MOMIP problems may be very useful in
many practical applications. For example, in rout-
ing problems, the multiobjective shortest-path algo-
rithms are especially useful because they are much
more efficient in computational terms than the gen-
eral-purpose algorithms. As this paper just
addresses to the general case, it is suggested the
reading of other sources, for instance Ehrgott and
Gandibleux (2000), for those interested in special
case approaches.

It must be also stressed that uncertainty is a key
issue in fixing the parameters in MOIP/MOMIP
models as well as to fix the parameters required by
the methods to aggregate the preferences of the deci-
sion makers. In most situations the model cannot
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integrate all the interesting issues of the practical
problem regarding the interests of the decision
maker. Therefore, it is a challenge to work on the
following directions: first, the implementation of
procedures enabling the evaluation of the robust-
ness of the results when some parameters are known
in an imprecise manner, besides the improvement of
sensitivity analysis procedures; secondly, a posteri-
ori detailed analysis of some satisfactory solutions,
taking into account issues not included in the
model, but relevant to choose among more or less
indifferent satisfactory solutions previously selected
by the decision maker using an interactive
approach.

Finally, a brief reference should be made to
meta-heuristic approaches. In the last years, many
research efforts have been assigned to multiobjective
meta-heuristic approaches, namely multiobjective
evolutionary algorithms. A vast list of papers can
be found on evolutionary multiobjective optimiza-
tion, almost published in the last decade (http://
www.lania.mx/~ccoello/EMOO/EMOObib.html).
Most of them apply to particular combinatorial
problems and are non-interactive, aiming at gener-
ating a good approximation of the whole non-dom-
inated solution set. Nevertheless, examples of
interactive approaches to multiobjective 0-1 or inte-
ger problems can be given: Kato and Sakawa (1998)
and Alves and Climaco (2000b) for multiobjective
0-1 programming, and Sakawa et al. (1994) for mul-
tiobjective integer programming. As this type of
approaches is out of the scope of this review, they
have not been comprised in this paper, even though
this is a remarkable research area.
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