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Abstract

We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during sche-
dule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these
kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their
own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each
incoming order. This approach offers several advantages: it is fast, requires relatively little information and facilitates easy
schedule adjustments in reaction to information updates. We compare the agent-based approach to more traditional hier-
archical heuristics in an extensive simulation experiment. We find that a properly designed multi-agent approach performs
as good as or even better than traditional methods. Particularly, the multi-agent approach yields less empty miles and a
more stable service level.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For operational planning and control of many
transportation networks it is important to deal with
uncertainties like transportation times (e.g. due to
congestion), arrival of rush orders during schedule
execution, and order modifications. In combination
with sometimes tight restrictions (e.g. time win-
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dows) this leads to the need for a flexible, stable
and robust planning and control system. It should
be flexible in the sense that schedule adjustments
in reaction to information updates should be easy.
It should be stable in the sense that minor informa-
tion updates (e.g. the arrival of a single rush order)
should have impact on a small part of the schedule
only. It should be robust in the sense that the overall
network performance (e.g. transportation costs,
on-time delivery performance) should remain
acceptable under a large number of scenarios for
unexpected events like rush orders.

Traditionally, operations research (OR) based
global optimization methods are used to construct
.
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integral transport schedules. However, one may
wonder whether such methods are most suitable
for planning and control of stochastic, dynamic
transportation networks. Firstly, most optimization
algorithms require a lot of information in advance.
Secondly, global optimization algorithms can be
sensitive to information updates: a minor modifica-
tion in information may have impact on the sched-
ules of many vehicles. Thirdly, the time required for
the algorithm may not permit timely response to
unexpected events such as equipment failure and
the arrival of rush orders. Finally, flexible transpor-
tation networks may consist of multiple indepen-
dent organizational units that are working in an
autonomous, self-interested and not necessarily
cooperative way. Therefore, these individual players
may not be willing to share all their information
(like their cost structure, current vehicle locations
and current schedule), so that traditional centralized
or hierarchical approaches are not applicable
anymore.

An alternative that has been proposed within the
computer science literature is the multi-agent system
(MAS). Such a system consists of independent intel-
ligent control units linked to physical or functional
entities (e.g. vehicle, order). It seems to be a prom-
ising solution for controlling complex networks,
providing more flexibility, reliability, adaptability
and reconfigurability. Agents act autonomously by
pursuing their own interest and interact with each
other, for example using information exchange
and negotiation mechanisms. In a transportation
network, each order (job) and each resource can
have its own goal-directed agent. For example, a
job agent may focus on on-time delivery against
the lowest possible costs, and a resource agent
may strive for utilization and/or profit maximiza-
tion. A key issue is how to configure agents such
that their self-interested behavior yields a near-opti-
mal solution for the network as a whole. One option
is to use a market mechanism like an auction. An
overall goal for the network performance can be
to balance the total lateness and the total relevant
costs.

The principle of multi-agent systems is elegant
and has clear advantages from an ICT point of
view. However, it is unclear whether the system-
wide performance will be similar to or even better
than the performance of more centralized or hierar-
chically organized planning systems. It is even not
guaranteed whether and when a multi-agent system
will show a stable behavior. That is, will all orders
be transported, will resources properly be utilized
and will prices remain within reasonable bounds in
the absence of a coordination mechanism?

Although many papers have appeared on multi-
agents systems, also applied to logistics, literature
on the performance comparison between traditional
OR-based systems and multi-agents systems is
scarce. In this paper, we aim to make such a com-
parison for a transportation network where orders
(full truck loads) with varying soft time windows
arrive during schedule execution and should be
scheduled in real time. That is, an order should be
assigned to a vehicle and a feasible start time should
be determined. Because a fast response is required,
we use local dispatch rules and serial scheduling as
benchmarks, see van der Heijden et al. (2002) and
Ebben et al. (2005). For the multi-agent system,
we develop an auction mechanism with several pric-
ing variants. To compare the agent-based approach
with the two more traditional approaches, we use
discrete event simulation for an extensive numerical
experiment. As overall network performance crite-
ria we focus on the average on-time delivery per-
centage as service measure, variation in the on-
time delivery percentage as robustness measure and
the empty mile percentage as efficiency measure.
We also use total costs (transportation costs, pen-
alty costs) to measures a combination of service
and efficiency.

The remainder of this paper is structured as fol-
lows. In the next section, we give an overview of
related literature and we explain the contribution
of our paper. In Section 3, we present our model
and in Section 4 we discuss our choice for a partic-
ular agent based planning concept. Next, we discuss
several options for agent bidding and bid evaluation
in Section 5. In Section 6, we briefly present the two
more traditional planning approaches that we use as
benchmarks in a simulation study. We describe the
experimental settings in Section 7 and provide the
numerical results from this study in Section 8. We
end up with conclusions, remarks on generalizations
and directions for further research (Section 9).

2. Related literature

2.1. Transport planning

Our problem of assigning jobs to vehicles in a
transportation network is well known in the area
of vehicle routing problems (VRP) as a real-time
multi-vehicle pickup and delivery problem with time
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windows. This problem type is also known as the
dial-a-ride problem. Such problems arise a.o. in
the transportation of elderly and/or disabled per-
sons, shared taxi services, certain courier services
and so on. We consider a variant with full truck-
loads, stochastic arrival of orders and stochastic
handling- and travel times, where even the probabil-
ity distributions are not known in advance.

The VRP and its variants have been studied
extensively; see Laporte (1992) and Toth and Vigo
(2002) for a survey. It is well known that most vari-
ants of the VRP problem are NP-hard, so that it is
virtually impossible to find an optimal solution
within a short time. Most work focuses on static
and deterministic problems where all information
is known when the schedule has to be generated,
see for example Desrosiers et al. (1995). When the
input data (travel times, demands) are stochastic
and depend on time, the planning result is not a
set of routes but rather a policy that prescribes
how the routes should evolve as a function of those
inputs that evolve in real-time (Psaraftis, 1988).
Such policies have been studied in several papers,
see for example Psaraftis (1988) and Gendreau
and Potvin (1998). The most common approach to
handle these problems is to solve a model using
the data that are known at a certain point in time,
and to reoptimize as new data become available.
Because a fast response is required, it is common
to use relatively simple heuristics or parallel compu-
tation methods, see Giani et al. (2003) for an
overview.

The dynamic assignment problem as discussed in
Godfrey and Powell (2002) also shows some similar-
ities. Here resources (e.g. vehicles) are also dynami-
cally assigned to tasks that arrive during schedule
execution. Key differences are (1) each individual
vehicle schedule contains only one order at a time
(2) the price of an order is exogenous and the only
issue is whether to accept this order and if so, to
assign a vehicle to this order (3) only the most prof-
itable orders are accepted . In Powell and Carvalho
(1998), they use so-called Logistics Queuing Net-
works (LQN) to decompose the large and complex
scheduling problem by a series of very small prob-
lems. In this way, many real world details can be
included in the model that cannot be dealt with using
traditional approaches. Still this is a centralized
planning approach in contrast to the decentralized
agent-based approach that we consider in this paper.

Closely related work can be found in Regan et al.
(1995, 1996, 1998) who investigate the dynamic
assignment of vehicles to loads for real-time truck-
load pickup and delivery problems. They provide
relatively simple and fast local rules. Yang et al.
(2004) extend this work to a formal optimization-
based approach for the same problem class. They
use simulation to compare this approach with the
previously developed heuristics. Mahmassani et al.
(2000) present a hybrid approach combining fast
heuristics for initial assignment with the optimiza-
tion-based approach for the off-line problem of
reassigning and sequencing accepted loads. Kim
et al. (2002) develop several approaches for routing
and scheduling in oversaturated demand situations.

2.2. Agent-based logistic planning

According to Wooldridge and Jennings (1995),
an agent is a hardware or software based computer
system with key properties autonomy, social ability,
reactivity and pro-activeness. A multi-agent system
(MAS) is a group of agents that interact with each
other to solve a complex problem. One way to
achieve this interaction between agents is by using
some market mechanism where resource agents
compete for orders by dynamic pricing of orders.
In this paper we will use a market-based control
mechanism for the allocation of vehicles to trans-
port orders.

In the last years, research on multi-agent systems
also has boosted in the logistics and operations
research community. Particularly, several papers
have appeared in the area of manufacturing sched-
uling and control. For example Cardon et al.
(2000) who use genetic algorithms to solve job-shop
scheduling problems, and derived schedule improve-
ments by agent negotiations. There are also some
applications in material handling and inventory
management (Kim et al., 2002) and supply chain
management (Ertogral and Wu, 2000). Only Dewan
and Joshi (2000) compare their agent approach with
an exact solution found by CPLEX. They conclude
that centralized models are an unattractive choice
compared to decentralized models because of com-
putational inefficiency and degradation in the qual-
ity of solution with increasing problem size.

Also, several papers on agent-based transport
planning and scheduling have been published. In
the area of railroad scheduling, Böcker et al.
(2001) present a multi-agent approach for real-time
coupling and sharing of train wagons. In Zhu et al.
(2000) a multi-agent solution for air cargo assign-
ment is considered. Although this paper contains
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an interesting agent-based application, it does not
provide detailed information on the design of a
multi-agent system itself in terms of goals, behavior,
pricing strategies etc. An interesting contribution
comes from Fischer et al. (1996) who developed a
simulation testbed for multi-agent transport plan-
ning, called MARS. They describe the information
architecture and decision structure for quite generic
transport planning systems and test their model on
the traditional vehicle routing problem with time-
windows where all orders are known in advance.

In Hoen and Poutré (2004) a multi-agent system
is presented for real-time vehicle routing problems
with consolidation in a multi-company setting.
Cargo is assigned to vehicles using a Vickrey auc-
tion. They show the advantage of truck decommit-
ment, which is the option to break an agreement in
favor of a better deal if another truck from the same
company can handle the cargo. They use a simple
bidding strategy, i.e. the vehicle bid equals the reve-
nue of an order that is delivered minus the additional
pickup, transportation and delivery costs. They do
not consider time windows within a day.

Another interesting contribution comes from
Figliozzi et al. (2003), who present a framework
for the study of carriers’ strategies in an auction
marketplace for dynamic full truckload vehicle
routing problems with time windows. They also
use a Vickrey auction and a simple heuristic for gen-
erating bids, namely the additional costs of serving a
shipment by appending it to the end of the vehicle
schedule. They focus on profit allocation rather
than on the efficiency of assignment decisions. In
Figliozzi et al. (2004) they study the impact of differ-
ent assignment strategies on the travel costs under
various demand conditions. They consider four fleet
assignment methods that are related to the agent-
based approaches considered in this paper. We
explain the differences compared to our research in
the next section.

2.3. Contribution to the literature

Although some results on multi-agent planning
and scheduling are available in the area of transpor-
tation, the level of intelligence is still limited in many
cases. Also, many papers deal with the design of an
agent architecture rather than analyzing the relation
between agent behavior and the overall network
performance. Especially little is known about the
performance of agent-based transportation control
compared with more traditional control methods.
Our contribution focuses on the following new
issues for agent-based transport scheduling:

• A combination of soft time windows and incom-
plete information (demand, order handling times).

• A study of the impact of additional intelligence
of agents (both vehicle agents and shipper agents)
on the overall system performance.

• A comparison of our multi-agent system to more
traditional approaches for real time transport
planning based on fast look-ahead rules and
OR algorithms (serial scheduling).

• An analysis of performance robustness, measured
by the standard deviation of the daily service
levels.

• An analysis of the impact of order characteristics
(such as tightness of the time window) on the
overall costs.
3. Model, assumptions, terminology and notation

The key issue in our research is to match avail-
able transportation capacity to orders that arrive
during schedule execution. The matching of avail-
able vehicle capacity with incoming orders can be
done using OR-based heuristics or using an agent-
based approach. We make the following model
assumptions:

• All transport orders have a size of one Full Truck
Load (FTL);

• Vehicles are location aware and fleet owners are
aware of the next node to be visited by their
vehicles;

• No orders may be rejected, even if it is clear that
an order cannot be delivered in time;

• The total transportation capacity is sufficient to
handle all orders in the long run;

• An order in process cannot be interrupted (no
preemption); that is, a vehicle may not temporar-
ily drop a load in order to handle a more profit-
able load and return later on; however, empty
moves may be interrupted any time;

• Communication between shippers, vehicles and
fleet owners is possible any time.
In the next sections we describe our transporta-
tion problem in more detail.

3.1. Transportation network and demand

We consider a transportation network that is
inspired by a case for an automated transportation
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network using AGVs (Automatic Guided Vehicles)
as described in van der Heijden et al. (2002). The
network consists of a set of nodes and a set of arcs
connecting these nodes. In the case study, the arcs
represent underground tubes through which the
AGVs drive between nodes (terminals). Each node
has a number of docks for loading and unloading
cargo. As a consequence, vehicles may face signifi-
cant waiting times at the nodes. For more details
we refer to Section 7.1.

Orders to transport unit loads between these
nodes arrive one-by-one according to some
unknown stochastic arrival process. Orders are
characterized by the following parameters: the ori-
gin node i, the destination node j, the earliest pickup
time at the origin r, the latest delivery time at the
destination d (due time) and the time a at which
the order becomes known in the network a 6 r.
The earliest pickup time is a hard restriction and
the due time is a soft restriction. The time to handle
an order from node i to node j (waiting for loading,
loading, driving from node i to node j, waiting for
unloading, and unloading) is a random variable
and denoted by sf

ij. Variation in handling times
may arise from traffic congestion, variation in load-
ing and unloading times and waiting times at the
nodes. We do not consider limitations in loading
and unloading capacity at the docks explicitly, but
include it as a stochastic effect in the transport order
handling times. The time to drive empty from node i

to node j is a random variable se
ij. The order han-

dling times and travel times of empty vehicles are
unknown and should be learned from historic data.

3.2. Cost structure and performance measurement

To evaluate the system performance, we use the
following key performance indicators:

• Service level, i.e. the fraction of orders that is
delivered before the due time.

• Stability of the service level, measured by the
standard deviation in service level per simulation
period.

• Percentage of driving loaded, i.e. the fraction of
the total distance that is traveled empty, being
an indicator for energy waste and loss of vehicle
capacity.

• Relative additional costs, defined as the ratio of
the costs for empty driving and penalties and the
costs for driving loaded, or (total costs � costs
driving loaded)/costs driving loaded.
The relevant cost factors for vehicles are (i) vari-
able costs ct per time unit, both for loaded or empty
driving (ii) penalty costs cp(T) as function of the tar-
diness T. We assume that the fixed costs are identi-
cal for all vehicles, so that they are not relevant for
scheduling decisions.
3.3. Schedules

The transport schedule consists of a set of sched-
ules per vehicle. Each vehicle has a list of jobs and a
schedule to execute these jobs. Here we use the term
‘job’ for orders that have been accepted by a vehicle
for execution.

Formally, we define a vehicle schedule as a
sequence of actions of the following types: (i) move
loaded along arc (i, j); (ii) move empty along arc (i, j)
(iii) wait at node j until time t. If a job has been
delivered at node i and the next job in the schedule
has to be loaded at j later on, the vehicle moves
immediately empty to j and waits over there. At
any point in time, the first job in a vehicle schedule
is in execution and cannot be interrupted. A sche-
dule will always end with option (iii) at some node
with t =1. Given a set of K jobs, the number of
job sequences equals K! Given a certain job
sequence, the timing of the jobs and the correspond-
ing empty moves should be determined.

Vehicle schedules are updated at the following
events: (a) completion of the first action in a sche-
dule (b) matching a new external load with available
vehicle capacity. Depending on the control method,
also periodical replanning is possible.
4. Agent-based planning concepts

In our agent-based planning concept, we assign
vehicles to jobs using a market-like negotiation pro-
tocol that implicitly coordinates the agents’ deci-
sions. The definition of such an agent-based
planning concept depend on three key choices: (i)
which agents to distinguish with their tasks and goals,
(ii) which products (services) to trade, and (iii) which
market mechanism (auction) to define. We will
address these three issues below. The goal-directed
behavior of each agent will be discussed in Section 5.

4.1. Agent types

To assign orders to vehicles, we choose for an ele-
mentary structure with one agent per vehicle and
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one agent per order. Further, we use a fleet manager
agent to collect and analyze auction and processing
time data of all its vehicles and to distribute the
results to its vehicles when needed. In this way,
the vehicle agents have access to more information
than their own history only. The same applies to
the shipper agents for all the orders issued by the
shipper. Hence our multi-agent structure consists
of four agent types, see Fig. 1.

A vehicle agent has the goal to maximize its
profit by deploying its capacity. A job agent has
the goal to arrange transportation of the corre-
sponding load before the due time at minimal costs.
In a basic structure, all vehicle agents and job agents
meet on the marketplace where they negotiate to
assign jobs to vehicles. Each vehicle agent maintains
its own schedule. Hence the solution to the global
scheduling problem emerges from the local schedul-
ing and pricing decisions of the vehicle agents. In
this way, one complex overall plan is replaced by
many smaller and simpler plans.

The introduction of hierarchy may improve the
coordination between agents. We can define hierar-
chy both at the job level and at the resource level. At
the job level, a shipper agent can be responsible for
a set of orders. A possible task is to reallocate the
transport capacity that has been acquired such that
their orders are handled before the due times at low-
est costs. For example, they may switch an order
that has been scheduled but that has not been
started yet with a rush order with a similar trajec-
tory. To this end, they have full information on all
orders under their control and all transport capacity
that has been acquired for these orders. At the
resource level, a fleet agent can be responsible for
a subset of vehicles. If they know the positions
Fleet agent

Vehicle agent

Vehicle agent

Fleet agent

Vehicle agent

Vehicle agent

Marke

Fig. 1. Agent structure for tr
and local schedules of all their vehicles, they can
reassign vehicles to jobs to improve the profit of
the fleet.

Although a hierarchical concept is interesting, we
start with a fully decentralized concept. It is interest-
ing to examine whether such a simple agent-based
concept can already meet the performance of tradi-
tional OR based planning methods. However, we
will use fleet agents and shipper agents to collect rel-
evant information and to distribute it to the vehicle
agents and job agents. In Sections 5.1 and 5.2 we
present two extensions that require some form of
hierarchical coordination.

4.2. Product definition

To create a marketplace, we need a product def-
inition. We distinguish the following options:

• Transportation of an order from location i to
location j, to be loaded not earlier than the
release time r and to be delivered before the
due time d.

• Transport capacity of a unit load that is available
at node i at time t1 to be used during a time per-
iod T. The advantage compared to the first
option is that it provides the flexibility to reserve
capacity for future jobs with some arbitrary des-
tination. However, bidding is harder because not
much can be said about the expected vehicle loca-
tion at time t1 + T.

• Transport capacity of N vehicle loads that can be
used in some time interval [t1, t2]. Such a bulk
trade may be advantageous for fleet management
as a whole, but it is not suitable for a decentral-
ized planning concept.
Shipper agent

Job agent

Job agent

Shipper agent

Job agent

Job agent

t

ansportation networks.
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• Transport capacity of a unit load from node A to
node B that has to be picked up at time t1 and
that has to be delivered at time t2. Although this
definition fits well with the order definition, it
hampers flexibility for dynamic reallocation of
capacity when additional (rush) orders arrive.

We choose for the first option, because it offers
both simplicity for bidding and flexibility for sche-
dule alteration, particularly if the order due time
may be violated at some penalty costs as described
in Section 3.2.

4.3. Auctioning mechanism

Several auction mechanisms have been proposed
for distributed scheduling, see e.g. Wellman and
Walsh (2001). Some common auction types are:

• Bargaining, this is a one-on-one negotiation pro-
tocol where all trading partners contact each
other individually.

• Sealed-bid auctions where every bidder submits
his bid only once and the best bid is selected; spe-
cial cases are the first-price sealed-bid auction
where exactly the price offered is paid, and the
Vickrey auction in which the bidder receives the
price of the one but best offer (second-price
sealed-bid).

• Open outcry auctions consist of multiple bidding
rounds where all bids are known to each bidder.
Variants are (i) the English auction, where bid-
ders sequentially either raise their bids or with-
draw in each round until a single bidder is left,
and (ii) the Dutch auction, where the price is
reduced step by step starting from a high level
until some bidder accepts the price.

We select the Vickrey auction as mechanism in
our paper because of its simplicity. First of all it
requires a single bidding round. Second, under
some mild conditions the optimal bid is the net
cost price of the bidder, who will make profit from
the margin between the two best bids (cf. Vickrey,
1961). Therefore, it provides a natural mechanism
for acceptable profits. An advantage of this simple
bid price is that it enables us to concentrate on the
transportation control variables themselves rather
than on learning and rationality issues of the
agents. A drawback is that the profits may reduce
to (almost) zero if the number of competitors
becomes large.
We implement the market mechanism as follows.
Each time an order l arrives, the corresponding job
agent starts an auction by asking all vehicles to bid.
Each vehicle agent v creates a single bid b, consisting
of a price, an expected departure time and an
expected arrival time. Next, the job agent evaluates
all bids and sends a grant or reject message to the
vehicle agents. We allow the job agent to reject all
bids if it expects to receive a better bid later on
(see next section).

5. Bid calculation and evaluation

5.1. Bid calculation by vehicle agents

Let us denote the current schedule of vehicle v by
S0

v . The acceptance of an additional job will lead to a
new vehicle schedule, for which we may consider
several alternatives Sn

v , where n is the index of the
vehicle schedule alternative. For example, we may
insert the new job at various positions in the current
schedule or we may shuffle the entire schedule to
find a new optimum. Because we use a Vickrey auc-
tion, the bid price of vehicle v equals to the mini-
mum additional costs over all alternative schedules
n. As mentioned in Section 3.2, the additional costs
depend on the additional time needed to move the
load, possibly additional waiting time and the
change in the total penalty costs for tardiness

bP v;l ¼ min
n

 
ct

vDT v;l;n þ cw
v DW v;l;n

þ
X
8o2Sn

v

fcd
oðDv;o;l;ntÞ � cd

oðDv;o;l;0Þg
!

where DTv,l,n is the expected additional travel- and
handling time required for vehicle v in schedule
alternative n to transport the job l, DWv,l,n is the ex-
pected additional waiting time for vehicle v in sche-
dule alternative n after adding job l (which may be
negative if the new job can be inserted in a gap in
the current vehicle schedule thereby reducing wait-
ing time), and Dv,o,l,n is the tardiness of job o after
adding job l to the schedule of vehicle v using alter-
native n (where the tardiness Dv,l,l,0 of the new job l

in the current schedule is zero because it has not
been scheduled yet).

Note that we cannot simply include the difference
in total tardiness in the bid price, because the pen-
alty costs are not necessarily a linear function of
the tardiness. It is obvious that a bid depends on
the internal order scheduling of the vehicle agent.
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We consider three variants for internal vehicle
scheduling.

First, the simplest method (called AgentEnd) is to
add a new job to the end of the current schedule. So,
we have a single schedule alternative (n = 1). Then
the change in penalty costs can only be due to tardi-
ness for job l because the expected arrival times of
the jobs in the current schedule are not affected.
Additional waiting time DWv,l,1 can only occur at
the origin of job l. The additional travel time DTv,l,1

equals the handling time of order l plus the time
needed to move the vehicle empty from the end
location of schedule S�v to the start location of job l.

A second option is to insert the new job at any
position in the existing schedule S�v without altering
the order of execution for the other jobs. We will refer
to this option as AgentInsert. Hence the number of
schedule alternatives equals the number of jobs in
the current schedule, because the first job is in execu-
tion. For bid calculation we have to consider the cost
components for the new job plus all jobs from the
current schedule that will be served later on.

A third option is to construct a completely new
schedule except for the job currently in execution.
As this means solving a Traveling Salesman Problem
(TSP), we refer to this method as AgentTSP. We use
a depth-first, branch and bound algorithm, where we
used an upper bound found with AgentInsert to test
the lower bound for the remaining branch. This
requires not too much computation time because
the number of jobs in a vehicle schedule is usually
small (say less than ten) and AgentInsert provides
a reasonable upper bound. Otherwise we have to rely
upon well known fast heuristics for the TSP, such as
tabu search (cf. Gendreau et al., 1994).

Because of the dynamic nature of the problem it is
not guaranteed that the initial assignment of a job to
a vehicle remains optimal as new orders arrive and
travel time realizations become known. Therefore
we introduce an option to exchange jobs between
vehicles that we call Trade. Whenever a vehicle, after
unloading at a certain terminal i, has to travel empty
to terminal j, its agent searches for another vehicle
agent that has a job from i to j that has been released
but that is not started yet. Then the job that yields
the highest savings (if positive) will be transferred
to the vehicle to avoid empty traveling.

5.2. Bid evaluation by job agents

The job agents have to evaluate all bids; deter-
mine for each bid whether to accept or to reject it.
We consider two variants for job agent behavior.
In the first variant, the agent simply accepts the best
bid received by all vehicle agents. In the second var-
iant, the job agent rejects all bids if they are all
higher than a certain threshold. The idea behind this
is that the job agent may expect to receive a better
bid when reauctioning at a later point in time. After
all, prices fluctuate over time due to changes in the
available transportation capacity and in the vehicle
schedules. So if the best bid is relatively high (which
can be learned from history) and there is still quite
some time until the latest pickup time of the job at
its origin, it may be better to wait for a more attrac-
tive price. As the deadline for dispatch comes
nearer, the job agent may increase the threshold to
get transportation.

We assume fixed periods between reauctioning of
an order that has not been assigned to a vehicle yet.
We call this variant DynamicThreshold. The deci-
sion of the job agent is (1) to set an initial threshold
price for the first auction round (2) to determine the
threshold prices for all further auction rounds. The
fixed time between auction rounds for the same
order is a parameter of the job agent. In order to
determine the thresholds, the job agents need insight
in the cost and handling times for their routes. As
mentioned in Section 4.1, the shipper agents keep
track of travel times and prices and distribute it to
the job agents.

The bid acceptance under DynamicThreshold
works as follows. For the timing between successive
auctions for the same order, we take a fixed period
R. It is logical to relate the threshold price to the max-
imum number of auction rounds N before the job has
to be transported. We have that N = b(d � t � a)/
Rc + 1 with d the due date, a the first announcement
time of the order and t the expected handling time as
obtained from the shipper agent. Without loss of gen-
erality, we assume that R is such that always N P 2 (if
not, the DynamicThreshold variant coincides with
the first variant discussed in this section in which
the lowest bid is always accepted).

The threshold prices can be based on expecta-
tions of the outcomes of future auctions. In this
case, the threshold price for a certain round equals
the expected price we could receive in the next auc-
tion rounds given a certain threshold policy. How-
ever, it is difficult to model the outcomes because
different auction rounds are not independent.
Therefore we will consider a much simpler strategy.

The threshold price pN for the last auction round
is always infinite, i.e. any offer is accepted in order
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to force the job to be served. The first threshold
price p1 equals a certain minimum price Pmin and
the threshold price for the second last auction round
pN�1 equals a maximum price Pmax. These values
Pmin and Pmax can be based on historical data pro-
vided by the shipper agent. We consider two pricing
strategies: linear and quadratic. For the linear strat-
egy, the threshold price pr in round r is given by

pr ¼ P min þ
P max � P min

N � 2

� �
ðr � 1Þ

for r ¼ 1; . . . ;N � 1

For the quadratic pricing strategy we define

pr ¼ P min þ
P max � P min

ðN � 2Þ2

 !
ðr � 1Þ2

for r ¼ 1; . . . ;N � 1

We will examine the impact of DynamicThresh-
old in Section 8.

6. Traditional OR based heuristics as benchmark

Traditionally, heuristics from operations
research are used for real-time scheduling in trans-
port networks. We will use two of the methods from
van der Heijden et al. (2002) as benchmark for our
agent system, because the focus in that paper is on a
similar problem as we consider here.

Both methods that we consider are hierarchical
methods. At the top level, vehicles are distributed
amongst nodes based on actual and expected orders,
without detailed job assignment. At the node level,
vehicles are assigned to jobs, where only the vehicles
can be used that are assigned to that node by the top
level. The advantage of such an approach is that a
complex schedule is decomposed into two simpler
decisions. One of these decisions, assignment of
vehicles to jobs, should be done in real time. The
other decision, distribution of vehicles amongst
nodes, should be done frequently, but not necessar-
ily real time, because it is a higher-level decision
without immediate consequences. We will use two
methods that fit within this hierarchical framework,
namely hierarchical coordination and integrated
planning.

Under hierarchical coordination, the top level
distributes vehicles using a simple priority rule,
based on a central order list and a central overview
of all vehicle positions and current activities. First,
we calculate the latest departure time for each order
as the due time minus an offset for the expected han-
dling time (loading, transportation, unloading) and
the variation in the handling time. Next, we sort the
order list in increasing order of latest departure
times. We process the list sequentially. To each
order, we assign the vehicle that can be available
at the earliest point in time. If a vehicle is waiting
at or driving to a different node, the top level issues
an empty vehicle repositioning orders with corre-
sponding latest dispatch time to that node.

At the node level, we have a list of orders to be
dispatched (with latest departure time) and a list
of empty vehicle dispatch orders (with latest dis-
patch time). Every time a vehicle becomes available
at the node, we choose the highest priority order
from both lists. For efficiency reasons, we try to
combine empty dispatch orders with load dispatch
orders if possible. For example, if it is most urgent
to dispatch a job from node A to node B, we look
in the order list of node A whether there is a (lower
priority) load dispatch order from A to B, and if so,
the vehicle takes this load on its trip. Hence the
node level operates independently of the top level,
but within the conditions set by the top level (see
van der Heijden et al. (2002) for more details). In
the remainder of this paper we refer to this method
by LocalControl.

In the integrated planning approach, we con-
struct a better planning to distribute vehicles over
nodes. To this end, we use serial scheduling (Ebben
et al., 2005), where different priority rules are being
used to create a sequence of jobs, which are virtually
assigned to vehicles. At the node level, we still
decide on the assignment of jobs to vehicles. How-
ever, to maintain the structure of the vehicle distri-
bution planning from the top level, the node level
has to handle all orders in a sequence that has been
prescribed by the top level. In that sense, we move
responsibility from the node level to the top level,
hoping to receive a better performance in return in
terms of fill rate and distance traveled empty. In
the remainder of this paper we refer to this method
by SerialScheduling.

The aim of a hierarchical control concept as
described above is to construct a more flexible and
fast schedule compared to a fully centralized con-
cept. The difference between centralized, hierarchi-
cal and heterarchical (agent based) control
structures is illustrated in Fig. 2.

Of course, a hierarchical control concept has
some advantages compared to purely central con-
trol. It requires less data exchange and is capable
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of reacting quicker to unexpected events because of
the allocation of tasks and responsibilities to two
hierarchical levels. However, this hierarchical
decomposition of control does not take into account
the different roles of various independent stakehold-
ers that negotiate on their mutual services and cor-
responding prices. Besides, a key difference with the
agent approach is that under the hierarchical plan-
ning all order and vehicle information should be
centrally available and that a central vehicle distri-
bution plan is constructed.

7. Experimental setting

In this section we discuss the experimental
design. We successively describe the network char-
acteristics (7.1), the fixed parameters settings (7.2)
and the experimental factors (7.3).

7.1. Network characteristics

To test the proposed multi-agent concepts and to
compare them with other control methods, we use
network settings inspired by a case study on a pro-
posed underground transportation system near
Amsterdam Airport Schiphol, the Netherlands
(van der Heijden et al., 2002). We refer to this appli-
cation as the OLS case, which is the Dutch abbrevi-
ation for underground logistic system. In this
system, Automated Guided Vehicles (AGVs) carry
cargo between terminals that are connected by
tubes.

We use two different network settings. First a
network layout that is derived from a specific net-
work layout for the OLS-case with an internal
transportation system at Amsterdam Airport Schi-
phol (AAS), see van der Heijden et al. (2002). This
network consists of a connection of the airport with
the world’s largest flower auction market in Aals-
meer (VBA) and a planned rail terminal near the
Zwanenburg landing strip (RTZ). At Aalsmeer
there is 1 terminal, at Schiphol Airport there are 8
terminals and there is 1 rail terminal. Besides, there
is a central parking area where AGVs can wait if
there are temporary no jobs, because the parking
space at (underground) terminals is limited. Each
terminal has an internal track structure and consists
of 4 docks where AGVs can be loaded or unloaded.
The terminals are connected by tubes as illustrated
in Fig. 3.

The times to drive through or along a terminal
are significant, as a terminal may have a length up
to 200 m and AGVs drive slower within terminals
for safety reasons (see next section). When an
AGV enters a terminal to pickup or to deliver an
order, it is assigned to a specific dock within the ter-
minal. The distance from the terminal entrance to
the dock may vary between 100 and 400 m, so the
dock assignment causes a part of the variation in
order handling times.

Because this is a quite specific setting, we also
consider a second network structure consisting of
20 nodes that are uniformly placed in a squared
region of 10 · 10 km. All nodes are mutually con-
nected and the distances between these nodes are
Euclidean. A central parking area is located in the
centre of the area.

One way to deal with random networks is to gen-
erate a few (2–3) random network structures and
perform some replications for each scenario. This
provides insight in the performance of a few config-
urations only. Because we are interested in the aver-
age performance of the control methods over a
range of random network structures, we chose for
another option. That is, we start each replication
with the creation of a new network, i.e. reposition-
ing the location of all nodes. Of course the required
number of replications will increase, but we will also
get a better idea of the average performance of the
various control methods.



Fig. 3. OLS network structure.
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Orders arrive according to a (non)stationary Poi-
son process (cf. Section 7.3). Travel times between
terminal entrances are deterministic and known in
advance because they only depend on the distance
and speed of vehicles. Although the distances are
deterministic, the handling times show variation
due to the following:

• Variations in loading and unloading times.
• Waiting times at the terminals due to limitations

on the number of AGVs on terminals.
• Waiting times at the terminals due to limitations

in dock capacity.
• Dock-dependent distances on terminals.

Therefore, we treat the handling times as random
variables. The mean and standard deviation of the
handling times are dynamically being updated using
a standard exponential smoothing procedure, see
Silver et al. (1998). In case of agent-based control
we use the fleet manager to keep track of all han-
dling times and the corresponding estimates are
available to all vehicles under its control.

To provide an indication of the stochasticity we
found the following values in the OLS network set-
tings. The expected handling times range from
5 minutes (T1–T2) with standard deviation of
40 seconds, to 25 minutes (VBA to T6) with a stan-
dard deviation of 90 seconds. Although these devia-
tions are not very large, they are significant in the
handling times.
7.2. Fixed parameter settings

The vehicles have a speed of 6 m/s outside the
terminals and 2 m/s inside the terminals. The maxi-
mum number of AGVs allowed at a terminal is lim-
ited to 5.

As costs factors we use travel costs ct = 1 per min-
ute and a linear penalty cost function cp(T) = 10T,
where the tardiness equals T minutes. These penalty
costs are such that in case of agent-based control a
job agent will almost always prefer an AGV that
delivers the job with minimum tardiness.

The agent-based approaches also use waiting
costs in their bid prices. We set these costs equal
to the historical average profit per time unit. This
information is collected and distributed by the fleet
agent.

We set the parameters of DynamicThreshold as
follows. Pmin is equal to the mean price for a specific
route, Pmax to the maximum price paid so far for
this route and the fixed time interval R between
the auction rounds is set to 5 minutes, which equals
the minimum handling time in the OLS network.
The replanning period for the two hierarchical
methods is set to 4 minutes.

7.3. Experimental factors

In this section, we discuss the factors that we will
vary in our simulation experiments for both the
OLS network case and the random networks.
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7.3.1. OLS network

Table 1 shows the experimental factors and their
settings for the OLS network.

The experimental factor ‘‘Demand structure’’
refers to the variation in transportation flows over
time. We distinguish three cases: Stable, Dynamic,
and Highly Dynamic. In the stable demand struc-
ture, (i) the order arrival rates are identical for all
origin destination pairs, (ii) the order arrival rates
are constant over the day, and (iii) all orders have
a same time window of 60 minutes.

In the dynamic demand structure, (i) the order
arrival rates are still identical for all origin destina-
tion pairs, (ii) the time between orders vary over
hours of the day according to a sinus function with
period of half a day, the same mean as in the stable
demand structure, and an amplitude of 3 seconds,
and (iii) we have three different time-windows of
30, 60, and 90 minutes that are drawn with equal
probability.

The highly dynamic demand structure is similar
to the dynamic demand situation, except that the
order arrival rates are no longer identical for all ori-
gin destination pairs. The imbalance is given in
Table 2. Within AAS all terminals have equal prob-
ability of being origin or destination.

The average number of orders per day is 1800,
that is a time-between-orders (TBO) of 48 seconds.
These orders have to be transported by a fixed num-
ber of AGVs. This number is chosen such that all
methods are capable of handing all orders in the
long run, but not necessarily on time. In case of a
stable or dynamic demand structure we choose to
use 20 AGVs and in case of a highly dynamic
Table 1
Experimental factors

Factor Range

Demand structure Stable, dynamic, highly dynamic
Vehicle control LocalControl, SerialScheduling,

AgentEnd, AgentInsert, AgentTSP
Vehicle coordination None, Trade
Job control None, DynamicThreshold (linear),

DynamicThreshold (quadratic)

Table 2
Distribution of transportation flows

From/to AAS (%) RTZ (%) VBA (%)

AAS 0 26 10
RTZ 40 0 4
VBA 8 12 0
demand structure 22 AGVs. The announcement
times a for jobs are equal to the earliest departure
time r. Therefore the time-windows can be defined
as the time between the first auction for a job and
the due time d.

To limit the number of experiments, we test the
vehicle agent coordination (Trade) and the job
agent control (DynamicThreshold) for the highly
dynamic demand structure only. We consider four
settings: Trade, DynamicThreshold with linear pric-
ing, DynamicThreshold with quadratic pricing and
the combination of Trade with DynamicThreshold,
linear pricing. We omit the combination of Trade
with DynamicThreshold, quadratic pricing because
we observed that the differences between both price
functions are small (see Section 8.1).

7.3.2. Random network

As a basic scenario we use a network consisting
of 20 nodes, 20 AGVs, a time between orders of
1.5 minute and a time-window of 60 minutes. As
key performance indicator we use the average rela-
tive costs per order, see Section 3.2. This value
resembles the extra costs we make relative to the
minimum costs for all orders.

The experimental factors can be found in Table
3. Each of these factors will be varied keeping the
other factors equal to the basic scenario.

We use as control methods LocalControl,
SerialScheduling, AgentEnd, AgentInsert and the
combination of AgentInsert with Trade and
DynamicThreshold with linear pricing, referred to
as AgentInsertSmart. To vary the time between
orders during a day, we describe the TBO as a sinus
with a period of half a day, a mean of 1.5 minute
and change the amplitude.

We use a replication/deletion approach for our
simulations (Law and Kelton, 2000), where each
experiment consists of a sufficient number of repli-
cations (each with different seeds) of six days, each
including a one-day warm-up period. The number
Table 3
Experimental factors

Factor Value

Length time-windows (seconds) 50, 70, 90, 110, 130
Look-ahead (minutes) 0, 3, 6, 9, 12
Time between orders (seconds) 84, 87, 90, 93, 96
Amplitude in deviation

from mean TBO (seconds)
2, 4, 6, 8, 10

Number of nodes 12, 14, 16, 18, 20
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of replications will be determined in the next
sections.

8. Numerical results

In this section, we present the results of our sim-
ulation experiments. First, we present the results for
the OLS network (8.1) and afterwards for the ran-
dom networks (8.2).

8.1. OLS network

We first determine the number of replications. To
this end we consider the percentage of driving loaded
(DL) and the service levels (SL) of all control meth-
ods for all three demand structures. The maximum
number of replications needed with a confidence level
of 99% and relative error of 5% is 10. To facilitate
comparison, we use 10 replications for all scenarios.

We also performed a paired t-test on the key per-
formance indicators SL and DL of SerialScheduling
and AgentInsert using the 10 replications with a sta-
ble demand structure. Results show that both differ-
ences are significant with a confidence level of 99%.
The results for all control methods for the different
demand structures can be found in Table 4.
Table 4
Simulation results: comparing control methods

Control Stable Dynamic Highly dynamic

DL SL DL SL DL SL

LocalControl 73 95.9 72 91.4 78 93.6
SerialScheduling 73 99.2 74 96.6 78 94.8
AgentEnd 82 99.7 80 95.3 82 93.9
AgentInsert 83 100 80 97.8 82 97.0
AgentTSP 83 100 80 98.1 82 97.2
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We see that AgentInsert and AgentTSP both
yield similar results which are better than the hierar-
chical methods LocalControl and SerialScheduling.
Because of the dynamic system behavior, solving a
TSP problem exactly has apparently little added
value. Because AgentTSP is also computationally
intensive we skip this method in the remainder.
We see that AgentEnd yields lower service levels
in some cases. With regard to the percentage of driv-
ing loaded we see that our agent approach always
perform better than the hierarchical control
methods.

The differences in service levels is larger in case of
dynamic demand compared to stable demand. In
case of highly dynamic demand, we even observe
that decreasing the number of AGVs from 22 to
21 yields lower service levels for the agent-based
methods whereas the Local Control and Serial
Scheduling heuristics are simply not able to handle
all demand (the order backlog steadily increases).

To gain insight in the sensitivity of the control
methods to the order arrival intensity we vary the
time between orders from 46 to 50. The impact on
the percentage of driving loaded for the different
control methods in case of stable demand can be
found in Fig. 4(a) and the impact on the service lev-
els in Fig. 4(b).

From these figures we see that with increasing
TBO, the service levels go to 100% for all control
methods. However, the differences in percentage of
driving loaded between the heuristics and the two
agent methods increase. This means that the agent
methods do not lead to unnecessary empty miles if
the transportation capacity is sufficient to handle
all orders in time. In case of (highly) dynamic
demand situations this effective use of capacity can
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be used to cope with uncertainty such as rush
orders. Therefore our agent control seems to be
more robust than the two hierarchical control meth-
ods. This can also be seen from the standard devia-
tion in service levels per replication over the ten
replications for both the stable demand structure
(Fig. 5(b)) and the highly dynamic demand structure
(Fig. 5(a)). We see that our agent control is less sen-
sitive to variations in demand volume, loading times
and unloading times.

To examine the impact of additional agent intel-
ligence, we show the key performance indicators DL
and SL for agent systems with or without vehicle
coordination (Trade) and DynamicThreshold (both
linear and quadratic) in Table 5.

We see that the use of additional intelligence
improves the performance, especially in case of
AgentEnd. However, the improvement in service
level is only significant at confidence level 98% for
Trade. It might be surprising to see that the addi-
tional intelligence does not improve the percentage
of driving loaded. The reason for this is that there
is very little room for improvement. To illustrate
this, we calculate a simple upper bound for the per-
centage driving loaded. Let us relax the problem by
assuming that all orders are known in advance,
Table 5
Simulation results: additional intelligence

AgentEnd AgentInsert AgentTSP

Control DL SL DL SL DL SL
Normal 82 93.9 82 97.0 82 97.2
Trade 83 96.2 82 98.2 82 98.3
DP-lin 83 95.5 83 97.5 82 97.9
DP-Qdr 83 95.4 82 97.6 82 97.8
TR-DP-lin 83 96.4 83 98.4 83 98.4
there are no time windows and all travel- and han-
dling times are deterministic. Then penalty costs
are not relevant and the problem reduces to the min-
imization of the total empty travel time under flow
conservation constraints. Using the average han-
dling times and demand data resulting from our
simulation experiments for the highly dynamic case,
we find an upper bound of 89% for the percentage
of driving loaded. Even though this upper bound
is calculated under strongly simplifying assump-
tions, our agent methods still achieves a percentage
of driving loaded that is only 6.7% less than the
upper bound. On the other hand, LocalControl
and SerialScheduling lead to a percentage driving
loaded that is 12.4% worse than the upper bound.

8.2. Random networks

Again, we first determine the number of replica-
tions based on the basic scenario. With a confidence
level of 95% and a relative error of 5%, we find that
we need 6 replications in case of AgentInsert and 40
replications in case of LocalControl. The differences
between the control methods are higher than before.
First, this is due to changes in the network layout
with each replication. Second, we are now looking
at the relative costs for which the variances are
much higher. We decided to use 20 replications
because this provides enough significance to distin-
guish between the agent control methods and the
two heuristics. This can be seen from the confidence
intervals for the relative costs in the basic scenario
(Table 6).

First we vary the time between orders. In Fig. 6
we see that, for all methods, the relative costs
decrease with the time between orders. We also see



Table 6
Simulation results: confidence intervals for relative costs

Control Confidence interval

LocalControl [59.5, 69.7]
SerialScheduling [57.5, 63.6]
AgentEnd [40.5, 44.1]
AgentInsert [38.9, 41.4]
AgentInsertSmart [39.0, 41.2]
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that SerialScheduling and LocalControl will con-
verge to a same level. The two basic agent methods
converge to a same, but lower level. The addition of
Trade and DynamicThreshold yields lower costs if
the time between orders is small. The reason is that
the average length of the vehicle schedules increases.
Then there are more options for load exchange
(Trade). Also, it can be more beneficial to use
threshold prices.

In the next experiment we keep the mean time
between orders the same for all simulation runs,
but we change the deviation from the mean during
the day. We see in Fig. 7 that increasing the ampli-
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tude has negative effect on the relative costs. Not
surprisingly, the AgentInsertSmart method is less
sensitive from these deviations.

Second, we vary the length of the time-windows.
From Fig. 8 we see that the relative costs for all
methods decrease with the length of the time win-
dows. The costs converge to a situation where the
penalty costs are negligible. The methods Local-
Control and SerialScheduling are not able to reduce
their empty trips when the time windows increase.
AgentInsertSmart benefits more from increasing
time windows because the number N of possible
auction rounds is higher.

Finally we vary the number of nodes in the net-
work keeping the rest of the parameters the same,
see Fig. 9. In case of AgentInsert the relative costs
first slightly increase converging to a value of about
40%. AgentInsertSmart works relative better if the
network is small (less nodes) because then the aver-
age distances between nodes are higher and there-
fore trading jobs will be more beneficial. The
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relative costs for all other methods decrease in the
number of nodes. Closer inspection reveals that
the penalty costs always decrease with the number
of nodes while the amount of empty kilometers
increase. However, both costs factors converge to
a stable value. Because the penalty costs are rela-
tively small and stable for AgentInsert, the increase
in costs for empty trips will dominate the relative
costs. The hierarchical methods SerialScheduling
and LocalControl will benefit most from an increase
in the number of nodes. However, based on our sim-
ulation results we expect that differences in relative
costs will remain. Besides that, the computation
time of the hierarchical methods (especially for Seri-
alScheduling) increases with the number of nodes.
Therefore we end with some notes about the compu-
tation time of the different control methods.

We implemented our methods in the simulation
software eM-Plant and we performed the experi-
ments using a Intel Pentium 4 processor at
3.4 GHz. The computation times (milli-seconds per
order) for the basic scenarios can be found in
Table 7. The computation times of the agent
approaches include starting the auction, bidding
by all vehicle agents (sequential whereas in practice
parallel execution is plausible) and bid evaluation
by the job agent. The computation times of the hier-
archical methods consist of a periodical planning
time and time for local decision making. In both
hierarchical methods the computation times for
local decision making per order are 2 ms on average,
the computation times for periodical replanning can
be found between the brackets.

We observed that the computation time of the
agent methods is dependent on the number of vehi-
cles (participants in the auctions). As can be
expected, AgentInsert and AgentTSP also depend
strongly on the average length of the vehicle sched-
ules. The hierarchical methods are also dependent
on the average number of open orders, but also
on the number of nodes in the network. Therefore
we see some longer computation times in the ran-
dom network with 20 nodes.
Table 7
Simulation results: computation time

Control OLS Random

AgentEnd 2 1.6
AgentInsert 8.3 6.6
AgentTSP 19.0 8.8
LocalControl 2.9 (4.9) 3.8 (5.3)
SerialScheduling 20.2 (91.8) 78.6 (109.7)
The two agent extensions result in an increase in
computation times. The extension Trade results in
an increase of about 0.09 ms per order exchange
(about 0.5% of the orders are exchanged in both
network settings). Using DynamicThreshold has a
bigger impact, because a load requires on average
2.6 auction rounds resulting in a proportional
increase of the computation time.

9. Conclusions, generalizations and further research

In this paper, we proposed a distributed agent-
based solution to real-time, dynamic transport
scheduling problems. This approach has a number
of advantages. First, it is more robust in the sense
that it is less sensitive to fluctuations in demand or
available vehicles than more traditional transporta-
tion planning heuristics (LocalControl, SerialSched-
uling). Second, it provides a lot of flexibility by
solving local problems locally. Third, it provides
online decision-making using auction mechanisms.

From our simulation experiments, we conclude
that our agent approach yields a high performance
in terms of vehicle utilization and service level.
When we compare the best hierarchical method
(of the two considered in this paper) with AgentIn-
sert, we see that the differences in costs and percent-
age of driving loaded are always significant. With
regard to the service levels, AgentInsert performs
significantly better in most cases and never signifi-
cantly worse.

We can improve the performance of the agent-
based approach using two extensions: (1) we allow
vehicle agents exchange jobs and (2) we allow ship-
per agents to reject all bids and start a new auction
later on. These extensions are particularly valuable
if vehicle schedules contain many jobs on average.

Further research will mainly focus on the
improvement of the agent behavior. For the job
agents, formal methods for the dynamic threshold
policy will be developed. For the vehicle agents, fur-
ther improvement of the pricing strategy is relevant.
Similar to the dynamic pricing used to sell airline
seats, vehicles can price their services based on the
available capacity. Although vehicles can schedule
more jobs in advance, our model is still myopic.
Vehicle agents only consider the direct cost of doing
certain jobs, whereas it could be better to include an
opportunity loss for arriving at a terminal without a
next order with low expectations for an attractive
load in the near future. To this end, formal methods
for estimating the value of arriving at a certain
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location can be used, for example using approxi-
mate dynamic programming (cf. Godfrey and Pow-
ell, 2002). Then, we expect vehicles to drive pro-
actively to other nodes with higher expected future
revenues, or to calculate the changes of driving
empty from certain terminals and include these cost
in their bid prices.
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