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Abstract

In transmission networks an important routing problem is to find a pair of link disjoint paths which optimises some
performance measure. In this paper the problem of obtaining the most reliable pair of link disjoint paths, assuming the
reliability of the links are known, is considered. This is a non-linear optimisation problem. It is further introduced the con-
straint that the length of the paths should not exceed a certain number of links, which makes the efficient resolution of the
problem more complex.

In this paper two variants of a novel exact algorithm for finding the most reliable pair of link disjoint paths with lengths
constraints, are presented. Also a computational study on the performance of the variants, is described.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the extensive use of optical fibers, links in
transmission networks generally carry a large
amount of traffic. In wavelength-routed WDM
(Wavelength Division Multiplexing) optical net-
works it is desirable to provide some degree of pro-
tection against link and/or node failures [19]. A
common approach, in this and in other types of
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telecommunication networks, is to establish two
link disjoint paths for every connection request
(the working path and the protection path) hence
preventing the failure of both paths in single failure
scenarios corresponding to the failure of any link
common to both paths. MPLS networks also
require a fast path recovery process in the event of
failures, and therefore LSPs (Label-Switched Paths)
can similarly be set in disjoint pairs (the working
and the protection paths) [16].

Suurballe [17] proposed an algorithm for obtain-
ing k-shortest node (or arc) disjoint paths, with
polynomial computation complexity. Suurballe
and Tarjan [18] proposed an algorithm for obtain-
ing shortest pairs of disjoint paths. Some other
improved versions of algorithms for diverse routing
.
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(i.e. finding physically disjoint paths between a pair
of nodes) can be found in [2].

In [10] an algorithm for obtaining k disjoint
paths between two different nodes, s and t, in a net-
work with k different costs on every edge, is pro-
posed, such that the total cost of the paths is
minimised (where the jth edge-cost is associated
with the jth path). The selection of the optimal pair
of disjoint paths for solving dynamic routing prob-
lems requires the use of adequate algorithms for
diverse routing. Several objective functions to be
optimised may be considered in this context. One
such objective can be the most reliable pair of paths.
In telecommunication networks constraints are
often imposed in terms of number of links. Hence
an algorithm for efficiently obtaining the most reli-
able pair of paths with a maximum number of links
(arcs of the network graph) is proposed in this
paper. The problem of finding the set of paths which
maximises the two-terminal reliability metric has
not received much attention according to Papadim-
itratos et al. [14]. These authors propose a heuristic
(with polynomial worst case complexity) for obtain-
ing a set of disjoint paths (without length con-
straints) with high two-terminal reliability applied
in the context of Mobile Ad Hoc Networks
(MANET).

In [8] it is shown that the problem of finding a
maximum number of disjoint paths with at most
D arcs is NP-Hard for D P 5. The problem under
analysis requires only two such paths, but although
the costs (defined for the arcs) are additive regarding
path cost calculation, the function to be optimised
(union probability) is not linear in the path costs.
Therefore the problem cannot be reduced to a min-
imal-cost feasible solution with at most D arcs in
each path.

In this paper we present two variants of an exact
algorithm for finding the most reliable pair of link
disjoint paths (in undirected or directed networks)
with a maximal number D of arcs per path.

The resolution approach proposed for this prob-
lem uses an algorithm for sequentially obtaining k-
shortest length constrained paths (that is with a
maximum number of arcs per path) developed by
the authors, designated KD [7]. A first version
of the resolution procedure was considered [5]
where the algorithm chosen for obtaining the dis-
joint path for each candidate working path was
based on an algorithm for sequential enumeration
of disjoint length constrained paths by decreasing
reliability order [6]. This auxiliary algorithm (some-
times) has difficulties in detecting that no disjoint
path, with at most D arcs, exists for the present can-
didate working path. Once the Bellman–Ford algo-
rithm obtains the shortest paths from every node to
a given destination node, by increasing order of the
number of arcs per path, this was used in a second
variant of the proposed algorithm. The resolution
approach has similarities with the enhancement of
the Two-Step-Approach [9] and with the Iterative
Two-Step-Approach (ITSA) algorithm [13] for opti-
mal diverse routing with shared protection in con-
nection-oriented networks, where the arc costs of
the protection path depend on the selected working
path. Note that, in our case, this condition does not
apply and the function to be optimised is not a lin-
ear combination of the costs of the working and
protection paths, unlike the problem in [13]; this will
be shown in Section 2.

Also an experimental study on the performance
of the two versions of the algorithm, in a set of ran-
domly generated networks, is presented.

The paper is organised as follows. Firstly (in Sec-
tions 2 and 3) the problem under analysis is
described, the algorithm is presented and its com-
plexity is discussed for the two variants mentioned
above. In Section 4 experimental results for various
sets of randomly generated networks with different
connectivities are analysed and some conclusions
are presented. Finally, in Appendix, KD algorithm
is reviewed and the auxiliary algorithm for obtain-
ing the disjoint path for each candidate working
path, is described.

2. Problem formulation

Let G = (N,L) be a directed graph where
N = {v1,v2, . . . ,vn} is the node set and L the arc
(or link) set, composed of ordered pairs of elements
in N, where n represents the cardinality of set N. Let
l = (i, j) be an arc where j is the head of l and i its
tail. A path from s to t (s, t 2 N) in this graph will
be specified by the sequence p = hs, (s,v1),v1, . . . ,
(vw, t), ti, where all l = (v,u) 2 p belong to L. If all
nodes in p are different it is called a loopless path.
Although up till now only the term path was used,
the loopless condition is implicitly assumed. The
word ‘‘loopless’’ will continue to be omitted until
explicit reference is needed.

Each link l 2 L has a probability pL(l) of being
operational. Nodes are assumed not to fail. In a net-
work where links fail (independently) and one seeks
link disjoint paths from s to t, a cost matrix [cij] of
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dimension n · n is defined such that the cost of an
arc is the additional cost of introducing that arc in
a path:
cij ¼
� ln pLðlÞ if l ¼ ði; jÞ 2 L

þ1 if l ¼ ði; jÞ 62 L

�
ð1Þ
The cost of a path p = hs, (s,v1), v1, . . . , (vw, t), ti is
CðpÞ ¼

P
ðvi ;vjÞ2pcvivj , and its reliability is

PrðpÞ ¼ e�CðpÞ ð2Þ
where ‘‘Pr(p)’’ represents the probability of path p

being operational. Eq. (2) establishes a relation be-
tween the cost of a path and its reliability. Using
the cost matrix [cij], the enumeration of the k short-
est paths with a maximum of D arcs (per path) is
equivalent to the enumeration of the k most reliable
paths with at most D arcs by decreasing order of
their reliability.

The most reliable pair of link disjoint paths
(pw,pv) has a reliability given by
max
pw;pv

Prðpw [ pvÞ ¼ PrðpwÞ þ ð1� PrðpwÞÞPrðpvÞ ð3Þ
where pw and pv are the working and protection
paths, respectively. As can be seen from (3)
Pr(pw [ pv) cannot be written as a linear function
of the costs of pw and pv. Two disjoint paths may
have minimum CðpwÞ þ CðpvÞ but they may not be
the paths with maximum Pr(pw [ pv).

The sequential generation of paths pi (selected by
decreasing reliability order) with a maximum num-
ber of arcs per path can be made by using the algo-
rithm KD proposed by the authors in [7]. For each
i-shortest path pi (where i represents the order of a
selected path satisfying the length constraints—pi

is a candidate working path) there may exist more
than one link disjoint path (pj, a candidate protec-
tion path for pi). The path pj which maximises
Pr(pi [ pj) (with pi fixed) will be the one with highest
reliability among all of the feasible paths. Therefore
a sub-algorithm is needed for efficiently obtaining
the most reliable path disjoint with pi (with at most
D arcs). Such a sub-algorithm can be obtained with
a slight alteration of the KD-ld algorithm proposed
by the authors in [6], which will be designated here-
after as KD-ld1 algorithm, or using the Bellman–
Ford algorithm (hereafter designated as B–F
algorithm).
3. Algorithm description

Both variants of the proposed algorithm require
a condition for detecting that the optimal pair of
disjoint paths was obtained. Suppose that for each
path pw (sequentially generated by a k-shortest path
sub-algorithm) the most reliable link disjoint path pv

was obtained, such that at any given step of the
algorithm the only recorded pair of paths is the
one with the highest Pr(pw [ pv). Considering that
the next (most reliable) path, generated by the k-
shortest path sub-algorithm, to be selected in the
main algorithm is pi (i > w) such that

PrðpiÞ þ ð1� PrðpiÞÞPrðpiÞ
6 PrðpwÞ þ ð1� PrðpwÞÞPrðpvÞ ð4Þ

then (pw,pv) is the pair of paths with maximal reli-
ability. The verification of this statement is straight-
forward. Let pj be the most reliable path link
disjoint with pi, if Pr(pj) 6 Pr(pi) then any other pair
of paths obtained from this point onwards will
always have reliability less than Pr(pi) + (1 �
Pr(pi))Pr(pi) therefore lower than Pr(pw [ pv).

Having established the optimal stopping rule of
the algorithm, its flowchart is presented in Fig. 1.
The first variant was designated as RLDPC (Reli-
able Link Disjoint Pair of paths with length Con-
straints) and the second variant, using the B–F
algorithm, will be designated as RLDPC-BF.

The main structure of the algorithm has two
phases: to obtain the first pair of link disjoint paths
with at most D arcs and to find and/or detect the
optimal pair of paths. In the first phase the algo-
rithm may terminate without finding a solution: no
single link disjoint pair of paths with at most D arcs
was identified. To check that no solution exists, the
algorithm has (in phase 1) to generate all paths of
length up to D and, for every such path, KD-ld1
or B–F will have to seek a disjoint path without suc-
cess. Having completed phase 1 and having recorded
a pair of link disjoint paths, the second phase of the
algorithm consists of improving this solution (when-
ever possible) until either the recorded pair of paths
is detected to be optimal, or no more (working)
paths can be found. This last condition implies that
the best recorded pair is in fact the optimal one.

The efficiency of RLDPC lies in the fact that KD-
ld1 is a sub-algorithm that is based on KD, there-
fore capable of using efficiently the information
generated by KD, as it will be explained in the next
sub-section.
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3.1. Notation and definitions

Note that algorithm KD in [7] (which was
derived from algorithm MPS [12]) and MPS are
both ‘deviation’ algorithms. Each time a path p is
chosen from a set of candidate paths, X, new paths
may be added to X. Now some notation will be
introduced that will be used for a brief review of
KD.

In the context of the algorithm the node vk of
path p, from which a new candidate path is gener-
ated, is the deviation node of that new path (which
coincides with p up to vk). In a path the link the tail
of which is the deviation node, is called the deviation

arc of that path [12]. By definition s is the deviation
node of p1 (the shortest path from s to t). The con-
catenation of path p, from i to j, with path q, from j

to l, is the path p � q, from i to l, which coincides
with p from i to j and with q from j to l.

Let Tt designate a tree where there is a unique
path from any node i to t (tree rooted at t as
defined in [12]) and piðTtÞ denote the cost of the
path p, from i to t, in Tt; the reduced cost �cij of
arc (i, j) 2 L associated with Tt is �cij ¼ pjðTtÞ�
piðTtÞ þ cij. So all arcs in Tt have a null reduced
cost. The advantage of using reduced costs was first
noted by Eppstein [4] and they are shown by Theo-
rems 8 and 9 in [12] and by Theorem 2.1 in [11] (in
the context of the MPS algorithm) to lead to less
arithmetic operations and to sub-path generation
simplification.

Let T�
t be the tree of the shortest paths from all

nodes to t and p�vjt
the shortest path from vj to t in

T�
t . The sub-path from vk to t in p is represented

by pvk t, and the sub-path from s to vk by psvk
. The

set of arcs of L of G = (N,L) is arranged in the
sorted forward star form—for details see [3]. That
is, the set L is sorted in such a way that, for any
two arcs ði; jÞ; ðk; lÞ 2 L; ði; jÞ < ðk; lÞ if i < k or
ði ¼ k and �cij 6 �cklÞ.

Let jpj denote the number of arcs in path p, from
s to t, or path length. Let p be a path that contains
nodes vi and vj. The distance from vi to vj in p will
be given by the number of arcs in p, from vi to vj;
if vi, vj are extreme nodes of an arc then the distance
is 1; the distance of a node to itself is zero. Let p be a
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path from s to t which contains vi; the depth of vi in p

is given by the distance from s to vi in p and will be
designated by dp(vi).

3.2. The main idea behind KD and KD-ld1 algorithms

In KD (and KD-ld1) every new path p 0 (from s to
t), with deviation node vi, added to X, deviates from
a previously selected path p. The paths p and p 0

coincide from s up to vi; let vj be the head of the
deviation arc of p 0, then p0vjt ¼ p�vjt. This is why one
of the first steps of KD is to obtain T�

t . Also note
that the ordering of L makes it easy to locate the
deviation arc of a new path.

The basic idea of the KD algorithm is as follows.
Let p be the shortest path in X and v its deviation
node. Paths with deviation node at a depth at most
D � 1 will be obtained from p only if their deviation
node vi, vi 5 t and vi 2 pvt are such that jpsvi

j <
D � 1 or, jpsvi

j ¼ D � 1 and psvi
} hvi; ðvi; tÞ; ti 6¼ p.

Therefore paths of length greater than D will only
be placed in X if their deviation node is at a depth
less than D. The efficiency of KD results precisely
from not generating paths of length greater than
D which are of no interest because, when selected,
they would be discarded and any path obtained
from them would also certainly be discarded.

Let pi be the ith path selected by KD and let Xi be
a copy of the set of candidates paths X. Given
pi;X i;T

�
t and L, KD-ld1 will start by marking all

arcs in pi as used (this simulates the removal of arcs
of pi from the network graph). This is followed by
the selection of the shortest path from Xi. If the path
selected from Xi is not the solution seeked by KD-
ld1, it will possibly lead to the generation of new
paths to be added to Xi. A path will only be added
to the set Xi of candidate paths, firstly if it satisfies
all rules of KD and, secondly, if at the time of the
insertion in Xi none of its arcs is marked as used,
or if from that path a new path disjoint with pi

may possibly be obtained. KD-ld1 efficiency results
from not generating useless candidate paths to be
added to Xi.

KD-ld1 ends when the selected shortest path in
Xi is a feasible path disjoint with pi or when Xi

becomes empty. The used marks of the arcs of pi

are removed before KD-ld1 terminates (successfully
or not). Xi will initially contain some inadequate
paths (paths which are not disjoint with pi and/or
which will not originate any paths disjoint with pi)
but new paths added to Xi by KD-ld1 will not have
that feature. The duplication of Xi, that may seem a
heavy operation, is really a very simple procedure.
Considering that the set X is represented by a heap
of pointers to the candidate paths, duplicating X is
simply the duplication of an array of dimension
equal to the number of candidate paths.

In Appendix algorithms KD and KD-ld1 are
described.

3.3. Using KD with the Bellman–Ford algorithm

The Bellman–Ford algorithm seemed a good
alternative to KD-ld1, especially because, with Bell-
man–Ford, the effort of finding (for each candidate
working path) a protection path is similar to the
effort of detecting that no such path exists, whenever
that is the case, and is approximately constant for
networks with the same number of arcs, for D fixed
[1].

After KD has found a candidate working path
pw, from s to t, all arcs in pw will be marked as used
(this simulates the removal of those arcs from the
network graph). Then B–F is used to find a path
with at most D arcs from s to t. If such a path can-
not be found its cost will be1; the used marks in all
arcs in pw will have to be removed after running B–
F. This new version of RLDPC will be designated
by RLDPC-BF.

Each time KD generates a candidate working
path pi, KD-ld1, which is basically a k-shortest path
enumeration algorithm, takes advantage of the
information generated by KD (see Appendix B) to
obtain pv, the shortest path disjoint with candidate
working path pi. If a disjoint path with pi exists,
KD-ld1 may find it very rapidly (it is one of the first
paths already in Xi) or if pv is a path with very low
reliability (it is at the bottom of Xi or still has to be
generated), then it may take some time to obtain pv.
Therefore the CPU effort of KD-ld1 can vary signif-
icantly depending on the working path pi; this effort
can be especially high when no disjoint path pv with
pi exists and a significant number of paths are
already in Xi or will be added to Xi because they
may potentially generate disjoint paths with pi, with
at most D arcs.

Having all this in mind, it will be expectable that
RLDPC exhibits a higher variability, in CPU time,
than RLDPC-BF.

3.4. Directed and undirected networks

If the graph G 0 = (N,L) that represents a tele-
communication network structure is undirected



1 The used program for network generation was kindly
borrowed from José Luis Santos.

2 Due to the nature of KD and KD-ld1 the cost of obtaining
the optimal disjoint pair from s to t and from t to s is not
identical.
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RLDPC can still be used. Each undirected arc is
replaced by two directed arcs in opposite directions
and with the same cost as the original undirected
arc. In the algorithm when marking all (undirected)
arcs of p as used will now imply that, if (vi,vj) 2 p

then both directed arcs (vi,vj) and (vj,vi), will be
marked as used.

3.5. Complexity

Algorithm KD-ld worst case complexity (all
paths with deviation node with depth at most
D � 1 are generated and picked from the set of can-
didate paths) is equal to OðDdDþ2 þ m log nÞ [6],
where m is the cardinal of set L and d is the node
maximum degree; the term mlogn is due to obtain-
ing T�

t , changing the costs and rearranging the links
in the sorted forward star form. In KD-ld1 this term
does not apply because the algorithm uses T�

t

and the sorted forward star form created by KD.
Therefore KD-ld1 worst case complexity is simply
OðDdDþ2Þ. The B–F algorithm implementation
used in this context has worst case complexity
OðDmÞ [1].

The KD algorithm is a variant of MPS for loop-
less paths with length constraints. According to the
authors of MPS the complexity of this algorithm is
hard to calculate and its worst case complexity (only
for particular values of the arcs costs and network
topology) is Oðn!Þ, where n is the cardinality of N

[15]. This complexity results from considering that
all loopless paths from the initial node to any other
node (except a particular one) have to be generated
and added to X before obtaining the second shortest
loopless path. As KD only generates paths with
deviation with depth at most D � 1, in a worst case
scenario its complexity is equal to KD-ld
complexity.

Therefore the total complexity of the algorithm
is,

OððDdDþ2 þ m log nÞ2dDþ1Þ or

OððDdDþ2 þ m log nÞDmdDþ1Þ ð5Þ

where the second expression applies to the variant
using B–F and dD+1 is an upper bound to the total
number of paths with at most D arcs that can be
generated by KD in the search for the optimal stop-
ping condition and/or stopping rule. In fact, in the
worst case all paths with deviation node with depth
at most D � 1 will be computed, and these arePD�1

i¼0 dðd� 1Þi 6 dDþ1.
4. Experimental results

Results are presented for undirected networks,
with low connectivity, as indicated in Table 1. This
type of features is common in WDM optical net-
works. For each number of nodes n, 10 different net-
works were randomly generated1 with the same
number of arcs and nodes; the arc reliabilities were
randomly generated in [1 � 5 · 10�4,1 � 10�6].
Two different network densities were used: m = 2n

and m = 3n. The maximum number of arcs consid-
ered, per path, was D = 8, 9 for the networks with
m = 3n and D = 12, 13 for networks with m = 2n.
The values of D were chosen such that they were
equal (or greater) than maxd(G) (d(G) is the net-
work diameter of graph G) for each of the two types
of networks (m = 2n, 3n).

Due to the low network connectivity great varia-
tion in CPU time used by RLDPC (RLDPC-BF)
was observed depending on the s–t pair. Therefore
for each network a pair of disjoint paths was seeked
for all (n · (n � 1)) node pairs2 and the average CPU
time obtained per pair of disjoint paths for each
node pair was calculated. Algorithm KD starts by
building T�

t (the tree of the shortest paths from all
nodes to t); this structure can be re-used for different
node pairs with the same end node t; therefore node
pairs were generated by changing s for each t.

There are situations where no solution will be
found (no feasible disjoint protection path exists
for each feasible working path); also, after the iden-
tification of a pair of disjoint paths, the optimality
condition may be hard to check (many new pairs
have to be seeked). Both these situations may lead
to excessive CPU time usage. Therefore a limiting
mechanism must be provided. For both variants
of the algorithm two control mechanisms were
implemented to prevent it from using too much
CPU time. Considering that phase 1 was successful
and that the first disjoint pair was obtained, pairs of
paths will be generated until the stopping condition
is satisfied or a maximum CPU time (maxCPU) is
used. Taking into account that exiting phase 1 with-
out finding a single pair (because the permitted CPU
time was exceeded) is more disruptive than exiting
without satisfying the optimal stopping condition,



Table 1
Test networks, where n is the number of nodes, m the number of arcs, d(G) is the network diameter and �dðu; vÞ the average node distance

n 50 100 150 200 250 300 350 400 450 500

m = 2n d(G) 5–8 7–10 8–9 8–10 9–11 9–11 9–11 9–11 10–11 10–12
�dðu; vÞ 4.2 4.7 5.1 5.2 5.4 5.5 5.5 5.7 5.9 5.9

m = 3n d(G) 4–6 5–6 6–7 6–7 6–7 6–8 7–8 7–8 7–8 7–8
�dðu; vÞ 3.5 3.9 4.1 4.3 4.4 4.5 4.6 4.7 4.7 4.8
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a CPU time per pair of paths equal to 2 · maxCPU
was allowed for phase 1.

The previous conditions imply that if the first
pair selection is successful in phase 1 but uses more
than maxCPU time of CPU, then phase 2 will not
be executed and the algorithm will exit with a single
(possibly) non-optimal path. A value of 125 milli-
seconds was used for maxCPU in a Bi-Pentium III
at 833 MHz with 512 MB of memory, under Linux.
In Fig. 2 the CPU time per pair of disjoint paths
(non-existing, optimal and possibly sub-optimal) is
presented. These average values are significantly
below the upper bound of 125 milliseconds which
is attained only for node pairs where only sub-opti-
mal solutions were found or for some node pairs for
which no solution could be found. The behaviour of
the algorithms concerning the frequency of exits due
to CPU time usage is also shown in Fig. 4. In Figs.
2–4 an error bar was added, centred on the average
value (l) of the collected sample of values (one sam-
ple per network) such that the bar goes from
max(0,l � s) to l + s, where s is the sample stan-
dard deviation. The purpose of this bar is to show
that using B–F leads to less variability in the results
(% of terminations due to CPU time usage and
average CPU time per node pair). This variability
pattern should be expected: the B–F algorithm
requires a number of iterations equal to D while
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Fig. 4. Percentage of node pairs for which the algorithms RLDPC (KD-ld1) and RLDPC-BF (B–F) exit due to lack of CPU time.
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type of network presented in Fig. 4 have a maxi-
mum of 3.7% and 0.75% for RLDPC and
RLDPC-BF, respectively.

Regarding CPU time per node pair, apparently
RLDPC performs better than RLDPC-BF, for more
dense networks (m = 3n), and its relative perfor-
mance apparently also improves with the dimension
of the network, as shown in Fig. 2. In less dense net-
works (m = 2n) RLDPC-BF seems to be more effi-
cient than RLDPC, for smaller values of n, but as
the number of nodes in the network increases it seems
to become less efficient. We have said ‘‘apparently’’
because these results are in fact misleading:
RLDPC-BF uses more CPU time per node pair but
it also obtains more optimal solutions than RLDPC.

Looking at the CPU time per node pair for both
algorithms (in individual networks) we see that in
fact RLDPC, for those node pairs for which an
optimal solution was found, used in average less
time than RLDPC-BF. However the number of
node pairs for which RLDPC could not find a solu-
tion is significantly high compared to RLDPC-BF.
For such pairs, if the allowed CPU time was sub-
stantially increased the CPU times required by
RLDPC would be very high and this would invert
the average relative performance of both variants
of the algorithm. As an example consider the case
n = 350, m = 3n, D = 9, where RLDPC obtained
in average, for the 10 tested networks, 1083 sub-
optimal solutions and found no solution for 81 node
pairs (due to CPU time exhaustion). RLDPC-BF,
for the same set of 10 networks, found solutions
for all node pairs and exited with an average of 10
sub-optimal solutions per network.

Therefore, although RLDPC is more efficient
than RLDPC-BF for most node pairs of a network,
there is a small number of node pairs for which it
performs rather poorly. To verify this conclusion
long runs of RLDPC and RLDPC-BF were exe-
cuted: the two versions of the algorithm were
allowed to run without CPU time limit for D = 9
and m = 3n. Observing Fig. 3 the relative behaviour
of the two versions was inverted. As an example
consider n = 500, m = 3n, D = 9: RLDPC found
1644 sub-optimal solutions and failed to find a solu-
tion for 138 node pairs (in average per network)
with a CPU time per node pair of 2.8 milliseconds
and RLDPC-BF did not find an optimal solution
in average for only 121 node pairs and failed for 1
node pair using in average 6.0 milliseconds per node
pair, when maxCPU was 125 milliseconds; with
unlimited CPU time, RLDPC required 19.6 milli-
seconds and RLDPC-BF 6.2 milliseconds per node
pair to obtain all optimal solutions.

Although RLDPC/RLDPC-BF sometimes need
a significant number of pairs of paths to be obtained
in order to check the optimality condition, a fre-
quency counter of the sequential order of the
selected (optimal) pair of paths indicates that this
pair is one of the first four pairs in almost all cases.
Also, in a great percentage of the cases, the first
identified pair was the optimal one.

5. Conclusions

Two variants of an efficient algorithm for obtain-
ing the most reliable pair of link disjoint paths with
length constraints, have been presented. Also a
worst case complexity analysis of the algorithm
was performed. The performance of the proposed
versions of the algorithm was evaluated through
numerous experiments for randomly generated net-
works with low connectivity. This experimental
environment is of the type encountered in WDM
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optical transmission networks. These tests enabled
to put in evidence the efficiency of the algorithmic
approach as well as its limitations which stem from
the nature of the addressed problem. In particular if
between end nodes s and t no feasible pair of dis-
joint paths exists, the algorithm will have to gener-
ate all paths with at most D arcs form s to t and,
for each of these paths, it will seek to obtain a dis-
joint pair. This procedure may become too heavy
in terms of CPU time and therefore a limiting mech-
anism was introduced.

The comparison of the two proposed implemen-
tations indicates that the version which uses Bell-
man–Ford algorithm for finding the disjoint path
appears to be advantageous when compared to the
version which uses KD-ld1, because it has a more
stable performance and obtains a higher number
of optimal solutions with no significant increase in
CPU time.
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Appendix A. KD Algorithm

1. Input: the representation of the graph (N,L) and
arc costs cij.

2. By using Dijkstra inverse algorithm (including
the node heights calculations), obtain the shortest
paths from every node to t, hence constructing
the shortest tree rooted at t;T�

t .
3. Calculate the reduced cost �cij for every (i, j) 2 L.
4. Rearrange the arcs of (N,L) in the sorted forward

star form (for the computed �cij, leading to
L = {a1, . . . ,am} such that for any h 2 f1; . . . ;
m� 1g;�cah 6 �cahþ1

if v ¼ tailðahÞ ¼ tailðaahþ1
Þ)

5. p shortest path from s to t ðp 2T�
t Þ.

6. k 0
7. X {p} (X is the set of paths that are candidates

to shortest path).
8. While (k < K) and (X 5 ;) do

(a) p shortest path in X

(b) X X � {p}
(c) If jpj 6 D and p has no loops then

i. k k + 1
ii. pk p (the kth path which has at most D

arcs, was found)

EndIf
(d) Let vi be the deviation node of p

(e) If The length p and depth of vi are adequate

then (possibly new paths will be placed in X)
i. l maximum depth of deviation nodes of

possible new paths
ii. Repeat

A. ah the arc of p the tail of which is vi

B. psvi
 sub-path of p from s to vi

C. While (vi is the tail of ah+1) and

ðahþ1 forms a loop with psvi

Þ do

h h + 1

EndWhile

D. If vi is the tail of ah+1 then
• vj head of ah+1

• X  X [ fpsvi
} hvi; ahþ1; vji } p�vjtg
EndIf

E. If dp(vi) = l

then l �1 (no more paths will be
obtained from p)
else vi following node in lp (trun-
cated path p after l arcs)

EndIf

Until ðpsvi
has a loopÞ or (l = �1)

EndIf
dWhile
En
Appendix B. KD-ld1 Algorithm

The input of KD-ld1 is: the representation of the
graph (N,L) and arc costs cij;T

�
t . �cij for every

(i, j) 2 L, the arcs of (N,L) in the sorted forward star
form (for the computed �cij), the path py and Xy. py is
the yth path obtained by KD for which KD-ld1
seeks a disjoint path; Xy is a copy of X after py

was selected (all this input is provided by KD—see
Section 3.2).

The first action of KD-ld1 is marking used all the
arcs in py. If a path px selected from Xy is disjoint
with py and has at most D arcs the algorithm termi-
nates returning px (after unmarking all arc of py).

For each selected path p from Xy which is not the
solution seeked by KD-ld1, new paths, deviating
from p will only be added to Xi if psv has no arc
marked used (where v is the deviation node of p).

The maximum depth of deviation nodes (l) in
KD-ld1 is calculated using the rules of KD, and also
ensuring that no arc in lp is marked used. Having
said this, the generation of paths to be added to
Xy in KD-ld1 is similar to the cycle in step 8(e)ii
in KD, with the condition in step 8(e)iiC rewritten:
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‘‘(vi is the tail of ah+1) and [(ah+1 is used) or
ðahþ1 forms a loop with psvi

Þ]’’.
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