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Abstract

The problem of scheduling the production of new and recoverable defective items of

the same product manufactured on the same facility is studied. Items are processed in

batches. Each batch comprises two sub-batches processed consecutively. In the first sub-

batch, all the items are newly manufactured. Some of them are of the required good quality

and some are defective. The defective items are remanufactured in the second sub-batch.

They deteriorate while waiting for rework. This results in increased time and cost for their

remanufacturing. All the items in the same sub-batch complete at the same time, which

is the completion time of the last item in the sub-batch. Each remanufactured defective

item is of the required good quality. It is assumed that the percentage of defective items

in each batch is the same. A setup time is required to start batch processing and to switch

from manufacturing to remanufacturing. The demands for good quality items over time are

given. The objective is to find batch sizes such that the total setup and inventory holding

cost is minimized and all the demands are satisfied. Dynamic programming algorithms are

presented for the general problem and some important special cases.
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1 Introduction

Remanufacturing of defective products has increasingly become a popular approach to man-

ufacturing lately. Such a practice allows the manufacturer to extract value from defective

products, reduce disposal costs, and comply with environmental legislation. Many factors

such as an unstable production environment, workers’ mistakes, and usage of inappropriate

manufacturing facilities can lead to the production of defective products.

The production of industrial steel ball bearings is a real-life example that demonstrates

the practice of remanufacturing. The first step of ball bearings production is to pour molten

steel into a mould, each producing a batch of the bearings. Due to varying compositions of

the steel and inherent instability of the production facility, internal cavities may occasionally

be created in some of the manufactured ball bearings, which render them defective. Ball

bearings having such cavities are considered to be defective and are to be reworked. Thus,

the second step is to reheat and remanufacture each defective ball bearing produced in

the first step. The longer a ball bearing waits for the rework, the cooler it becomes.

Consequently, the time needed to reheat a ball bearing increases with the time elapsed

since its remanufacturing. In order to improve production efficiency, ball bearings are

produced in batches and the defective units of each batch are reworked in a batch on the

same facility immediately after they have been detected.

In the following section we propose a scheduling model to study the described production

process characterized by manufacturing and remanufacturing of identical items in batches

on a single facility, and make a brief review of the related literature.

2 Model description

We consider a situation in which N identical good quality items of a single product are to

be manufactured on a single machine. Given a schedule, let us consider the corresponding

sequence of item completion times. We say that an item is in position j if its completion

time is jth in the above sequence. All the items are available for processing at time zero.

Positional deadlines d1, d2, . . . , dN are given such that an item in position j should be com-

pleted by dj, j = 1, . . . , N. We can assume without loss of generality that d1 ≤ · · · ≤ dN .
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The information on d1, . . . , dN is obtained from the manufacturer’s production planning sys-

tem. There is the following correspondence between the positional deadlines and demands

for good quality items over time. Let Q1, . . . , Qu be the quantities of good quality items

demanded at times t1, . . . , tu, respectively, 0 < t1 < · · · < tu. The equivalent positional

deadline formulation can be obtained by setting N =
∑u

j=1 Qj and dj = t1, j = 1, . . . , Q1,

dj = t2, j = Q1 + 1, . . . , Q1 + Q2, . . . , dj = tu, j = N −Qu + 1, . . . , N.

Scheduling problems with positional due dates, also known as generalized due dates,

were studied, among others, by Hall, Sethi and Sriskandarajah [5], Gordon and Kubiak [3],

Tanaka and Vlach [10] and Qi, Yu and Bard [9].

The manufacturing of a good quality item requires one or two operations that we call

work and rework operations. The work operation is mandatory for each item. The outcome

of this operation is the production of either a good quality item or a defective one. Producing

a defective item gives rise to the need for the second operation, i.e., the rework operation.

After the rework operation, the corresponding item is assumed to be of the required good

quality. Both operations are performed on the same machine. Defective items deteriorate

while waiting for the rework. This results in increased time and cost for their rework.

Items are manufactured in batches, each preceded by a setup time s1. Each batch

consists of two sub-batches separated by a setup time s2, see Fig. 1 in Section 3. The first

and the second sub-batches include the work and rework operations of the same batch,

respectively. The processing times of the work operations are the same. The processing

time of a rework operation is a linear increasing function of the holding time of the defective

item between its work and rework operations. Without loss of generality, we assume that

each work operation requires one unit of time and each rework operation requires p + a · t
time, where p and a are non-negative numbers and t is the difference between the starting

time of the rework operation and the completion time of the corresponding work operation

of the same defective item.

We assume that all the operations in the same sub-batch complete at the same time

when the last operation in the sub-batch is finished. This assumption holds in situations

where items are manufactured in containers such as boxes, pallets or carts, or where an

additional operation such as inspection, sorting, packing or labeling is needed after all the
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items in the same sub-batch have been produced.

Flapper et al. [1] pointed out that in different process industries input materials may

have partly unknown compositions. This leads to uncertainty about the distribution of

defective items. However, given adequate historical statistical data, it is possible to reliably

estimate and ascertain that defective items on average constitute a stable and relatively

fixed percentage of the total number of items produced in any batch. Inderfurth, Lindner

and Rahaniotis [7], Teunter and Flapper [11] and Inderfurth et al. [6] made this assumption

in their studies. We follow their approach by assuming that the percentage of defective items

is the same in each batch and it is known. More specifically, we assume that a defective

item follows v − 1 good quality items in every batch. Therefore, if there are x defective

items in a batch, then there are x(v − 1) good quality items in it, where v is an integer,

v ≥ 2. Note that 1
v

is, in fact, the percentage of defective items, which is known as fraction

defective in the quality control literature, see Gitlow et al. [2]. Thus, N = nv, where n is

the total number of defective items to be remanufactured.

Note that our model (as well as the models in [7] and [6]) is a simplification of a real-life

situation. In particular, given the fraction defective 1
v
, we allow only batches that contain

numbers of items being multiples of v. If this assumption is unacceptable, we can redefine

a part of an item as the whole item. For example, redefining 1
v
-th part of an item as the

whole item allows any number of (new) items in the batch. In this case, the size of the

problem increases and its solution has to be appropriately converted into the solution of the

original problem. Existing stochastic models that work with average data rather than with

real data, and continuous models that work with real-valued data face the same difficulty.

However, more complicated models would demand solution procedures with much higher

computational time and space requirements than those presented in the literature and in

this paper. Experiments with real data should be performed to determine whether more

complicated models are worth being constructed.

We further assume that the machine is an expensive piece of equipment, and therefore,

no machine idle time is allowed. This assumption, together with the batch availability

assumption, implies that a schedule is completely characterized by a partition of the set of

items into batches and their sequence. Furthermore, since all the items are identical and
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a defective item follows v − 1 good quality items, a batch is completely characterized by

the number of defective items in it. We shall call the number of defective items in a batch

the size of the batch. Consequently, a schedule is completely determined by the number of

batches and the sequence of batch sizes.

Let us call an item a finished item if it is a good quality item after its work operation

or if it has become a good quality item after the rework operation. The following costs are

considered:

α – batch setup cost,

β – finished item holding cost (earliness cost),

γ – unfinished defective item holding cost.

Given a schedule, consider the corresponding non-decreasing sequence of the completion

times of the finished items: C1 ≤ C2 ≤ · · · ≤ CN . We say that a finished item is in position

i if its completion time is Ci. Denote by SR
i and CW

i the starting time of the rework

operation and the completion time of the work operation, respectively, of a defective item

in position i.

Let S be a schedule with k batches and D be the set of defective items of the schedule

S. The problem is to find an optimal schedule such that the deadlines are satisfied, i.e.,

Ci ≤ di, i = 1, . . . , N, and the following function of total cost is minimized:

F (S) = αk + β
N∑

i=1

(di − Ci) + γ
∑

i∈D

(SR
i − CW

i ).

We denote this problem by BWR, meaning Batching-Work-Rework.

The described model in which the items in the same sub-batch complete together is

called the batch availability model in the literature, see for example, Potts and Kovalyov

[8]. Inderfurth et al. [6] investigated a problem different from problem BWR, where each

item completes immediately when its processing is finished. It is called the item or job

availability model in the literature, see [8]. This difference between the two models makes

the results of Inderfurth et al. [6] not applicable to deal with problem BWR.

Stochastic and continuous versions of the problem with item availability have been stud-

ied by Teunter and Flapper [11] and Inderfurth, Lindner and Rahaniotis [7], respectively.

These problems and problem BWR lie in the area of the optimal planning and control of

work and rework processes reviewed by Flapper et al. [1], and in the area of the optimal
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control of deteriorating production reviewed by Goyal and Giri [4].

In the following section we describe an approach to extending and evaluating partial

feasible schedules for the general problem BWR. Then we construct dynamic programming

algorithms for problem BWR and its special cases. An O(n2dN) time algorithm for the

general problem BWR is described in Section 4. Section 5 presents an O( nB

(B−1)!
) time

algorithm for the special case where the size of each batch is upper-bounded by B, 1 ≤
B ≤ n. Section 6 describes an O(n3) time algorithm for the special case with zero holding

cost for the finished items. In section 7 we present an O(n2) algorithm for solving the

deadline-free case of the problem where all the items are kept till the end of the schedule.

The paper concludes with a summary of the results and suggestions for future research.

3 Extending and evaluating partial feasible schedules

Recall that d1 ≤ · · · ≤ dN and the batch size is the number of defective items in a batch.

Consider a partial feasible schedule S in which there are b defective items. Thus, bv

good quality items are produced and the positional deadlines d1, . . . , dbv are met. Assume

that the last finished item in position bv completes at time t. Let us assign a batch of

size j to the end of this schedule and calculate the contribution of the added batch to the

objective function. A graphical representation of the described situation is given in Fig. 1.

t=Cbv

s1 s2

t′

1 2 · · · v
?

1st defective

· · ·
?

jth defective

1 2 · · · j

t′′

Rework operations

Figure 1: A batch with j defective items.

In this figure, good quality items in positions bv + 1, . . . , bv + j(v− 1) complete at time

t′ = t+ s1 + jv and (reworked) good quality items in positions bv + j(v− 1)+1, . . . , bv + jv

complete at time t′′ = t′ + s2 + P (j), where P (j) is the processing time of the rework

sub-batch.

The contribution of the added batch of size j to the objective function is

∆(j) = α + β
(
Fq(j) + Fd(j)

)
+ γH(j), (1)
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where Fq(j), Fd(j) and H(j) are the contribution of good quality items to the total finished

items holding time, the contribution of defective items to the total finished items holding

time, and the contribution of reworked items to the total unfinished defective item holdings

time, respectively.

We have

Fq(j) =
j(v−1)∑

i=1

dbv+i − j(v − 1)(t + s1 + jv). (2)

In order to find Fd, we first calculate the holding time and the rework operation processing

time of each unfinished defective item. Consider a defective item whose rework operation

is i-th in the appended batch, i = 1, . . . , j. Let hi and pi = p+ ahi be the holding time and

the rework operation processing time of this item, respectively. We have

h1 = s2, p1 = p + ah1,

pi = p + ahi, hi = hi−1 + pi−1 = p + (a + 1)hi−1, i = 2, . . . , j,

from which we deduce that

hi = p
(a + 1)i−1 − 1

a
+ (a + 1)i−1s2, pi = (p + as2)(a + 1)i−1, i = 2, . . . , j.

Then, the processing time of the rework sub-batch is

P (j) =
j∑

i=1

pi = (p + as2)
j∑

i=1

(a + 1)i−1 = (p + as2)
(a + 1)j − 1

a

and the processing time of the appended batch of size j is

T (j) = s1 + jv + s2 + P (j) = s1 + jv + s2 + (p + as2)
(a + 1)j − 1

a
. (3)

Then

Fd(j) =
j∑

i=1

[dbv+j(v−1)+i − (t + T (j))]

and, on substitution of T (j),

Fd(j) =
j∑

i=1

dbv+j(v−1)+i− j(t+s1+s2 +jv − p+as2

a
)− j

(p+as2)

a
(a + 1)j. (4)

The contribution to the total unfinished defective item holding time, H(j), is equal to

H(j) =
j∑

i=1

hi = (a + 1)j
(

p

a2
+

s2

a

)
− p

a2
− s2 + jp

a
. (5)
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In order to determine whether the schedule with the appended batch is feasible, we need

to check the following inequalities:

t + s1 + jv ≤ dbv+1 (6)

t + T (j) ≤ dbv+j(v−1)+1. (7)

Inequality (6) ensures that j(v − 1) good quality items in the first sub-batch complete by

their earliest deadline dbv+1. Similarly, inequality (7) ensures that j reworked items in the

second sub-batch complete by their earliest deadline dbv+j(v−1)+1.

Our dynamic programming formulation for problem BWR and its special cases con-

structs schedules by appending a new batch to the end of a partial feasible schedule.

Therefore, we shall use equation (1) and its components (2), (4) and (5) in the dynamic

programming algorithms to calculate the contribution of an added batch to the objective

function.

Let us denote schedule S by a vector (j1, j2, . . . , jk), in which k is the number of batches

and ji, 1 ≤ i ≤ k, is the size of the i-th batch. Denote the cost of schedule S by F (S).

The following lemma can be used to eliminate non-optimal solutions for problem BWR.

Lemma 1 For any two feasible schedules S(1) = (j1, . . . , ji−2, ji−1, ji, ji+1, . . . , jk) and S(2) =

(j1, . . . , ji−2, ji, ji−1, ji+1, . . . , jk), in which the i − 1-st and i-th batches are interchanged,

F (S(1)) ≤ F (S(2)) if and only if T (ji−1)
ji−1

≤ T (ji)
ji

.

Proof. It is easy to see that the number of batches and the unfinished defective items

holding time are equal in the above two schedules. Thus, the corresponding components

of the objective function are also equal. Moreover, the finished items holding time is the

same for all the items in S(1) and S(2), except for those that make up the i− 1-st and i-th

batches. Thus, if we denote by F
(m)
d (S) and F (m)

q (S) the contribution of the defective and

quality items, respectively, of the m-th batch to the finished items holding time in schedule

S, then we have

F (S(l)) = E + β[F (i−1)
q (S(l)) + F (i)

q (S(l)) + F
(i−1)
d (S(l)) + F

(i)
d (S(l))], l = 1, 2,

where E is the total cost of schedule S(l) without the contribution of the items from the

i− 1-st and i-th batches to the finished items holding cost.
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Assume that partial schedule (j1, j2, . . . , ji−2) contains b defective items and its comple-

tion time is t. Using equations (2) and (4), we have

F (S(1)) = E + β[F (i−1)
q (S(1)) + F (i)

q (S(1)) + F
(i−1)
d (S(1)) + F

(i)
d (S(1))] =

E + β[
ji−1(v−1)∑

r=1

dbv+r − ji−1(v − 1)(t + s1 + ji−1v) +
ji(v−1)∑

r=1

d(b+ji−1)v+r −

ji(v − 1)(t + T (ji−1) + s1 + jiv) +
ji−1∑

r=1

dbv+ji−1(v−1)+r − ji−1(t + T (ji−1)) +

ji∑

r=1

d(b+ji−1)v+ji(v−1)+r − ji(t + T (ji−1) + T (ji))] = E + β[A− vjiT (ji−1)],

where

A =
(ji−1+ji)v∑

r=1

dbv+r − (t + s1)(v − 1)(ji−1 + ji)− (v − 1)v(j
(2)
i−1 + j

(2)
i )− t(ji−1 + ji)−

ji−1T (ji−1)− jiT (ji).

Similarly,

F (S(2)) = E + β[F (i−1)
q (S(2)) + F (i)

q (S(2)) + F
(i−1)
d (S(2)) + F

(i)
d (S(2))] = E + β[A− vji−1T (ji)].

Now, from the expressions for F (S(1)) and F (S(2)), we find that F (S(2)) − F (S(1)) =

βv(ji−1T (ji) − jiT (ji−1)). Inequality F (S(1)) ≤ F (S(2)) is equivalent to T (ji−1)
ji−1

≤ T (ji)
ji

, as

required.

Let S = (j1, . . . , jk) be an optimal schedule. It follows from Lemma 1 that for any i,

2 ≤ i ≤ k, either T (ji−1)
ji−1

≤ T (ji)
ji

or schedule (j1, . . . , ji−2, ji, ji−1, ji+1, . . . , jk) is not feasible.

This fact can be used to curtail the number of prospective extensions of a partial schedule.

Let S(1) = (j
(1)
1 , . . . , j

(1)
k ) be a partial schedule. Schedule (S(1), j) cannot be extended to an

optimal one if
T (j

(1)
k

)

j
(1)
k

> T (j)
j

and schedule (j
(1)
1 , . . . , j

(1)
k−1, j, j

(1)
k ) is feasible. This elimination

criterion can be incorporated into the dynamic programming algorithms to curtail the

number of prospective extensions of a partial schedule.

4 Dynamic programming algorithm for problem BWR

The computational complexity of problem BWR is unknown. We present a pseudopoly-

nomial dynamic programming algorithm to solve the problem. The algorithm uses the
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completion time of a partial schedule and the number of defective items in it as state

variables.

Let Z(t, b), 0 ≤ t ≤ dN , 0 ≤ b ≤ n, denote the class of partial feasible schedules

completing at time t and containing b defective items. The proposed dynamic programming

algorithm enumerates values t and b, 0 ≤ t ≤ dN , 0 ≤ b ≤ n. Let F (t, b) denote the cost of

a schedule in class Z(t, b). A formal description of the algorithm is given below.

Algorithm for problem BWR

Step 1 (Initialization) Set F (0, 0) = 0. Set F (t, b) = ∞ for t = 0, 1, . . . , dN , b = 0, 1,

. . . , n, and (t, b) 6= (0, 0). Calculate T (j) and ∆(j), j = 1, . . . , n, according to (3) and

(1).

Step 2 (Recursion) For t = 1, . . . , dN and b = 1, . . . , n, compute the following

F (t, b) = min
j=1,...,b

{
F (t− T (j), b− j) + ∆(j), if (6) and (7) are satisfied,
∞, otherwise.

Step 3 (Optimal solution) Calculate the optimal solution value

F ∗ = min{F (t, n) |1 ≤ t ≤ dN}.

If F ∗ = ∞, then there is no schedule feasible with respect to the deadlines d1, . . . , dN .

If F ∗ < ∞, then the corresponding optimal schedule can be found by backtracking.

To evaluate the time complexity of the above algorithm, we note that the number of

state variables is O(ndN) and the algorithm determines each value F (t, b) in O(n) time.

Thus, the time complexity of the proposed algorithm is O(n2dN) and, consequently, problem

BWR is not NP-hard in strong sense.

Note that we can assume without loss of generality that values T (1), . . . , T (n) are rel-

atively prime. Otherwise, the time complexity of the above algorithm can be reduced to

O(n2 dN

GCD(T (1),T (2),...,T (n))
), where GCD(m1,m2, . . . ,mn) is the greatest common divisor of

the numbers m1,m2, . . . , mn.

5 The case of limited batch size

In this section we assume that each batch size (i.e., number of defective items in each batch)

is upper-bounded by B, 1 ≤ B ≤ n. In many applications, the upper bound B is associated

10



with a physical limit on the capacity of the containers that carry the manufactured items.

We denote this problem by Lim-BWR, meaning Limited-Batching-Work-Rework.

Denote by Z(l1, . . . , lB) the class of partial schedules, where each schedule contains li

batches of size i, i = 1, . . . , B. Since the length of a batch is determined by the number of

defective items in it, all the schedules from Z(l1, . . . , lB) have the same length. Denote this

length by C(l1, . . . , lB), which is:

C(l1, . . . , lB) =
B∑

j=1

T (j)lj, (8)

where T (j) is calculated according to (3).

Note that all the schedules in class Z(l1, . . . , lB) have the same number of defective

items. Denote this number by b =
∑B

j=1 ljj.

Let S ∈ Z(l1, . . . , lB) be a partial feasible schedule. Consider schedule S(1) = (S, j), in

which j, 1 ≤ j ≤ min{B, n− b}, is the size of the appended batch. Schedule S(1) is feasible

if and only if inequalities (6) and (7) are satisfied, where t = C(l1, . . . , lB).

We have S(1) ∈ Z(l1, . . . , lj +1, . . . , lB). Calculate the cost F (S(1)) = F (S)+∆(j). Value

∆(j) and its components Fq, Fd and H are calculated according to (1), (2), (4) and (5),

respectively, where C = C(l1, . . . , lB).

The proposed dynamic programming algorithm enumerates vectors (l1, . . . , lB). Value

F (l1, . . . , lB) represents the minimum cost of a partial schedule in class Z(l1, . . . , lB). The

description of the algorithm is as follows.

Algorithm for problem Lim-BWR

Step 1 (Initialization) F(0,. . . ,0)=0. Set F (l1, . . . , lB) = ∞ for all (l1, . . . , lB) such that

0 <
∑B

j=1 ljj ≤ n. Calculate T (j), j = 1, . . . , B, using (3) and calculate ∆(j), j =

1, . . . , B, using (1). Calculate C(l1, l2, . . . , lB) for all (l1, l2, . . . , lB) such that 0 ≤
∑B

j=1 ljj ≤ n using (8).

Step 2 (Recursion) For b = 1, . . . , n and (l1, . . . , lB) such that
∑B

j=1 ljj = b, compute

F (l1, . . . , lB)= min
j=1,...,min{b,B}





F (l1, . . . , lj−1, . . . , lB)+∆(j), if lj > 0, (6) and (7) are
satisfied for t=C(l1, . . . , lB),

∞, otherwise.
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Step 3 (Optimal solution) Calculate the optimal solution value

F ∗ = min{F (l1, . . . , lB) |
B∑

j=1

ljj = n}.

If F ∗ = ∞, then there is no schedule feasible with respect to the deadlines d1, . . . , dN .

If F ∗ < ∞, then the corresponding optimal schedule can be found by backtracking.

Since li ≤ n/i, i = 1, . . . , B, the number of state variables used by the proposed al-

gorithm is O(nB

B!
). We need O(B) time to calculate C(l1, l2, . . . , lB) for each state and

therefore, the preprocessing in Step 1 takes O( nB

(B−1)!
) time. Furthermore, the algorithm

considers O(B) states to determine each F (l1, . . . , lB). Thus, Step 2 runs in O( nB

(B−1)!
) time.

Finally, Step 3 takes O(nB

B!
) time. Consequently, the total time complexity of the algorithm

is O( nB

(B−1)!
), which is polynomial if B is a constant.

6 The case of zero holding costs for the finished items

Assume that all the finished items are held at zero cost, i.e., β = 0. Denote this problem

by ZeroHold-BWR.

Let C(S) and F (S) be the length and cost of schedule S, respectively. The following

lemma establishes a relation between two schedules with the same number of batches and

the same number of defective items.

Lemma 2 Let S(1) = (j
(1)
1 , . . . , j

(1)
k ) and S(2) = (j

(2)
1 , . . . , j

(2)
k ) be two schedules with k

batches and b defective items each. We have C(S(1)) ≤ C(S(2)) if and only if F (S(1)) ≤
F (S(2)).

Proof. First, consider a schedule S = (j1, j2, . . . , jk). An analysis of formulas (5) and

(1) shows that in the case where β = 0 the contribution of a batch added to the end of a

partial schedule solely depends on its size. Therefore, we have F (S) =
∑k

i=1 ∆(ji), where

∆(ji) = α + γH(ji) and H(ji) is given in (5), i = 1, . . . , k. Calculate

F (S) =
k∑

i=1

∆(ji) = αk + γ
k∑

i=1

[(a + 1)ji

(
p

a2
+

s2

a

)
− p

a2
− s2 + jip

a
] =

A
(1)
1 k + A

(1)
2

k∑

i=1

(a + 1)ji + A
(1)
3

k∑

i=1

ji,
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where

A
(1)
1 = α− γ

(
p

a2
+

s2

a

)
, A

(1)
2 =

p

a2
+

s2

a
, A

(1)
3 = −p

a
.

Next, calculate C(S) =
∑k

i=1 T (ji). On substituting T (ji), i = 1, . . . , k, obtained from (3),

into C(S), we deduce that

C(S) =
k∑

i=1

T (ji) =
k∑

i=1

(
s1 + jiv + s2 + (p + as2)

(a + 1)ji − 1

a

)
=

A
(2)
1 k + A

(2)
2

k∑

i=1

(a + 1)ji + A
(2)
3

k∑

i=1

ji,

where

A
(2)
1 = s1 + s2 − p + as2

a
,A

(2)
2 =

p + as2

a
,A

(2)
3 = v.

To complete the proof, we use the above expressions of F (S) and C(S) in the following

chain of equivalent inequalities.

C(S(1)) ≤ C(S(2)) ⇔ A
(2)
1 k +A

(2)
2

k∑

i=1

(a+1)j
(1)
i +A

(2)
3 b ≤ A

(2)
1 k +A

(2)
2

k∑

i=1

(a+1)j
(2)
i +A

(2)
3 b ⇔

⇔
k∑

i=1

(a + 1)j
(1)
i ≤

k∑

i=1

(a + 1)j
(2)
i ⇔

⇔ A
(1)
1 k+A

(1)
2

k∑

i=1

(a+1)j
(1)
i +A

(1)
3 b ≤ A

(1)
1 k+A

(1)
2

k∑

i=1

(a+1)j
(2)
i +A

(1)
3 b ⇔ F (S(1)) ≤ F (S(2)).

Lemma 2 forms the basis of a polynomial dynamic programming algorithm to solve

problem ZeroHold-BWR. Let Z(k, b), 0 ≤ k ≤ n, 0 ≤ b ≤ n denote the class of partial

schedules, where each schedule contains k batches and b defective items. Consider S ∈
Z(k, b). Assume that S is feasible. Schedule S(1) = (S, j) is feasible if and only if inequalities

(6) and (7) are satisfied. Its length can be calculated as C(S(1)) = C(S)+T (j), where T (j)

is given in (3).

The proposed dynamic programming algorithm enumerates vectors (k, b). Value C(k, b)

represents the minimum length of a partial schedule in the class Z(k, b).

Algorithm for problem ZeroHold-BWR

Step 1 (Initialization) Set C(0, 0) = 0 and C(k, b) = ∞ for k = 0, . . . , n, b = 0, . . . , n,

(k, b) 6= (0, 0). Calculate T (j), j = 1, . . . , n, using (3).
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Step 2 (Recursion) Given (k, b), k = 1, . . . , n, b = k, . . . , n, compute t = C(k − 1, b − j)

and

C(k, b) = min
j=1,...,b

{
t + T (j), if (6) and (7) are satisfied,
∞, otherwise.

Step 3 (Optimal solution) Calculate the minimum length

C∗ = min{C(k, n) |1 ≤ k ≤ n}.

If C∗ = ∞, then there is no schedule feasible with respect to the deadlines d1, . . . , dN .

If C∗ < ∞, then the corresponding optimal schedule can be found by backtracking.

Let it be S∗ = (j∗1 , . . . , j
∗
k). Due to Lemma 2, F ∗ =

∑k
i=1 ∆(j∗i ) is the minimum cost

for problem ZeroHold-BWR.

The number of state variables used by this algorithm is O(n2). The initialization in Step

1 takes O(n2) time and the backtracking in Step 3 takes O(n2) time. Since the algorithm

demands O(n) time to calculate C(k, b) in Step 2, its time complexity is O(n3).

7 The deadline-free case

Consider another case of problem BWR. There are no deadlines; however, all the processed

items are kept till the required quantities of good quality items are produced. This sit-

uation arises, for example, when a manufacturer performs long-term planning and wants

to determine the amount of time needed to fulfill the order of a single customer, and to

determine the structure of such an optimal schedule. This scheme is also applicable when

a manufacturer runs through a low demand period of the year and receives orders from

customers one by one. In this case, the time intervals between adjacent orders allow the

manufacturer to adjust the production schedule for each particular customer. Denote this

problem by Deadline-Free-BWR.

Denote by Z(b) the class of partial schedules, each of which contains b defective items.

Assume that S is the schedule from the class Z(b). Let F (S) be the cost of S. Consider

schedule S(1) = (S, j) and find F (S(1)) = F (S) + ∆(j), where ∆(j) can be calculated as

∆(j) = α + β
(
T (j)bv + (T (j)− s1 − jv)(j − 1)v

)
+ γH(j), (9)
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where T (j) and H(j) are found using (3) and (5), respectively. The first component α of

the sum (9) is the setup cost of the appended batch. The second component represents the

increase in the finished items holding cost. First, this increase is caused by the prolonged

holding of the items assigned to schedule S: with a new batch having been added, all bv

items of schedule S are to be kept for an additional time T (j). Second, (j − 1)v good

quality items of the added batch are held for T (j)− s1 − jv time units until schedule S(1)

has been completed. Finally, the third component γH(j) in (9) is the holding cost of the

unfinished defective items assigned to be processed in the added batch.

The proposed dynamic programming algorithm enumerates values b, 0 ≤ b ≤ n. Let

F (b) be the cost of a partial schedule in class Z(b). The description of the algorithm is

given below.

Algorithm for the problem Deadline-Free-BWR

Step 1 (Initialization) Set F (0) = 0. Set F (b) = ∞, b = 1, . . . , n. Calculate ∆(j), j =

1, . . . , n, using (9).

Step 2 (Recursion) For b = 1, . . . , n, compute

F (b) = min
j=1,...,b

{F (b− j) + ∆(j)}.

Step 3 (Optimal solution) The optimal solution cost is equal to F (n). The corresponding

schedule can be found by backtracking.

The initialization in Step 1, as well as the finding of an optimal solution in Step 3,

takes O(n) time. Furthermore, the proposed algorithm demands O(n) time to determine

each F (b), b = 1, . . . , n. Therefore, the complexity of the algorithm is O(n2). Note that

it is pseudopolynomial for problem Deadline-Free-BWR because the length of its input is

O(log max{s1, s2, α, β, γ, v, n}).

8 Conclusions

The problem of scheduling the production of new and recoverable defective items of the

same product manufactured on the same facility was studied. The situation was modelled
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as a problem of scheduling N items, subject to satisfying a set of given order deadlines.

We presented an algorithm polynomial in n (the number of defective items) and dN (the

time of the latest demand for a good quality item) for solving the general problem. We

also constructed algorithms polynomial in n for solving three realistic special cases of the

general problem.

Investigation of other efficiently solvable and practically relevant special cases of the

problem is of interest for future research. An open question is the computational complexity

of the general problem and its deadline-free case. Further research addressing these issues

is worth undertaking.
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