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Abstract

The Stackelberg pricing problem has two levels of decision making: tariff setting by an operator, and then selection of
the cheapest alternative by customers. In the network version, an operator determines tariffs on a subset of the arcs that he
owns. Customers, who wish to connect two vertices with a path of a certain capacity, select the cheapest path. The revenue
for the operator is determined by the tariff and the amount of usage of his arcs. The most natural model for the problem is
a (bilinear) bilevel program, where the upper level problem is the pricing problem of the operator, and the lower level prob-
lem is a shortest path problem for each of the customers.

This paper contains a compilation of theoretical and algorithmic results on the network Stackelberg pricing problem.
The description of the theory and algorithms is generally informal and intuitive. We redefine the underlying network of the
problem, to obtain a compact representation. Then we describe a basic branch-and-bound enumeration procedure. Both
concepts are used for complexity issues and for the development of algorithms: establishing NP-hardness, approximability,
special cases solvable in polynomial time, and an efficient exact branch-and-bound algorithm.
� 2007 Published by Elsevier B.V.
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1. Introduction

Combinatorial optimization problems on net-
works generally involve costs on the arcs. The issue
is to find the cheapest subset structure of the arcs
such as a path, a tree, or a matching. The decisions
to be made are which arcs to include in the struc-
ture. In the problems discussed here, also the costs
(tariffs) of a given subset of the arcs are to be deter-
mined. This introduces two levels of decisions. At
the top level the tariffs of some arcs are determined
by an operator or agent, the leader. Once this is
0377-2217/$ - see front matter � 2007 Published by Elsevier B.V.
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done, at the bottom level, customers must decide
which edges they use for their optimal structure.
This set-up is a Stackelberg game. The customer’s
structure here, is a path between two specified verti-
ces. The game for the leader is then to determine
prices of the arcs controlled by him, such that the
collected revenues on the shortest paths of the cus-
tomers are as high as possible.

Applications with a natural network structure are
found in different transportation sectors: toll opti-
mization on roads such as the French highway sys-
tem, see Dewez (2004) and Labbé et al. (1998), but
also the German truck toll system; long-distance
freight transportation overseas, see Brotcorne et al.
(2000), passenger transportation in trains, and finally
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Fig. 1. 1-commodity network with two tariff arcs.
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information transportation in telecom networks, see
Basar and Srikant (2002). Note that an essential ingre-
dient is that the customers must have alternatives,
either the market should be oligopolistic or there
should be different alternatives, such as the choice
between cargo transportation with trains or trucks.

The problem is most naturally formulated as a
bilinear bilevel program, see Section 2. An integer
linear program is described in (Labbé et al., 1998).
This ILP is, however, not necessary in the descrip-
tion of techniques, and therefore we do not incorpo-
rate it. The shortest path graph (SPG) is introduced
in Section 3. This graph, introduced in (Bouhtou
et al., 2002), reduces the size of the original network.
It is also as a tool in solution methods and complex-
ity proofs. With the SPG, we develop a basic
branch-and-bound scheme in Section 4. In Section
5, we describe a series of complexity results such
as NP-hardness proofs, (in) approximability, and
polynomial-time solvability. In Section 6, a series
of variants and extensions is described. This section
contains some interesting open problems.

2. Problem definition and model

Consider a network represented by a directed
graph G ¼ ðN ;AÞ with nodes N and arcs A. The
arc set A is partitioned into two sets: the tariff arcs
T, and the fixed cost arcs F. The tariff arcs belong
to the leader in the network and incur a tariff (to
be determined by the leader) for routing a unit of a
client’s demand. The fixed arcs are owned by other
agents in the network, whose tariffs are known a pri-
ori. The tariffs on the arcs of T are determined such
that the total revenue of the leader is maximized.
Both the tariffs and the fixed costs are assumed to
be nonnegative. The clients on the network route
their demands from source to destination according
to the shortest path with respect to total cost, where
the total cost of a path is defined as the sum of all the
tariffs and fixed costs on the arcs of the path. When-
ever the client has a choice among multiple shortest
paths with the same total cost but with different rev-
enues for the leader, we suppose the client takes the
shortest path that is most profitable to the leader.

We denote by ca the cost of routing a unit
demand on a fixed cost arc a 2 F , and by ta the cost
of routing a unit demand on a tariff arc a 2 T . The
commodities are denoted by the set K. The demand
of a commodity k 2 K is given by dk. The source and
destination of commodity k are given by the pair
ðsk; tkÞ. The set of paths that connect sk and tk is
given by Pk. For each path p 2 P k we introduce Tp

for its set of tariff arcs, and Fp for its set of fixed cost
arcs. Furthermore, the cost of routing a unit
demand on p is denoted by its length lpðtÞ, which
is a function of the tariffs t. The length of p is deter-
mined by the sum of the costs on the fixed arcs of
the path, denoted by cp, and the costs on the tariff
arcs of the path, represented by ppðtÞ. Thus,
lpðtÞ ¼ cp þ ppðtÞ, where cp ¼

P
a2F p

ca, and ppðtÞ ¼P
a2T p

ta. Note that our model implicitly incorpo-
rates arcs with both fixed and tariff costs since we
can divide such an arc a with cost ca and tariff ta into
two consecutive arcs: an arc with fixed cost ca and
an arc with tariff ta.

To ensure that the problem is bounded, we
assume that for each commodity there is an upper
bound on the amount the customer is willing to
pay, or there exists a path from source to destina-
tion which uses only fixed cost arcs.

The following formulation of the arc pricing prob-
lem is a direct translation of the above description:

max
tP0

X
k2K

dkpp�k
ðtÞ

s:t: p�k ¼ arg min
p2P k

lpðtÞ 8k 2 K:
ð1Þ

The formulation given by (1) is a bilevel problem
where at the upper level the leader strives to maxi-
mize his revenue, while at the lower level the clients
(followers) seek to minimize the cost of routing their
demands. Notice that the bilevel program given by
(1) is not polynomial in its input data, since the
set of all possible paths for each client k 2 K may
be exponential in the size of the problem instance.

Example 1. Consider the following network (see
Fig. 1)
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In Example 1, there are 4 paths connecting s and t.
Each of these paths has a fixed cost component and
a tariff part. Though the path lengths are linear in
the tariffs, the objective is not even continuous in
the tariffs. This is illustrated in the example as fol-
lows. Let t12 ¼ 0, and start to increase t34 from 0
to an arbitrary large value. Then up till value 3
the path s1234t is optimal, and tariff and profit are
equal, and after 3 the profit drops to 0, since the
path s12t becomes the most attractive path for the
customer. Note that the optimal solution for the lea-
der is to set t12 ¼ 3t34 ¼ 3, with a profit of 6 on the
shortest path s1234t per unit demand.

Labbé et al. (1998) considered the following arc
oriented bilevel model. Let the vector bk be the
demand/supply vector for each commodity where
each element of the vector represents the demand/
supply for a commodity at each node in the graph

max
tP0

X
k2K

X
a2T

taxk
a

min
xkP0

X
k2K

X
a2T

taxk
a þ

X
a2F

caxk
a

( )

s:t:
X
a2Aþi

xk
a �

X
a2A�i

xk
a ¼

dk i ¼ sk;

�dk i ¼ tk;

0 otherwise:

8><
>:

ð2Þ

Here Aþi is the set of arcs leaving i, and A�i is the set of
arcs entering i. In this bilevel model, xk 2 RjAj repre-
sents the flow on the arcs, in vector notation of com-
modity k. Furthermore, A represents the node-arc
incidence matrix of the network. This model is a
bilinear bilevel program, since the upper level is lin-
ear in the tariff variables and the lower level is linear
in the arc choice variables. Clearly, the formulation
is not linear in the combination of these variables.

Formulation (2) has been used in Brotcorne et al.
(2000, 2001) for the development of primal–dual
heuristics in case of a single-commodity and multi-
ple commodities, respectively. Labbé et al. (1998)
developed an integer linear programming formula-
tion from the bilevel program as follows. The lower
level problem is a set of shortest path problems each
Fig. 2. Shortest path of fixed co
of which can be described as the linear program
given in the lower level problem of (2). The optimal
solution can now be characterized using duality the-
ory: add the dual and set the two objectives of dual
and primal equal to one another. Finally, the con-
straints and objective contain products of tariff
and design variables of the arcs. These must be
linearized by introducing new variables tk

a

a 2 T ; k 2 K for the products and appropriate con-
straints. This roughly triples the number of vari-
ables and constraints to OðjKjjT jjV jÞ. See Labbé
et al. (1998) for a complete description of the result-
ing model.
3. The shortest path graph

If a client selects a shortest path, say p, then the
subpaths of p are also shortest paths. This holds
specifically for the subpaths between two consecu-
tive tariff arcs. Consider two such arcs a1 ¼
ði1; j1Þ 2 T and a2 ¼ ði2; j2Þ 2 T . Then the subpath
between j1 and i2 is a shortest path that contains
only fixed arcs (see Fig. 2).

Thus, we can restrict the client’s choice to paths p

of the following structure:

p ¼ fsp1; a1; sp2; a2; . . . ; spk; ak; spkþ1g; ð3Þ

where spi, i 2 f1; . . . ; k þ 1g are shortest subpaths
using only fixed cost arcs from a tariff arc ai to a tar-
iff arc aiþ1 on the path. Since these subpaths are part
of the subgraph using the arcs from F, their length
can be computed without determining the tariffs.
We can therefore construct a new graph model, in
which this is actually done: the shortest path graph.

We will define this graph model for a single cus-
tomer first. Consider the original graph G ¼ ðN ;AÞ
with the tariff arcs in T � A. For a client with a
demand d from s to t, we define the graph
G� ¼ ðN �;A�Þ and the tariff arcs T � � A�. In this
graph, the tariff arcs are copied from G as a match-
ing. So, arcs with a common vertex are separated.
Next, we construct the following fixed cost arcs.
For two tariff arcs a1 ¼ ði1; j1Þ and a2 ¼ ði2; j2Þ we
st arcs between j1 and i2.



Fig. 4. Path dominance.
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connect j1 with i2, if there is a path in G that uses
fixed arcs only. Similarly, we connect j2 with i1.
From the source s we construct arcs to all the tail
nodes of the tariff arcs, and from all the head nodes
we construct an arc to the destination t, again only
if paths exist using only fixed arcs in G. Any fixed
arc in A* has a cost equal to the length of the short-
est path between its end vertices in G, using only
fixed cost arcs in G. The new network is the shortest
path graph (SPG).

Example 2. Fig. 3 shows the SPG of a network
containing three tariff arcs for a customer with
demand from s to t. The tariff arcs are given by the
bold arcs ði1; j1Þ; ði2; j2Þ and ði3; j3Þ. All other arcs
are representations of the shortest path using only
fixed cost arcs between each node. The cost of the arc
is the cost of the corresponding shortest path in the
original network between the two nodes. The short-
est path graph need not contain all possible arcs: if
there is no path between two tariff arcs, then the
connecting arc is missing in the SPG is also missing.
In the example the arcs ðj3; i1Þ and ðj3; i2Þ are missing.

In case of multiple customers, we create an SPG
for each of them. The inner graph (consisting of the
end vertices of the tariff arcs, and the arcs between
them) is equal for all customers and hence needs
to be determined only once. Additional shortest
path calculations are necessary only for the arcs
leaving the source and/or entering the target of each
customer. The shortest path graph model is equiva-
lent to the original graph in the sense that both have
an optimal solution of the same value: each path in
the original graph is represented by a path in the
SPG which is at least as good. Alternatively, a path
in the SPG, has exactly the same fixed costs as the
shortest path in the original graph connecting the
tariff arcs of the first in the same order, and thus
it contains the same tariff arcs.
Fig. 3. Shortest p
We can further reduce the SPG by removing arcs
that will not be taken for any set of tariffs. This is
done by use of (path) dominance criteria. Here,
nonnegativity of the tariffs is vital.

Definition 1. If for any set of tariffs, the path p is at
least as short as path q, then path p dominates path
q.

The following proposition allows us to eliminate
dominated paths. Recall that Tp is the set of tariff
arcs from path p, and that cp is the total cost of
the fixed arcs from p.

Proposition 1. Consider two paths p and q. If

T p � T q and cq P cp, then path p dominates path q

for all tariffs.

By the nonnegativity of the tariffs and T p � T q,
the total tariff on p is at most the total tariff on q.
Since this is also the case for the total fixed costs,
q will never be shorter than p. Thus, q need never
be selected by the customer.

Example 3. An instance where dominance of paths
occurs is given in Fig. 4. The tariff arcs are the arcs
ði1; j1Þ, and ði2; j2Þ. The leader is dealing with one
client who wants to route his demand from node s

to node t. For this graph, the path fs; i1; j1; i2; j2; tg
is dominated by the path fs; i1; j1; tg, since the arc
ðj1; tÞ has length 4 and the path fj1; i2; j2; tg has
length at least 5. In fact, the arc ðj1; i2Þ is never used
and can therefore be removed.
ath graph.



Fig. 5. Arc removal.
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An arc can be removed from the network, if
every path using it is dominated by a path not using
it. This may happen under various circumstances
mentioned in Bouhtou et al. (2002). We will restrict
ourselves to a few straightforward ideas.

In principal, an arc can be removed if the fixed
costs to reach it from s, or to leave it to t are large
enough. Thus, in Example 5, arc ði3; j3Þ can be
removed since reaching it costs at least 10 and leav-
ing it costs 2. So, the fixed costs for using ði3; j3Þ are
at least 12, which is more than the cost of moving
from s to t directly: 11. The arc ðj1; i2Þ can be
removed, since the fixed costs of moving directly
to t are 4, and leaving j1 through ðj1; i2Þ has fixed
costs of at least 6. Similarly, arc ðj2; i1Þ can be
removed (Fig. 5).

In the SPG, the maximum number of paths for a
client k 2 K is bounded by ejT j!, the number of
ordered subsets of the tariff arcs. This number is
reached in a complete SPG. The number of undom-

inated paths in a network is bounded by the number
of possible subsets of T, i.e. by 2jT j: If two paths p

and q have an identical set of tariff arcs, then the
undominated path is the path with smallest fixed
cost. Fig. 6 shows that this number of undominated
paths can be reached for jT j ¼ 4, with an easy exten-
sion to arbitrary jT j.
4. A basic branch-and-bound scheme

In this section we describe a branch-and-bound
algorithm for the pricing problem. This algorithm
consists of two steps. In the first step we generate
for each client his shortest path graph, and we enu-
Fig. 6. Network with 4 tariff arcs, and 24 undominated paths.
merate all feasible undominated paths with their
fixed costs and tariffs. In step two we solve the prob-
lem to optimality by branching and bounding on the
paths.

Denote the clients by the set K and the set of
paths a client k 2 K can take by P k. The reduction
methods applied to the shortest path graph model
allow us to determine the set of relevant paths for
each customer. We suppose that Pk is reduced to
contain the relevant paths only. Recall that the lin-
ear function lpðtÞ ¼ cp þ ppðtÞ denotes the cost of a
path p as a function of all tariff values. Let pl

k be
the path for client k 2 K with the smallest fixed cost,
i.e., pl

k ¼ arg minp2P k cp and pu
k the path with the larg-

est fixed cost, i.e., pu
k ¼ arg maxp2P k cp. Note that pu

k

has no revenues for the leader, since it denotes the
path with fixed cost arcs only. Clearly, cpu

k
� cpl

k
is

an upper bound on the revenues that can be gener-
ated from client k. This is an important measure in
the branch and bound algorithm.
4.1. Branching

In each node of the branch and bound tree, we
select a client, and we create a branch for each of
the relevant paths of the client. The selection
method of the clients is based on the upper bound
cpu

k
� cpl

k
on the revenue generated by each client

for the leader: the client for which this upper bound
is highest, is selected first. Next, we walk through
the search tree in a depth-first manner.
4.2. Bounding

Due to our branching rules, in each node of the
branch and bound tree for some clients the path
taken in the solution is fixed, whereas for other cli-
ents this choice is still to be made. In each node, we
denote by the set Kf � K the set of clients for which
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we have fixed the path taken in the solution. Sup-
pose that for any client k 2 Kf , we have fixed the
path p�k . We can find the optimal, revenue maximiz-
ing tariffs for the problem restricted to the clients in
Kf by solving the following linear problem:

max
X
k2Kf

dkpp�k
ðtÞ

s:t: lpðtÞP lp�k
ðtÞ 8k 2 Kf ; 8p 2 P k;

ta P 0 8a 2 T

ð4Þ

The linear program described in (4) forces the path
p�k to be the shortest path in Pk, while maximizing
the leader’s revenue.

We generate lower bounds in each node of the
branch and bound tree by computing a feasible
solution. Such a feasible solution can be created
by solving (4) and then adding the revenues from
the tariffs of (4) for the clients in K n Kf .

Example 4. Consider a problem with 4 customers,
with demand and list of undominated paths as
follows:
d1 ¼ 20
 d2 ¼ 10
 d3 ¼ 15
 d4 ¼ 5
Fig. 7
1
 þt1
 þt2
 2
 þt1
 þt2
 3
 þt1
 2
 þt12
3
 þt2
 4
 þt1
 5
 4
 þt12
5
 5
 þt2
 7

7

The lower and upper bounding are as follows.
Fig. 8. Example where the gap cannot be used completely.
Suppose that the subproblem to be solved is the one
where client 1 has the second path as shortest path
(cost 3þ t2), and client 2 has the first path as
shortest path (cost 2þ t1 þ t2). Then the LP has to
be solved (see Fig. 7).

Note that the subproblems define a linear
program to find a lower bound (feasible solution).
. Subproble
In the problem above the LP generates the optimal
solution t1 ¼ 3, t2 ¼ 2 with value 90. The upper
bound is now computed by taking the worst
scenario: the gap between the fixed costs of the
best path and the fixed cost path, multiplied with
the demand of each of the remaining clients. In this
case the upper bound is 15 * 2 + 585 = 55 higher
than the lower bound. Note that the lower bound is
easily increased by taking the contribution of
clients 3 and 4 into account. In (Bouhtou et al.,
2002) the upper and lower bounds are strengthened
furthermore.
For a client k 2 K an upper bound for the unit

demand revenue generated by that client is given
by cpu

k
� cpl

k
. As is shown by Labbé et al. (1998), this

upper bound is not necessarily reached. Even the
upper bound on the cost of the path, cpu

k
, is not tight.

This is shown by the example given in Fig. 8. For a
single client with a unit demand from node 1 to
node 4, the optimal tarification scheme is to set
the tariffs on the tariff arcs to t1 ¼ t2 ¼ 2. Hence,
the cost of the path taken by the client is 6, yielding
a revenue of 4 for the leader. The upper bound on
the cost of the path is however 7, while the upper
bound on the revenue is given by 7� 2 ¼ 5.

Roch et al. (2005) give an example which shows
that the relative gap can be logarithmic in the num-
ber of tariff arcs. In other words it can be arbitrarily
large.
m with LP.



Fig. 9. Clause Ci for three arbitrary variables.

S. van Hoesel / European Journal of Operational Research 189 (2008) 1393–1402 1399
5. Complexity

5.1. NP-hardness

In (Labbé et al., 1998) the version of the problem
with one customer and general (possibly negative)
lower bounds on the tariffs, has been shown to be
NP-hard. The proof uses a reduction from Hamilto-
nian path. Later, Roch et al. (2005) proved that the
one-customer problem is strongly NP-hard already,
when all lower bounds equal 0. They use a reduction
from 3-SAT, which we give below in a slightly mod-
ified version. Consider n variables x1; . . . ; xn and m

clauses C1; . . . ;Cm. A clause is represented in the
tariff network with the construct shown in Fig. 9.

The left three toll arcs ðai
j; b

i
jÞ ðj ¼ 1; 2; 3Þ with

tariffs tij correspond to the three variables in the
clause. Besides the arc ðvi;wiÞ with tariff ti, there
are only fixed cost arcs, each having fixed cost 0,
except the arcs ðui; viÞ and ðvi;wiÞ with cost 1.

The clauses are coupled by identifying the nodes
wi and uiþ1 ði ¼ 1; . . . ;m� 1Þ. Finally, we add arcs
with fixed cost 1

2
between any pair of tariff arcs that

corresponds to a variable and its negation. We con-
Fig. 10. Network for formula ðx1 _ x2 _
nect the head vertex of the earlier clause arc to the
tail vertex of the later clause arc. See Fig. 10, where
the dashed arcs are of this type. Finally, the source
s ¼ u1 and the destination is t ¼ wm.

The idea is now to let the arcs of a selected (opti-
mal) path correspond with a truth assignment of the
variables in the 3-SAT problem.

Now, the tarification problem has a solution with
value 2m if and only if there is a truth assignment to
the variables of the corresponding 3-SAT instance.

Note that the path s ¼ u1; v1;w1; u2; . . . ;wm�1;
um; vm;wm, with fixed cost arcs has length 2m, and
any path taking two tariff arcs in each clause con-
struct has total fixed costs 0. Moreover, each tariff
arc can add at most 1 to the value of the problem,
which bounds the value of any optimal solution to
2m.

First, suppose that an optimal path with value
2m exists. This path will take two arcs with tariff 1
in each clause construct. Now, let the variables cor-
responding to the taken tariff arcs be set to true.
Then no conflicts will arise: if both a variable and
its negation are on the path (and thus set to true)
in two different clauses, then there is a dashed arc
connecting them. Since this arc is a shortcut of the
path (note that we skip at least one arc with tariff
1 of type ðvi;wiÞ), this contradicts the optimality of
the path.

Second, suppose that the 3-SAT problem has a
valid truth assignment. Set the tariffs on the vari-
ables in the clauses which are false to a value higher
than 2m, and all other tariff arcs to value 1. Clearly,
the dashed arcs are never used in an optimal path,
since this would incorporate an arc with tariff higher
than 2m, which is worse for the customer than
the length of the fixed cost path. Finally, none of
the arcs with fixed costs 1 will be used, since the
�x3Þ ^ ð�x2 _ x3 _ �x4Þ ^ ð�x1 _ x3 _ x4Þ.
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alternative of one of the tariff arcs with tariff one is
equally good for the customer and better for the
operator. Thus, the optimal path will take two tariff
arcs of value 1 in each clause construct, which leads
to a total value of 2m.

5.2. Approximation

Roch et al. (2005) gave also an approximation
algorithm for the problem with one customer, with
a performance guarantee of Oðlog T Þ. The idea of
the algorithm is fairly easy. It successively tries to
find paths with high tariff revenue. It starts with
the best path P possible: the one with the smallest
amount of fixed costs. After computing the optimal
tariffs for P, the tight fixed cost arcs are identified.
The one with the smallest cost replaces the subpath
in P it connects. For the new path the procedure is
repeated until all tariff arcs are removed.

A subroutine of this procedure is to find the best
tariffs given that the path P is optimal. Tariff arcs
not in P get sufficiently high tariffs, in order not to
be a problem. For the arcs in P a greedy algorithm
does the job: in order of appearance in P each arc
gets a tariff as high as possible.

The analysis of the algorithm is the complicated
part. The bound is tight for this particular algo-
rithm, as shown by an example given in Roch
et al. (2005).

Grigoriev et al. (in press) show that in the special
case where the inner graph of the SPG contains only
tariff arcs Oðlog T Þ is worst-case even for multiple
customers. They also prove that this problem is
APX-hard.

5.3. Polynomially solvable cases

In (Labbé et al., 1998) many special cases that are
polynomially solvable have been identified. One of
them is the single-customer case, where the order
of used tariff arcs is known. Another is the single
tariff-arc problem. van der Kraaij (2004) proves that
even in the case of fixed charge costs this problem is
polynomially solvable. We will concentrate here on
the problem where the number of tariff arcs in not
part of the input, i.e., bounded of fixed beforehand.

The bilevel program defined in (1) is shown to be
equivalent to a set of linear programs. Consider the
problem where we force for each client a specific rel-
evant path to be shortest. Then, as illustrated in the
section on branch-and-bound, the determination of
optimal tariffs, if feasible, is a linear program. Since,
in the optimal solution, there is a set of shortest
paths for the clients, we can consider any possible
set of shortest paths and solve the corresponding
LP. However, doing this directly does not result in
a running time polynomial in the number of cus-
tomers. We dig a little deeper in the structure of
the constraints, to get the desired result.

For any client k 2 K, consider two paths
p1; p2 2 P k. If p1 is to be the shortest of the two
paths, the constraint lp1

ðdkÞ 6 lp2
ðdkÞ must hold.

Thus

cp1
ðdkÞ þ pp1

ðdkÞ 6 cp2
ðdkÞ þ pp2

ðdkÞ () pp1
ðdkÞ

� pp2
ðdkÞ

6 cp2
ðdkÞ � cp1

ðdkÞ:

This constraint is of the formX
a2T 1

ta �
X
a2T 2

ta 6 bkðp1; p2Þ: ð5Þ

Here bkðp1; p2Þ is a constant and T1 and T2 are dis-
joint subsets of T. Note that T1 contains the tariff
arcs in p1 not in p2, and T2 contains the tariff arcs
in p2 not in p1. The constant bkðp1; p2Þ is referred
to in the remainder as the switching value for the
pair ðp1; p2Þ for a client k 2 K. The number of differ-
ent left-hand sides of (5) is 3jT j, since each variable
can have coefficient only in f�1; 0; 1g. The number
of switching-values per client is the number of differ-
ent pairs of paths, and that is bounded by ðeT !Þ2.

The main idea is to collect all possible switching
values br, and to order them: ðr 2 f1; . . . ;RgÞ. The
next point is that we create our set of LPs as follows.
For each disjoint pair of subsets of T, T1 and T2 we
fix a consecutive pair of switching values with the
index rðT 1; T 2Þ, and we add the following constraint
to the LP:

brðT 1;T 2Þ�1 6

X
a2T 1

ta �
X
a2T 2

ta 6 brðT 1;T 2Þ: ð6Þ

It is not hard to show that the number of LPs that
we can create is polynomial in the number of clients,
but exponential in the number of tariff arcs. For de-
tails, see van Hoesel et al. (2003).

6. Variants of the Stackelberg pricing problem

6.1. Special cases

The structure of the network can be restricted in
the sense that the tariff arcs meet certain properties.
Two obvious properties are: the tariff arcs form a
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cut-set (Grigoriev et al., in press), or the tariff arcs
form a path (Dewez, 2004). The first problem is
not easier than the original problem: it is still NP-
hard, for multiple customers and the best known
approximation algorithm does not improve the
one given in the previous section. The second prob-
lem is under recent investigation, with a slight mod-
ification: using multiple arcs in common the total
tariff may be smaller than the sum of tariffs of indi-
vidual arcs. It is not known whether this problem is
NP-hard. Its application is found in toll systems
with many entrances and exits, such as the French
highway structure.

6.2. Extensions

Extensions can be defined in several ways. One
way is to incorporate capacities on the arcs. This
extension is quite hard to handle. For instance,
the path-oriented ideas should be replaced with net-
work oriented ideas. No research on this subject has
been reported, as far as known to the author.

A second extension is the pricing mechanism.
Instead of linear tariffs, these may be fixed charge,
or even just increasing with demand. The PhD thesis
of van der Kraaij (2004) contains an analysis of the
problem with different types of cost structures. It
shows that the case with one tariff arc is polynomial
for the fixed charge costs. Moreover, it shows how
the branch-and-bound algorithm can be used.

A third extension is the incorporation of the
design of the network. The following formulation
of the tarification problem is a direct translation
of the above description. Here, Pk is the set of paths
in the network G ¼ ðV ; F þ T 0Þ where T 0 is the sub-
set of T of selected arcs, for which a cost ca is
involved. In (Brotcorne et al., 2005), the problem
is formulated and solved with heuristics and a spe-
cialized Lagrangean relaxation approach.

6.3. Related problems

In traffic congestion problems time can be con-
sidered as a price. Here, however, the time is depen-
dent on the capacity usage, whereas in our case we
have only a linear relation between capacity usage
and price. Examples are routing of traffic flows,
see Roughgarden and Tardos (2000); Roughgarden
(2001), and IP traffic engineering, see Fortz and
Thorup (2000). Basar and Srikant (2002) treated
traffic congestion problems explicitly as a Stackel-
berg game on networks.
6.4. General bilevel programs

The general linear–linear bilevel program has
been shown to be NP-hard by Jeroslow (1985).
For a reference on bilevel programming, we refer
the reader to Vicente and Calamai (1994) who have
compiled an annotated bibliography on this subject
containing more than one hundred references.

7. Concluding remarks

The standard Stackelberg pricing problem on
networks is well-solved from a practical point of
view, and also many important theoretical questions
have been answered. Nevertheless, some interesting
open problems remain: approximability for special
cases within a constant factor, and cutting plane
methods for the integer linear programming formu-
lation of the problem. Branch-and-cut methods are
currently developed by different groups. A prelimin-
ary study can be found in (Dewez, 2004).

For extensions of the problem, many of the
results discussed here have no counterpart in the
extensions. For instance, the capacitated case has
no good algorithmic methods, and no results on
approximability. This, of course, applies also for
other network or combinatorial bilevel programs.
In other words, the field is still rich of open interest-
ing questions.
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Brotcorne, L., Labbé, M., Marcotte, P., Savard, G., 2005. Joint
design and pricing on a network. Working paper.

Dewez, S., 2004. On the toll setting problem. Ph.D. dissertation,
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