

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/140207

Albiach, J.; Sanchís Llopis, JM.; Soler Fernández, D. (2008). An asymmetric TSP with time
windows and with time-dependent travel times and costs: An exact solution through a graph
transformation. European Journal of Operational Research. 189(3):789-802.
https://doi.org/10.1016/j.ejor.2006.09.099

https://doi.org/10.1016/j.ejor.2006.09.099

Elsevier

An asymmetric TSP with time windows and

with time-dependent travel times and costs: an

exact solution through a graph transformation

José Albiach∗, José Maŕıa Sanchis†, David Soler‡

Departamento de Matemática Aplicada and IMPA-UPV.

Universidad Politécnica de Valencia. Valencia, Spain

Abstract

In this paper we deal with an extended version of the Asymmet-

ric Traveling Salesman Problem with Time Windows (ATSPTW) that

considers time-dependent travel times and costs, for a more accurate ap-

proximation of some routing problems inside large cities, in which the

time or cost of traversing certain streets (e.g. main avenues) depends

on the moment of the day (for example rush-hours).

Unlike other existing papers about time-dependent routing prob-

lems, we focus on an exact method for solving this new problem. For

this end we first transform the problem into an Asymmetric Generalized

TSP and then into a Graphical Asymmetric TSP. In this way, we can

apply a known exact algorithm for the Mixed General Routing Problem,

which seems to run well with our resulting instances. Computational

∗Corresponding author: José Albiach, Departamento de Matemática Aplicada and

IMPA-UPV. Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia,

Spain. e-mail: jalbiach@mat.upv.es. Fax: +34-963877669.
†e-mail: jmsanchis@mat.upv.es
‡e-mail: dsoler@mat.upv.es

1

results are presented on a set of 270 adapted instances from benchmark

ATSPTW instances.

Keywords: Traveling Salesman Problem, time window, time-dependence.

1 Introduction

The Asymmetric Traveling Salesman Problem with Time Windows (ATSPTW)

is a well-known routing problem that can be defined as follows:

Given a directed graph G = (V, A) with nonnegative costs associated with

its arcs, each vertex i has an associated time window [ai, bi], the vertex i0 is

the depot, and traversing arc (i, j) ∈ A implies a travel time tij > 0, find a

minimum cost circuit in G starting at i0 at time ai0 and passing through each

vertex exactly once, such that the circuit leaves each vertex in its associated

time window and ends at i0 before bi0 .

Note that it is allowed to arrive at vertex i before ai (waiting time), but in

this case the circuit will leave i at time ai. For simplicity, if a service time is

necessary at a vertex i, this time will be included in the travel times tij, j 6= i.

The ATSPTW has important applications, especially in sequencing and

distribution problems. For this reason many papers have studied this topic in

the last decade. See for example [1], [2], [5], [14], [19], [21], [27] and [29].

Like in most routing problems found in the OR literature, in the ATSPTW

the arc costs or times are considered constant throughout the day. This as-

sumption may result in a weak approximation to real-world conditions, since,

for example, in distribution problems inside large cities, the time or cost of

traversing some streets (e.g. main avenues) depends on the moment of the day

(for example at rush-hours).

Routing problems with time-dependent costs have hardly been studied be-

cause they are more difficult to model and solve; however, more and more

papers on vehicle routing problems are taking into account time-dependent

travel costs for a more accurate approximation of the mathematical models

2

to the real problems. The research in [20] includes a detailed review of the

literature on time-dependent routing problems, and as recent papers we may

mention [18], [22] and [28]. These articles are based on heuristic procedures

for the solution of multivehicle routing problems with different kinds of time-

dependent travel times.

With respect to vehicle routing problems with a single vehicle including

time-dependent travel times, we find papers [24] and [25], which study the

Time-Dependent Traveling Salesman Problem (TDTSP), a problem similar

to the one presented here, but with considerable differences which will be

commented following the definition of our problem. These authors focused on

heuristic procedures for the TDTSP without time windows, tested on instances

with up to 55 vertices. In none of these instances the optimality of the solution

was proved.

Some papers on routing with time-dependent travel times (e.g. [18] and

[20]) discuss the “non-passing” (or “first-in-first-out”) property of the travel

times, which guarantees that if a vehicle leaves a vertex i for a vertex j at a

given time, leaving vertex i for vertex j at a later time implies arriving later

at vertex j.

In this paper we present the Asymmetric Traveling Salesman Problem

with Time-Dependent Costs (ATSPTDC), a generalization of the ATSPTW

in which, in addition to time windows, the cost and the travel time of each arc

depend on the moment at which we start traversing it. Because of this, the

circuit can start at the depot node i0 at time ti0 > ai0 . For example, if time

ai0 belongs to a rush-hour, instead of starting the route at ai0 , if possible, we

can be working inside the warehouse for a short period of time until the traffic

be moving quite freely.

The main difference of this paper with respect to the above mentioned

articles is that we focus on an exact approach to the problem; we find a way

of solving the new problem by transforming it into the classical Asymmetric

Traveling Salesman Problem (ATSP), for which several exact procedures have

3

been tested, even for large-scale instances (see for example [6], [7], [15], and

[16]). A comparison of the performance of ATSP exact solvers is given in [17].

The idea of transforming routing problems into an ATSP is not new. For

example, it was proposed in [23] to both optimally and heuristically solve

instances belonging to several classes of arc routing problems. It was also pro-

posed in [3] and [9] to optimally solve arc routing problems with turn penalties

and forbidden turns with the purpose of comparing the results obtained with

specific heuristic procedures, and also in [4] to solve the General Routing Prob-

lem, for which, at that time, there was no exact specific procedure for the mixed

case. According to the computational results presented in these four papers,

ATSP transformation works best on asymmetric problems or mixed problems

with few edges.

The main advantage of the ATSP transformation is that efficient algorithms

can be applied directly, as a black box, without any modification, to solve

problems for which this is the only available methodology (this is our case), or

to measure the efficiency of proposed heuristics.

To transform the new problem into an ATSP, we first transform it into

another combinatorial optimization problem studied in the OR literature,

namely the Asymmetric Generalized Traveling Salesman Problem (AGTSP).

The AGTSP is defined as follows:

Given a directed graph G = (V, A) with nonnegative costs associated with

its arcs, such that V is partitioned into k nonempty subsets {Si}
k
i=1, find a

minimum cost circuit passing through exactly one vertex of each subset Si

∀i ∈ {1, . . . , k}.

To solve the AGTSP several polynomial time transformations of this prob-

lem into an ATSP have been described in the literature. The most efficient

seems to be the transformation defined in [26]. As we will use this transfor-

mation, let us describe it briefly:

From G construct a new directed graph with the same vertex set but order

the vertices of each Si consecutively in an arbitrary way, {vi
1, . . . , v

i
l(i)}, l(i)

4

being the number of vertices in Si. For j = 1, . . . , l(i)−1 define the cost ci
j,j+1

of arc (vi
j, v

i
j+1) as zero, define ci

l(i),1 as zero and for every vi
j ∈ Si and every

w /∈ Si set cvi
j
,w equal to the cost in G of the arc from vi

j+1(mod l(i)) to w plus

a fixed positive large quantity M if |Si| > 1 and equal to the cost in G of the

arc from vi
j to w plus M if |Si| = 1, any other arc has infinite cost.

Solving the AGTSP in G is equivalent to solving the ATSP in the new

digraph.

Finally, as our aim is to find an exact solution to the new problem, we

will use the exact algorithm for the Mixed General Routing Problem (MGRP)

described in [11] to solve the resulting ATSP instances. The MGRP basi-

cally consists of finding a minimal closed walk on the edges and arcs (links)

of a mixed graph G (G has simultaneously edges and arcs) which traverses a

given subset of “required” links and a given subset of “required” vertices. This

problem contains a large number of important arc and node routing problems

as particular cases. For example, if G is a directed graph, the subset of re-

quired arcs is empty and all the vertices are required, we have the Graphical

Asymmetric Traveling Salesman Problem (GATSP) (see for example [8]). The

GATSP is a generalization of the pure ATSP in which graph G does not need

to be complete (few variables are needed) and then, the solution does not need

to be a Hamiltonian cycle but a closed walk passing through each vertex at

least once. Note that an ATSP instance can be transformed into a GATSP in-

stance by simply adding a large positive number L to each arc cost in order to

assure the occurrence of a Hamiltonian cycle in the optimal solution. There-

fore, as the GATSP is a particular case of the MGRP, the exact algorithm

in [11] can be used to optimally solve the ATSPTDC. It is a cutting-plane

algorithm based on the polyhedral study of the MGRP presented in [10] and

[11].

Figure 1 shows the overall procedure followed to optimally solve ATSPTDC

instances.

5

Fig. 1. Overall procedure to optimally solve the ATSPTDC.

The rest of the paper is organized as follows. In Section 2 we formally define

the ATSPTDC and we show the construction of an auxiliary digraph from a

ATSPTDC instance. In Section 3 we prove that the ATSPTDC can be trans-

formed in pseudo-polynomial time into an AGTSP on the auxiliary digraph.

The size of the auxiliary digraph is then considerably reduced in order to make

this transformation more competitive. In Section 4 we present computational

results on the exact resolution on a set of 270 ATSPTDC instances obtained

by modifying benchmark ATSPTW instances (see for example [14], [21] and

[29]), by using the exact MGRP algorithm in [11]. In this section we also

justify the advantage of using this exact procedure over other existing codes

for optimally solving the ATSP. Finally, Section 5 presents some conclusions.

2 Definition of the ATSPTDC and auxiliary

digraph

We define the ATSPTDC in the following way:

Let G = (V, A) be a simple directed graph, V = {vi}
n
i=0 being its set of

vertices, where v0 is the depot vertex. Each vertex vi has an associated time

window [ai, bi] verifying that ai, bi ∈ Z
+ ∪ {0} and [ai, bi] ⊆ [a0, b0] ∀i ∈

6

{1, . . . , n}. Every time window [ai, bi] has associated pi = bi − ai + 1 instants

of time {ai + k − 1}pi

k=1 . For simplicity we will denote tki = ai + k − 1 and

therefore, tki ∈ Z
+ ∪ {0}.

On the other hand, the time and the cost of traversing an arc (vi, vj) ∈ A

depend on the instant of time tki (k ∈ {1, . . . , pi}) at which we start traversing

it. Let us denote by tki,j ∈ Z
+ and ck

i,j ≥ 0 the time and the cost respectively of

traversing arc (vi, vj) starting at instant tki .

The goal in the ATSPTDC is to find a Hamiltonian circuit in G, starting

and ending at v0 at integer instants of time inside [a0, b0] such that:

- Starting the circuit at time tk0 ≥ a0 involves a waiting time cost cwt0(t
k
0 −

a0) ≥ 0 with cwt0(0) = 0.

- The circuit leaves each vertex vi ∈ V with i > 0 inside its associated time

window.

- If the circuit arrives at vertex vi with i > 0 at time t ∈ Z
+ with t ≤ ai, it

is allowed a waiting time ai − t with cost cwti(ai − t) ≥ 0 (with cwti(0) = 0).

In this case the circuit must leave vertex i at time ai.

- The sum of the costs of traversing arcs and of the waiting time costs be

minimum.

Some relevant aspects of this definition are:

- This definition allows the circuit to start after instant a0 with a waiting

time cost. We think that this is very important to minimize costs.

- Like in the ATSPTW, this definition also allows a waiting time ai − t

if the circuit arrives at vertex vi with i > 0 at time t ≤ ai. This waiting

time has an associated cost (a waiting penalty) which is normally given by a

non-decreasing linear function.

- As we stated for the ATSPTW and following some authors (see for ex-

ample [5], [13] and [21]), if a service time is necessary at a vertex i with i > 0,

this time is included in the travel times tkij for all j 6= i and for all k.

- From a practical point of view, the fact that the travel times must take

integer values is not a strong restriction with respect to the continuous case,

7

because we can define an appropriate and as-small-as required time unit for

each instance.

- In contrast to other papers, this definition distinguishes between two mag-

nitudes: the time-dependent travel time and the time-dependent cost (which

could be equal), focusing on cost minimization. In the particular case of the

ATSPTDC in which tkij = tsij = ck
ij = cs

ij ∀k, s ∈ {1, ..., pi} and ∀(vi, vj) ∈ A

with i 6= 0, ck
0,j = ∞ ∀k > 1 and ∀j > 0 (the circuit must start at time a0),

and all waiting time costs equal to zero, we obtain an ATSPTW. Thus, the

ATSPTDC is an NP-hard problem.

Some important differences with the problem studied in [24] and [25] are:

in the TDTSP the circuit must start from the depot at exactly instant a0,

the travel costs coincide with the travel times, and as its objective function

is the difference between the return time and the starting time of the circuit

solution, it does not distinguish between travel costs and waiting time costs.

In addition, the heuristics used work only on TDTSP without time windows.

On the other hand, the main difference is that we focus on an optimal solution

to the problem.

Note that given an ATSPTDC instance, we present a way to solve it inde-

pendently of the characteristics of its travel time functions. Therefore, in this

paper we do not discuss if the instance does or does not verify the non-passing

property, which is an implicit characteristic of the instance data.

Consider then an ATSPTDC defined on a directed graph G = (V, A) with

all the corresponding data. We construct a directed auxiliary graph G′ =

(V ′, A′) in the following way:

- For each vertex vi with i ∈ {0, ..., n} and for each instant of time tki for

all k ∈ {1, ..., pi} create a vertex vk
i .

- For each pair of vertices vk
i , v

l
j ∈ V ′ with i 6= j and such that tlj =

max{aj , t
k
i + tkij} add to G′ an arc (vk

i , vl
j) with a cost equal to:

- ck
i,j if l > 1 and i 6= 0.

- ck
i,j + cwt0(t

k
0 − a0) if l > 1 and i = 0.

8

- ck
i,j + cwtj(aj − (tki + tkij)) if l = 1 and i 6= 0.

- ck
i,j + cwtj(aj − (tki + tkij)) + cwt0(t

k
0 − a0) if l = 1 and i = 0.

- Divide {1, ..., p0} into four subsets I1, I2, I3, I4 in the following way:

1) k ∈ I1 if vk
0 has only leaving arcs in G′. In this case, replace

also name vk
0 by vk

0s (starting vertex).

2) k ∈ I2 if vk
0 has only entering arcs in G′. In this case, replace

also name vk
0 by vk

0e (ending vertex).

3) k ∈ I3 if vk
0 has both entering and leaving arcs in G′. In this

case, split vk
0 into two vertices vk

0s and vk
0e such that vk

0s will be only

incident with the leaving arcs from vk
0 in G′ and vk

0e will be only

incident with the entering arcs to vk
0 in G′.

4) k ∈ I4 if vk
0 has neither entering arcs nor leaving arcs in G′.

Then, delete vk
0 from G′ for all k ∈ I4.

- Add to G′ a new vertex vd, which will be the depot, with the following

arcs, all of them with zero cost:

For each k ∈ I1 ∪ I3, an arc (vd, v
k
0s).

For each k ∈ I2 ∪ I3, an arc (vk
0e, vd).

An ATSPTDC example with n = 3 illustrates the construction of this

auxiliary digraph. In this example we consider that all waiting times have

zero cost and that the travel cost is proportional to the travel time except

for a little deviation due, for instance, to the characteristics of the different

routes. More specifically, the travel cost is about 40 times the travel time with

5% maximum deviation, that is, ct
ij ∈ [0.95 ·40 · ttij, 1.05 ·40 · ttij] = [38ttij, 42ttij].

The time windows are given in Figure 2.

Table 1 shows the time-dependent travel times and costs corresponding to

this example, in a particular format, trying to simplify the construction of the

auxiliary digraph. Each tki shows in brackets its corresponding time instant.

For example, the ordered pair corresponding to the row t10 and to the column

9

t21 means that if we traverse arc (v0, v1) starting at time t10, which corresponds

to instant 1, t10,1 = 2 and c1
0,1 = 82. A dash inside the cell corresponding to

row tki and column tlj means that if we traverse edge (vi, vj) starting at time

tki we will not arrive at vj at time tlj if l > 1 or that we will arrive after aj if

l = 1. Note that the table does not include the rows and columns with not

possible paths.

Fig. 2. Graph G.

Figure 3 shows the corresponding auxiliary digraph G′ in which the ver-

tices are denoted by numbers, indicating the order of the time instants in their

corresponding time window; the vertices are clustered into subsets Si corre-

sponding to original vertices vi. The arc costs have been omitted in this figure;

they can be easily obtained from Table 1 and from the construction of G′.

Fig. 3. Auxiliary digraph G′.

10

Table 1: Time-dependent travel times and costs (tkij , c
k
ij) of graph G; tki (t)

means that instant tki is equal to t

t21(3) t31(4) t12(2) t22(3) t13(4) t23(5) t33(6)

t10(1) (2,82) - (1,42) - (3,115) - -

t20(2) (1,42) - - (1,39) (2,78) - -

t30(3) - (1,42) - - - (2,77) -

t40(4) - - - - - (1,40) -

t50(5) - - - - - - (1,41)

t30(3) t40(4) t50(5) t22(3) t13(4) t23(5)

t11(2) (1,41) - - (1,40) (2,79) -

t21(3) - (1,40) - - (1,41) -

t31(4) - - (1,42) - - (1,39)

t30(3) t40(4) t21(3) t31(4) t13(4)

t12(2) (1,41) - (1,41) - (2,83)

t22(3) - (1,40) - (1,38) (1,42)

t50(5) t60(6)

t13(4) (1,42) -

t23(5) - (1,41)

11

3 Transformation of the ATSPTDC into an

ATSP

Once the auxiliary digraph G′ has been defined, we present a way to solve the

ATSPTDC by first transforming it into an AGTSP and then transforming the

resulting AGTSP into an ATSP using the transformation in [26] that does not

increase the size of the graph.

Theorem 1 The ATSPTDC can be transformed in pseudo-polynomial time

into an AGTSP defined in the auxiliary digraph.

Proof: Let G = (V, A) be the digraph where an ATSPTDC is defined

and let G′ = (V ′, A′) be its auxiliary digraph. Consider an AGTSP in G′

corresponding to the partition of V ′ into the following subsets: Sd = {vd},

Si = {vk
i }

pi

k=1 ∀i ∈ {1, . . . , n}, S0s = {vk
0s}k∈I1∪I3 and S0e = {vk

0e}k∈I2∪I3, that

is, n + 3 subsets.

By construction of G′ there is a one-to-one correspondence between the

set of feasible AGTSP solutions in G′ and the set of feasible ATSPTDC

solutions in G. It is enough to identify the circuit AGTSP solution in G′

T ′ = {vd, v
k0

0s , v
k1

i1
, vk2

i2
, . . . , vkn

in
, v

kn+1

0e , vd} with the feasible ATSPTDC solution

H in G consisting of the Hamiltonian circuit {v0, vi1 , vi2, . . . , vin , v0} starting

at v0 at time k0 ∈ [a0, b0], leaving vertex vir at time tkr

ir
= air +kr−1 ∈ [air , bir]

∀r ∈ {1, . . . , n} and ending at v0 at time a0 +kn+1−1 ∈ [a0, b0] (note that two

feasible ATSPTDC solutions in G with the same Hamiltonian circuit but at

least one different time instant tki for leaving vi are taken as different solutions).

Both T ′ and H have the same cost; so an optimal AGTSP solution in G′ gives

rise in an easy way to an optimal ATSPTDC solution in G and because of the

construction of G′, no better solution for the ATSPTDC than the optimal one

should exist.

Finally, |V ′| is upper bounded by a linear function on
∑n

i=0(bi − ai + 1),

that is, |V ′| is O(|V |p∗), p∗ being the average of the values bi − ai + 1 with

i ∈ {0, 1, . . . , n}. Therefore, this transformation is pseudo-polynomial.

12

In this way, from a theoretical point of view the ATSPTDC can be solved.

Nevertheless, the size of the auxiliary digraph could be too large to apply

known procedures for solving its associated ATSP in certain real distribution

problems inside large cities: the servicing time windows of the customers could

have a relatively small size (for example one or two hours) after preliminary

studies and negotiations, but the depot time window should be opened during

the entire working day. If there are customers to be serviced early and cus-

tomers to be serviced at the end of the working day, each one of the sets S0s

and S0e will contain about b0 − a0 vertices. For example, with this condition,

for an 8-hour working day with a time unit equal to 1 minute (this is the

smallest time unit normally considered in real vehicle routing problems inside

large cities), the depot could generate about 8 × 60 × 2 = 960 vertices in the

auxiliary digraph.

Although nowadays there are exact procedures capable of solving large-

scale ATSP instances with thousands of vertices, as we mentioned in the in-

troduction, this transformation does not seem very attractive to solve the

ATSPTDC because of the large size of the depot time window.

We show next that the size of the auxiliary digraph can be considerably

reduced thus becoming more competitive. In fact, in the “reduced” auxiliary

digraph, the number of vertices generated from the depot will always be 1,

independently of the size of the depot time window. Thus, in the example

given above, we would only have 1 vertex vs the about 960 vertices (a very

considerable reduction), and in our example of Figure 2, we would have 1

vertex vs the 10 vertices in Figure 3.

Let then G′ = (V ′, A′) be the auxiliary digraph obtained from the original

ATSPTDC instance. From G′ we construct a reduced auxiliary digraph G” =

(V ”, A”) in the following way:

- Remove all vertices of G′ corresponding to the subsets S0s and S0e.

- Maintain the rest of vertices of G′ including vd.

- For every vertex v ∈ G” different from vd do cost(vd, v) = min
k

{cost(vk
0s, v)}.

13

- For every arc (v, vk
0e) with finite cost in G′ do cost(v, vd) = cost(v, vk

0e).

Note that this cost is well defined because for a given v there is at most one

arc going from v to the vertex set S0e.

- Maintain the arc costs between vertices belonging to different sets Si with

i ∈ {1, ..., n}.

- Remove all vertices vk
i ∈ G” that satisfy one of the following three condi-

tions, assuming that an arc (u, v) exists in G” if a finite value had previously

been assigned to cost(u, v):

i) d+(vk
i) = 0 or d−(vk

i) = 0.

ii) d+(vk
i) = d−(vk

i) = 1 corresponding to arcs (vd, v
k
i) and

(vk
i , vd).

iii) d−(vk
i) ≥ 1, d+(vk

i) = 1 corresponding to arc (vk
i , vd) and it

exists at least one index j j 6= i that satisfies ai + k − 1 ≤ aj .

Figure 4 shows the reduced auxiliary digraph G” from G′ in Figure 3 cor-

responding to our example. As we have said, the number of vertices generated

from the depot is 1 vs 10 vertices in Figure 3, and vertices v1
1 and v3

3 have been

removed, so G” has 7 vertices while G′ has 18 vertices.

Fig. 4. Reduced auxiliary digraph G”.

14

We define in G” an AGTSP in the same terms as the AGTSP defined in

G′ (see the proof of Theorem 1), except that the subsets S0s and S0e have

been removed and that some Si may contain fewer elements than in G′ (the

removed vertices).

Theorem 2 Solving the AGTSP in G′ is equivalent to solving the AGTSP in

G”.

Proof: Given a feasible AGTSP solution in G′, if we replace its initial

sequence {vd, v
k
0s, v} by the sequence (arc) {vd, v} in G” and we replace its final

sequence {u, vm
0e, vd} by the sequence (arc) {u, vd} in G”, it is evident that we

have a feasible AGTSP solution in G”. Moreover, the costs of {u, vm
0e, vd} and

{u, vd} are the same, and in an optimal solution in G′, the cost of {vd, v
k
0s, v}

must necessarily be min
k

{cost(vk
0s, v)}, which is the cost of {vd, v} in G”.

On the other hand, there is no feasible AGTSP solution in G′ containing a

vertex vk
i that satisfies one of the conditions (i), (ii) and (iiii) given above: it

is evident for condition (i); it is evident for condition (ii) except for the trivial

case n = 1 that should not be considered as an AGTSP; and condition (iii)

means that subset Sj will not be visited by the solution.

Thus, an optimal AGTSP solution in G′ gives rise to a feasible AGTSP

solution in G” with the same cost, and following the same reasoning, a feasible

AGTSP solution in G” gives rise to a feasible AGTSP solution in G′ with the

same cost; therefore, an optimal AGTSP solution in G′ results in an optimal

AGTSP solution in G” and vice versa.

Therefore, we can solve an ATSPTDC in graph G by solving an AGTSP in

G”. Following with our example, once we have the reduced auxiliary digraph

G”, using the transformation of G” given by Noon and Bean, we obtain the

ATSP optimal solution shown in Figure 5, from which we can easily gener-

ate the AGTSP optimal solution in G” presented in Figure 6 and then, the

ATSPTDC optimal solution in G illustrated in Figure 7 (v0, v2, v1, v3, v0) with

time sequence (2, 3, 4, 5, 6) and with cost 39 + 38 + 39 + 41 = 157. Note that

15

this optimal circuit does not start at time a0, which is equal to 1 in this case

(there is a waiting time in the warehouse).

Fig. 5. ATSP optimal solution.

Fig. 6. AGTSP optimal solution in G”.

Fig. 7. ATSPTDC optimal solution in G.

16

4 Computational experiments

In order to verify the efficiency of this transformation, some computational ex-

periments were performed on 270 instances obtained by modifying benchmark

ATSPTW instances (see for example [14], [21] and [29]) as follows:

- The waiting time before leaving the depot and the waiting time when

arriving at a vertex i before ai always have zero cost.

- Since in the ATSPTDC the travel time of each arc
(

vk
i , v

l
j

)

is greater than

or equal to a time unit (5, 2 or 1 minute in these instances), and some original

ATSPTW instances have several vertices with the same or similar tight time

windows, these instances may have no ATSPTDC solution; this will happen if

it is impossible to visit all vertices in their time windows consuming at least

one time unit each time an arc is traversed, especially for the 5-minute time

unit. Therefore, in order to guarantee a priori the existence of a solution in the

generated ATSPTDC instances, we decided to remove some vertices from each

original instance, obtaining |V |-vertex ATSPTDC instances from ATSPTW

instances with the smallest number of greater-than |V | vertices.

- We weighted the time windows corresponding to a working day from

8:00h. to 20:00h. in a department store in all the resulting instances. That is,

the depot time window [a0, b0] in the benchmark problem is always considered

to be the time interval from 8:00 to 20:00, expressed in minutes as [0, 720].

Therefore, for all i, ai and bi are multiplied by 720/b0 and rounded to be

multiple of 10 (divisible by all the time units considered: 5, 2 and 1). Table 2

shows an example of this weighting of the time windows, with one depot and

two customers: as b0 = 547, for example, the original time window [139, 147]

is first transformed into [139 · 720/547, 147 · 720/547] = [182.96, 193.49] and

then rounded to [180, 190].

- Finally, in all these ATSPTDC instances we considered the cost and

the travel time of traversing an arc (vi, vj) at time tki as the integer part of

p(tki)·| (vi, vj) |, p being a weighting function that depends on the time interval

17

Table 2: Example of weighting of the time windows

Original windows Weighted windows

ai bi ai bi

0 547 0 720

139 147 180 190

62 83 80 110

to which tki belongs, and | (vi, vj) | being the Euclidean distance between vi

and vj. We have partitioned the working day into time intervals (see Table 3)

considering traffic density in a large city of Spain, i.e. the rush-hours, such as

leaving from or going to school or work. Note that in the original ATSPTW

instances the travel time between two vertices is equal to the Euclidean dis-

tance between them given the coordinates of the vertices. Thus, through Table

3 and the definition of our travel times, we have the relation between the orig-

inal ATSPTW travel times and the time-dependent travel times for each time

interval of the working day.

Table 3: Time intervals and weights

Time interval p(tki)

[8:00, 9:40[p(tki) = 1

[9:40, 11:40[p(tki) = 0.5

[11:40, 12:40[p(tki) = 0.75

[12:40, 13:30[p(tki) = 0.65

[13:30, 15:20[p(tki) = 1

[15:20, 16:20[p(tki) = 0.5

[16:20, 18:40[p(tki) = 0.75

[18:40, 20:00] p(tki) = 1

We constructed ATSPTDC instances with 10, 20, 30, 40, 50 and 60 vertices

taking into account three of the different maximum widths of the time windows

in the original ATSPTW instances (20, 40 and 60) and three time units (5,

18

2 and 1 minute). With all these data we generated sets of five instances for

each number of vertices, each maximum width and each time unit, i.e. a

total of 5 × 6 × 3 × 3 = 270 ATSPTDC instances, grouped into 3 sets of

90 instances depending on the time unit. It is worth commenting that as

the original maximum width of the time windows (except for the depot) is

20, 40 or 60, the tightness of the time window constraints depends on each

instance. For example, in the original instance from which Table 2 is obtained,

[a0, b0] = [0, 547]; then, in our instances obtained from this ATSPTW instance,

the maximum width is 20 · 720/547 = 26.32 minutes (very tight for a 5-minute

time unit), 52.65 minutes or 78.97 minutes respectively.

For each one of these 270 instances we first constructed the auxiliary di-

graph G′, then the reduced auxiliary digraph G”; in G” we defined the corre-

sponding AGTSP; using Noon and Bean transformation, we constructed the

ATSP instance to be solved, and finally we transformed the ATSP instance

into a GATSP instance by adding a large positive number to each arc cost in

order to assure the occurrence of a Hamiltonian cycle in the optimal solution

provided a Hamiltonian cycle exists (note that from an ATSPTDC instance we

obtain an ATSP instance whose digraph is far from being a complete digraph).

As the GATSP is a particular case of the MGRP, we used the exact al-

gorithm for the MGRP given in [11] to optimally solve our ATSP instances.

This algorithm is a cutting-plane procedure based on the polyhedral study on

the MGRP presented in [10] and [11] in which the branch-and-bound option of

CPLEX [12] is invoked when violated inequalities are not found. The algorithm

is coded in C and run on a PC with a 1.8 GHz Pentium IV processor, using

CPLEX 8.0 as an LP solver. Note that we have its original code available,

thus we have implemented an algorithm that performs all the transformations

cited above until we obtain a standard MGRP instance as input-data for the

code.

At this moment, a logical question is: why do we use the MGRP exact

procedure mentioned above (hereinafter CMS), to solve the resulting ATSP

19

instances instead of using one of the existing ATSP exact procedures mentioned

in Section 1?

The following considerations should be made:

- The branch and bound ATSP solvers given in [7] and [15] (hereinafter

CDT and FT-b&b respectively, both based on an AP lower bound), are not

useful for non-asymmetric instances, e.g. quasi symmetric TSP instances,

as recognized the authors. As for the branch-and-cut ATSP solver given in

[16] (hereinafter FT-b&c), which works better than the other two algorithms

according to the computational experiments presented in [17], its authors also

admit that for almost symmetric instances a substantial improvement can be

obtained by exploiting new separation procedures.

- The ATSP is defined in a complete digraph and the input data for these

three ATSP solvers is then a |V |×|V | matrix; this means that the solvers work

worse with sparse digraphs because each non-existing arc must be considered as

an existing arc with a high-enough cost. This could lead to a quasi symmetric

instance in which almost all the arcs have a very high cost.

- Our ATSP instances are very sparse: the smallest instances have at most

20% finite cost arcs, while the biggest instances only have less than 2% finite

cost arcs. For example, we have several ATSP instances with more than 2000

vertices and about 60000 arcs, which means that the input data for those

ATSP solvers will have more than 4000000 arcs with very high (infinite) cost.

- The CMS code only requires the existing arcs as input data in the GATSP.

For example, for an instance with 2000 vertices and 60000 arcs we save 3938000

high costs in the input data of the CMS code as compared to the three ATSP

solvers analyzed.

- FT-b&c was implemented by its authors to solve ATSP instances with

up to 200 vertices; however many of our ATSP instances have more than 1000

vertices, and some of them more than 2000 vertices.

With all these considerations, especially due to the characteristics of our

generated ATSP instances, one could expect that the CMS code obtained

20

better results in these instances than the three ATSP solvers. Additionally,

we have compared the FT-b&b and the CDT codes with the CMS code on 60

of our smallest ATSP instances: those belonging to the sets with 5-minute and

2-minute time units and with 10 and 20 vertices in the ATSPTDC instance.

To avoid symmetry in the complete ATSP digraphs in order to obtain a better

performance of both ATSP solvers, and taking into account the size of the

costs, we have identified an infinite cost with a random integer value between

1000 and 2500. In our computational experiments the CDT code obtained

better results than FT-b&b, which in some instances could not obtain any

upper bound and in others caused system errors (probably due to the data

size and not to the dimension of the b&b storage vector). In tables 4 and 5 we

show the running times obtained with the CMS code and with the CDT code,

for which the dimension of the b&b storage vector has been changed from the

original 15000000 to 90000000 (a greater dimension gives rise to system errors

in our computer), with the following notation:

- Name: Name of the problem.

- V: number of vertices in the resulting ATSP instance.

- % Arcs: percentage of existing arcs with respect to the complete digraph

in the ATSP instance.

- Cost: Cost of the optimal solution.

- CMS: Running time in seconds to obtain the optimal solution with the

CMS code.

- CDT: Running time in seconds to obtain the optimal solution with the

CDT code, having as a limit the minimum between 2 hours and the time

consumed until the saturation of the b&b storage vector. When the optimal

solution is not obtained, we show in brackets the best upper bound obtained.

We have that the CDT code obtains good running times in the instances

obtained from ATSPTDC instances with 10 vertices, even with lower running

times than the CMS code in the smallest instances, but only in three out

of the 30 instances obtained from 20-vertex ATSPTDC instances the optimal

21

Table 4: Comparison of CMS and CDT in 5-minute time unit instances with

10 and 20 vertices

Name V % Arcs Cost CMS CDT

P10w201 38 19.35 1175 1.37 0.10

P10w202 50 14.90 1132 0.77 0.16

P10w203 47 15.77 1162 1.37 0.21

P10w204 49 15.35 1195 1.05 0.43

P10w205 41 15.77 1161 0.77 0.10

P10w401 79 9.53 1128 1.10 0.98

P10w402 76 9.96 1158 0.93 0.82

P10w403 73 10.41 1193 1.04 0.21

P10w404 75 9.95 1148 1.10 0.38

P10w405 80 9.02 1161 0.94 0.38

P10w601 97 8.08 1159 1.21 1.26

P10w602 117 6.37 1103 1.37 2.36

P10w603 102 7.82 1128 1.21 12.19

P10w604 107 7.26 1090 1.59 4.33

P10w605 79 9.53 1085 1.32 1.36

P20w201 95 13.21 2276 3.68 >2h. (2811)

P20w202 94 13.20 2268 2.03 >2h. (3680)

P20w203 95 12.86 2252 1.10 >2h. (3713)

P20w204 93 13.15 2250 1.43 64.70

P20w205 95 13.38 2208 2.26 >2h. (2632)

P20w401 160 7.81 2251 3.24 >4044 (4653)

P20w402 163 7.56 2167 3.57 >4158 (3788)

P20w403 150 8.70 2193 3.35 >4352 (2836)

P20w404 165 7.27 2280 3.07 >3437 (2281)

P20w405 144 8.44 2286 6.04 >4483 (3216)

P20w601 199 6.10 2166 7.25 >2776 (3770)

P20w602 222 6.21 2235 21.70 >2267 (2360)

P20w603 207 6.35 2217 6.48 >2319 (3235)

P20w604 216 6.02 2207 7.85 >2086 (2701)

P20w605 214 5.90 2195 5.49 >2152 (2432)

22

Table 5: Comparison of CMS and CDT in 2-minute time unit instances with

10 and 20 vertices

Name V % Arcs Cost CMS CDT

P10w201 77 9.86 1175 1.76 0.00

P10w202 98 7.61 1133 0.98 0.05

P10w203 90 8.05 1162 0.99 0.21

P10w204 97 8.46 1195 1.15 0.00

P10w205 90 8.05 1161 0.93 0.21

P10w401 172 4.39 1128 1.43 4.44

P10w402 167 4.61 1157 1.81 8.84

P10w403 157 4.90 1192 1.10 0.49

P10w404 161 4.62 1148 1.60 0.10

P10w405 172 4.21 1161 1.10 0.76

P10w601 198 3.748 1159 2.42 0.43

P10w602 275 2.68 1103 1.70 4.00

P10w603 238 3.40 1125 2.03 34.43

P10w604 231 3.18 1090 2.31 432.97

P10w605 178 4.28 1084 1.53 65.74

P20w201 193 6.54 2279 4.12 >3192 (6049)

P20w202 187 6.71 2268 2.86 577.10

P20w203 188 6.54 2252 2.31 >2991 (5069)

P20w204 173 7.12 2151 1.48 89.14

P20w205 183 6.93 2211 2.80 >2840 (3208)

P20w401 342 3.65 2252 3.85 >1208 (6147)

P20w402 356 3.41 2165 6.70 >1099 (6945)

P20w403 331 3.95 2197 5.83 >940 (4266)

P20w404 367 3.27 2280 6.15 >789 (2288)

P20w405 317 3.76 2286 7.52 >1324 (5005)

P20w601 463 2.59 2163 20.76 >777 (5007)

P20w602 524 2.60 2235 67.34 >620 (4033)

P20w603 491 2.64 2210 11.86 >547 (4150)

P20w604 511 2.50 2224 21.31 >647 (5960)

P20w605 505 2.48 2195 19.01 >646 (4180)

23

solution was obtained within a reasonable running time (64, 577 and 89 seconds

respectively against 1.43, 2.86 and 1.48 seconds respectively consumed by the

CMS code), while the average running time of the CMS code was only of few

seconds for the 30 instances.

Note that, as expected, the time limit to obtain the optimal solution with

the CDT code (minimum between 2 hours and the time consumed until sat-

uration of the b&b storage vector) decreases with the size of the instance, its

minimum value, 547 seconds, being for problem p20w603 in Table 2. But

even for this problem, the running time with CMS is 11.86 seconds, i.e. the

advantage of using CMS is evident.

Nevertheless, we are convinced that in very asymmetric instances with

few infinite cost arcs, the three ATSP solvers mentioned here show a better

performance than the CMS code. For instance, we have compared the results

obtained with the four exact procedures in 21 ATSP instances collected in

TSPLIB [30]. Although CMS solved the 21 instances within a reasonable

time, according to the results given in [17], FT-b&c ran faster than CMS in all

instances except in the classical real-word instance p43: 9.3 seconds in their

machine against 3.57 seconds in ours. Except for few cases, FT-b&b and CDT

were also faster than CMS in these 21 instances. Note that instance p43 (that

could not be solved optimally by FT-b&b nor by CDT) has about 10% arcs

with cost greater than 1000 and according to the rest of the costs and the cost

of the optimal solution (595) this 10% can be considered with infinite cost.

In tables 6 to 8 we show the average running times obtained with the CMS

code in the 270 generated ATSPTDC instances. Each row corresponds to a

set of 5 similar instances, with the following notation:

- V: number of vertices in the ATSPTDC instance including the depot.

- W: maximum width of the time windows in the original ATSPTW in-

stance from which the ATSPTDC instance has been constructed.

- VG”: average number of vertices in G” rounded to integer.

- ANA: average number of arcs in the GATSP instances obtained from G”

24

rounded to integer.

- O: number of instances optimally solved in less than three hours.

- AT: average time in seconds to obtain the optimal solution in the solved

(in less than three hours) GATSP instances obtained from G”.

- WT: worst time in seconds to obtain the optimal solution in the solved

GATSP instances obtained from G”.

As expected, the running time of this exact and exponential algorithm

increases with the number of vertices in the ATSPTDC instance, with the

width of the time windows and with a smaller time unit, because all of them

increase the number of vertices and the number of arcs in the corresponding

GATSP instance to be solved by the algorithm.

We point out that instances with 10 vertices are optimally solved in less

than one second or within few seconds, even for 1-minute time unit and in-

stances with 30 vertices are solved in less than one minute or few minutes.

Furthermore, we have been able to optimally solve instances with up to 60

vertices, although with larger running times. From the tables we can see that

the instances with 60 vertices produce very large-scale GATSP instances, even

with more than 2,000 vertices and 60,000 arcs. Nevertheless, only 10 out of

the 45 instances with 60 vertices were not solved after 3 hours of running time.

Note that for a real delivery route inside a large city with traffic problems, it

seems very improbable to serve more than 40 or 50 customers in a working

day.

According to the size of the instances solved here, we believe that the exact

procedure for the MGRP proposed in [11] is a good tool to optimally solve

at least real ATSPTDC instances with several dozens of customers within a

reasonable time, even with a time unit equal to 1 minute, which is the smallest

time unit normally considered in real vehicle routing problems inside large

cities.

By the same reason, although from a theoretical point of view the ATSPTW

is a particular case of the ATSPTDC, we can not expect a good behavior

25

Table 6: Computational results with the 5-minute time unit

V W VG” ANA O AT WT

10 20 45 320 5 1.06 1.37

10 40 76 564 5 1.02 1.10

10 60 100 766 5 1.34 1.59

20 20 94 1166 5 2.10 3.68

20 40 156 1926 5 3.85 6.04

20 60 211 2727 5 9.75 21.70

30 20 138 2409 5 3.33 4.40

30 40 225 4051 5 16.13 27.41

30 60 253 4600 5 36.31 86.24

40 20 184 4192 5 7.90 13.84

40 40 314 7278 5 46.68 67.99

40 60 447 10384 5 918.31 2135.61

50 20 239 6678 5 18.95 24.39

50 40 386 11007 5 180.07 365.97

50 60 513 14711 5 468.36 1010.69

60 20 297 9805 5 39.58 51.02

60 40 476 16052 4 2929.64 5450.47

60 60 622 20956 4 1128.59 1438.70

26

Table 7: Computational results with the 2-minute time unit

V W VG” ANA O AT WT

10 20 90 668 5 1.16 1.76

10 40 165 1240 5 1.40 1.81

10 60 224 1687 5 1.99 2.42

20 20 184 2295 5 2.71 4.12

20 40 342 4206 5 6.01 7.52

20 60 498 6370 5 28.05 67.34

30 20 269 4699 5 10.18 21.04

30 40 493 8775 5 38.77 71.46

30 60 574 10325 5 83.56 219.21

40 20 360 8129 5 15.03 24.16

40 40 690 15792 5 277.78 822.12

40 60 1041 24676 5 1997.25 6937.36

50 20 474 13120 5 39.81 46.96

50 40 850 23973 5 1017.48 2878.21

50 60 1200 33893 5 2039.66 5197.22

60 20 601 19722 5 112.05 162.36

60 40 1053 35066 4 3601.94 6295.39

60 60 1451 48293 4 5515.66 10385.97

27

Table 8: Computational results with the 1-minute time unit

V W VG” ANA O AT WT

10 20 180 1438 5 1.68 3.13

10 40 314 2349 5 2.29 2.75

10 60 422 3113 5 4.45 5.27

20 20 357 4415 5 4.74 8.41

20 40 707 8603 5 18.31 30.54

20 60 970 12266 5 94.49 146.38

30 20 517 8789 5 12.68 16.86

30 40 940 16582 5 114.08 228.28

30 60 1113 19813 5 182.58 354.76

40 20 741 16676 5 45.72 84.09

40 40 1316 29704 5 895.57 1670.34

40 60 1943 43937 5 3049.60 5497.44

50 20 909 24869 5 96.04 135.89

50 40 1631 45368 5 1740.35 3283.83

50 60 2343 65114 5 5916.77 8936.43

60 20 1145 37219 5 242.88 389.25

60 40 2021 66419 4 7735.53 10252.78

60 60 2655 86238 0 - -

28

of our procedure to solve general ATSPTW instances, especially if the time

windows are not tight. For example, in the set of ATSPTW instances given in

[2], which are real-life stacker crane instances, some of the smallest instances

(with respect to the number of customers) contain many customers having

time windows [ai, bi] with bi − ai about 4800. If we think of daily routes with

1-minute time unit, most of the customers will have time windows with about

80 hours width.

Nevertheless, if we think of ATSPTW instances with at most several dozens

of customers with tight time windows, although our procedure can not compete

in running time with the specific exact procedures for the ATSPTW (see for

example [2] and [14]), it can optimally solve these instances within a reasonable

time (seconds or minutes). As an example, in Table 9 we show the average

running times obtained with our procedure for the exact resolution of 30 of

the benchmark ATSPTW instances we have used. We do not show the results

for larger instances because the tendency of the running time is evident. In

Table 9 each row corresponds to a set of 5 similar instances, with the following

notation:

- n: number of customers in the ATSPTW instance.

- W : maximum width of the time windows in the ATSPTW instance.

- ATCMS : average time in seconds to obtain the optimal solution with the

CMS code for the MGRP.

- ATDDGS: average time in seconds given in [14] to obtain the optimal

solution with the ATSPTW code presented in that paper.

5 Conclusions

Routing problems with time-dependent costs have hardly been studied because

they are very difficult to model and solve. In this paper we have presented a

generalization of the well-known ATSPTW in which the time and the cost of

traversing an arc depend on the period of time at which we start traversing

29

Table 9: Average running times for ATSPTW instances

n W ATCMS ATDDGS

20 20 4.48 0.02

20 40 22.10 0.05

40 20 57.28 0.08

40 40 962.57 0.24

60 20 222.44 0.15

60 40 8482.44 0.85

it; in this way more accurate solutions can be obtained for some real vehicle

routing problems inside large cities, in which the time or cost of traversing

certain streets depends on the moment of the day. This generalization can

be transformed into an AGTSP and then into the classical ATSP for which

several heuristic and exact procedures exist, that have been applied with good

performance also to large-scale instances with several thousands of vertices.

We have presented a computational study on a set of 270 ATSPTDC in-

stances adapted from benchmark ATSPTW instances. To obtain the optimal

solutions we have applied the exact algorithm for the MGRP proposed in [11]

to the conveniently modified instances. Based on our findings, we believe that

this exact algorithm is a good tool to optimally solve real ATSPTDC instances

with several dozens of customers within a reasonable time -as no more cus-

tomers are likely to be served in a working day- even with a 1-minute time

unit. Nevertheless, as in many real-world routing problems a single tour is

part of a multivehicle problem with several hundreds of customers, in future

research we will try to extend these results to the Vehicle Routing Problem

with Time Windows.

We are convinced that as computer power and speed increase, more and

more researches on routing problems will take into account time-dependent

costs in order to move the mathematical models closer to real-world problems.

Recent papers cited here justify our intuition. In this way, the theoretical

30

results presented here can be used in the future as ideas or tools to test the ef-

ficiency of specific procedures for routing problems with time-dependent costs.

Acknowledgements

Authors would like to thank Michel Gendreau, Alain Hertz, Gilbert Laporte

and Mihnea Stan for providing us the set of benchmark ATSPTW instances.

We are also grateful to Mateo Fischetti and Norbert Ascheuer for their sug-

gestions and help about the computational experiments.

This work has been partially supported by the Ministerio de Ciencia y

Tecnoloǵıa of Spain (project TIC2003-05982-C05-01) and the Generalitat Va-

lenciana (Ref: GRUPOS03/189).

References

[1] N. Ascheuer, M. Fischetti, M. Grötschel, A polyhedral study of the asym-

metric traveling salesman problem with time windows, Networks 36 (2000)

69-79.

[2] N. Ascheuer, M. Fischetti, M. Grötschel, Solving the asymmetric travel-

ling salesman problem with time windows by branch-and-cut, Mathemat-

ical Programming Ser A 90 (2001) 475-506.

[3] E. Benavent, D. Soler, The directed rural postman problem with turn

penalties, Transportation Science 33 (1999) 408-418.

[4] M. Blais, G. Laporte, Exact solution of the generalized routing problem

through graph transformations, Journal of the Operational Research So-

ciety 54 (2003) 906-910.

[5] W.B. Carlton, J.W. Barnes, Solving the traveling-salesman problem with

time windows using tabu search, IIE Transactions 28 (1996) 617-629.

31

[6] G. Carpaneto, M. Dell’Amico, P. Toth, Exact solution of large-scale,

asymmetric traveling salesman problems, ACM Transactions on Math-

ematical Software 21 (4)(1995a) 394-409.

[7] G. Carpaneto, M. Dell’Amico, P. Toth, Algorithm 750: CDT: A subrou-

tine for the exact solution of large-scale, asymmetric traveling salesman

problems, ACM Transactions on Mathematical Software 21 (4)(1995b)

410-415.

[8] S. Chopra, G. Rinaldi, The graphical asymmetric traveling salesman poly-

hedron: symmetric inequalities, SIAM Journal on Discrete Mathematics

9 (4)(1996) 602-624.

[9] A. Corberán, R. Mart́ı, E. Mart́ınez, D. Soler, The rural postman problem

on mixed graphs with turn penalties, Computers & Operations Research

29 (2002) 887-903.

[10] A. Corberán, A. Romero, J.M. Sanchis, The mixed general routing poly-

hedron, Mathematical Programming Ser A 96 (2003) 103-137.

[11] A. Corberán, G. Mej́ıa, J.M. Sanchis, New results on the mixed general

routing problem, Operations Research 53 (2005) 363-376.

[12] ILOG S.A., ILOG CPLEX 8.0, 2002.

[13] G. Desaulniers, D. Villeneuve, The shortest path problem with time win-

dows and linear waiting costs, Transportation Science 34 (2000) 312-319.

[14] Y. Dumas, J. Desrosiers, E. Gelinas, M.M. Solomon, An optimal algo-

rithm for the traveling salesman problem with time windows, Operations

Research 43 (2)(1995) 367-371.

[15] M. Fischetti, P. Toth, An additive bounding procedure for the asymmetric

traveling salesman problem, Mathematical Programming 53 (1992) 173-

197.

32

[16] M. Fischetti, P. Toth, A polyhedral approach to the asymmetric traveling

salesman problem, Management Science 43 (1997) 1520-1536.

[17] M. Fischetti, A. Lodi, P. Toth, 2002. Exact methods for the ATSP. In

G. Gutin, A.P. Punnen (Eds), The traveling salesman problem and its

variants. Kluwer Academic Publishers; 2002. 169-206.

[18] B. Fleischmann, M. Gietz, S. Gnutzmann, Time-varying travel times in

vehicle routing, Transportation Science 38 (2004) 160-173.

[19] F. Focacci, A. Lodi, M. Milano, A hybrid exact algorithm for the TSPTW,

INFORMS Journal on Computing 14 (4)(2002) 403-417.

[20] S. Ichoua, M. Gendreau, J.Y. Potvin, Vehicle dispatching with time-

dependent travel times, European Journal of Operational Research 144

(2003) 379-396.

[21] M. Gendreau, A. Hertz, G. Laporte, M. Stan, A generalized insertion

heuristic for the traveling salesman problem with time windows, Opera-

tions Research 46 (3)(1998) 330-335.

[22] A. Haghani, S. Jung, A dynamic vehicle routing problem with time-

dependent travel times, Computers & Operations Research 32 (2005)

2959-2986.

[23] G. Laporte, Modeling and solving several classes of arc routing problems

as traveling salesman problems, Computers & Operations Research 24

(1997) 1057-1061.

[24] C. Malandraki, M.S. Daskin, Time dependent vehicle routing problems:

Formulations, properties and heuristic algorithms, Transportation Science

26 (3)(1992) 185-200.

[25] C. Malandraki, R.B. Dial, A restricted dynamic programming heuristic

algorithm for the time dependent traveling salesman problem, European

Journal of Operational Research 90 (1996) 45-55.

33

[26] C.E. Noon, J.C. Bean, An efficient transformation of the generalized trav-

eling salesman problem, INFOR 31 (1993) 39-44.

[27] G. Pesant, M. Gendreau, J.Y. Potvin, J.M. Rousseau, An exact constraint

logic programming algorithm for the traveling salesman problem with time

windows, Transportation Science 32 (1)(1998), 12-29.

[28] J.Y. Potvin, Y. Xu, I. Benyahia, Vehicle routing and scheduling with

dynamic travel times, Computers & Operations Research 33 (4)(2006)

1129-1137.

[29] R. Wolfer Calvo, A new heuristic for the traveling salesman problem with

time windows, Transportation Science 34 (1)(2000) 113-124.

[30] http://www.iur.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

34

